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We consider the problem of fault diagnosis in multiprocessor systems. Processors perform

tests on one another: fault-free testers correctly identify the fault status of tested processors,

while faulty testers can give arbitrary test results. Processors fail independently with constant

probability p < 1/2 and the goal is to identify correctly the status of all processors, based

on the set of test results. For 0 < q < 1, q-diagnosis is a fault diagnosis algorithm

whose probability of error does not exceed q. We show that the minimum number of

tests to perform q-diagnosis for n processors is Θ(n log 1
q ) in the nonadaptive case and

n+ Θ(log 1
q ) in the adaptive case. We also investigate q-diagnosis algorithms that minimize

the maximum number of tests performed by, and performed on, processors in the system,

constructing testing schemes in which each processor is involved in very few tests. Our

results demonstrate that the flexibility yielded by adaptive testing permits a significant

saving in the number of tests for the same reliability of diagnosis.

1. Introduction

As the size of commercially available multiprocessor systems grows, they become in-

creasingly vulnerable to component failures. This yields growing interest in the issue of

reliability of such systems. One of the major problems in this area, known as the fault

diagnosis problem, is to locate all faulty processors in the system. The classical approach
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to fault diagnosis was originated by Preparata, Metze and Chien [18]. Processors perform

tests on one another and diagnosis is based on the collection of test results. It is assumed

that fault-free processors always give correct test results, while tests conducted by faulty

processors are totally unpredictable: a faulty tester can output any test result regardless

of the status of the tested processor. Faults are assumed permanent, that is, the fault

status of a processor does not change during testing and diagnosis. In [18] a worst-case

scenario is adopted: it is assumed that at most t processors are faulty and that they are

placed in locations most detrimental for diagnosis. Also, it is assumed that all tests are

determined in advance and they cannot be rescheduled during the diagnosis process.

This model and some of its variations have been thoroughly studied in the literature (see

the survey [10], where an extensive bibliography can be found). It has been argued that the

worst-case scenario often fails to reflect realistic diagnosis situations. As an alternative, var-

ious probabilistic models were proposed (see [6], [7], [8], [9], [15], [16], [19], [20]). Instead

of imposing an upper bound on the number of faulty processors and assuming their worst-

case location, an a priori failure probability, independent for each processor, is assumed

in these models. Diagnosis is then restricted to sets of faulty processors of sufficiently high

a priori probability [15], in which case it can be performed unambiguously [9], or is done

in general and has a high probability of correctness (see [5], [6], [7], [8], [16], [19], [20]).

Nakajima [14] was the first to modify the assumption that all tests are scheduled in

advance. He proposed a new approach called adaptive diagnosis, in which the next test

can be determined after seeing the results of previous ones. (Classical diagnosis is called

nonadaptive.) The flexibility of adaptive diagnosis increases its efficiency. In [13], [21], [2],

[3] and [1], the parallel time (number of rounds) of adaptive diagnosis was investigated,

assuming that tests involving disjoint pairs of processors can be conducted in the same

round. It was shown that, while locating t < n
2

faults requires worst-case time t in the

nonadaptive setting, adaptive diagnosis can locate fewer than n
2

faults among n in constant

time. On the other hand, Blecher [4] showed that the number of tests required to identify

t < n
2

faults in worst case decreases from tn for nonadaptive diagnosis to n+ t− 1 in the

adaptive setting.

In this paper, which is an extended version of [17], we work in the probabilistic model

previously studied in [6] and [20]. The assumptions concerning test results are the same

as in the above-described model of Preparata, Metze and Chien [18] and faults are

also permanent. However, unlike in [18], it is assumed that processors fail with constant

probability p < 1/2 and all faults are independent. It should be noted that this is the only

probabilistic model in which no assumption is made on the behaviour of faulty testers.

Thus diagnosis algorithms working reliably under this model are very robust in that they

produce correct diagnosis under any behaviour of faulty processors.

In [6] the authors show a simple nonadaptive diagnosis strategy based on majority vote

whose probability of error converges to 0 as the system grows. The number of tests they

use is slightly larger than linear in the number of nodes. In [11] it is shown that this

majority strategy maximizes the probability of correctness for test assignments considered

in [6].

The goal of the present paper is to establish a precise relation between error probability

q of a diagnosis strategy and the minimum number of tests it requires, both in the
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nonadaptive and in the adaptive scenario. We show that the minimum number of tests

used by such a strategy for n processors is Θ(n log 1
q
) in the nonadaptive case and

n+ Θ(log 1
q
) in the adaptive case. In both cases we present concrete diagnosis algorithms

that match these bounds. We also investigate diagnosis algorithms that minimize the

maximum number of tests involving any processor in the system, presenting efficient

algorithms in which each processor is involved in only very few tests.

The paper is organized as follows. In Section 2 we establish terminology, formalize the

model and state some preliminary results. In Sections 3 and 4 we study nonadaptive and

adaptive diagnosis, respectively. Section 5 contains conclusions.

2. Terminology and preliminaries

Let U = {u1, . . . , un} be the set of processors. A test assignment is represented by a directed

graph G = (U,E) where (u, v) ∈ E means that processor u tests processor v. The degree of

a test assignment G is the maximum over all u ∈ U of |{v : (u, v) ∈ E} ∪ {v : (v, u) ∈ E}|.
For every u ∈ U and a given test assignment G, processors v ∈ U such that (u, v) ∈ E
or (v, u) ∈ E are called neighbours of u. The distance between processors u and v is the

smallest k such that there exists a sequence of processors u = u0, u1, . . . , uk = v whose

consecutive terms are neighbours. The outcome of a test (u, v) ∈ E is 1 (0) if u evaluates

v as faulty (fault-free). The test assignment is given a priori in the case of nonadaptive

diagnosis. In the adaptive scenario it is constructed dynamically, the next test depending

on the results of previous tests. A complete collection of test results is called a syndrome.

Formally, a syndrome is a function S : E → {0, 1}. The set of all possible syndromes is

denoted by Σ. The set of all faulty processors in the system is called a fault set. This can

be any subset of U. A syndrome S is said to be compatible with a fault set F if, for any

(u, v) ∈ E, such that u ∈ U \ F , S(u, v) = 1 if and only if v ∈ F . This corresponds to the

assumption that fault-free processors always give correct test results. Since faulty testers

can give arbitrary test results, any syndrome compatible with a fault set F can occur

when faulty processors in the system are exactly those in F . The set of all syndromes

compatible with a fault set F is denoted by σ(F). Fault sets F1 and F2 are called associated

if σ(F1) ∩ σ(F2) 6= ∅.
We consider only deterministic diagnosis algorithms. The input of such an algorithm

is a syndrome and the output is the set of processors that the algorithm diagnoses as

faulty (all other processors are implicitly diagnosed as fault-free). Thus a diagnosis is any

function D : Σ→ P(U).

We now define formally the probability of correctness of any diagnosis. Let p < 1
2

be

the probability that a processor is faulty. This probability is fixed and considered as a

constant throughout the paper. The sample space is the set of all fault sets, that is,

Ω = {F : F ⊂ U}.
The probability function P is defined for all subsets of Ω by the formula

P (X) =
∑
F∈X

p|F |(1− p)n−|F |,
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for any X ⊂ Ω. If D is a diagnosis, Cor(D) is the event consisting of those fault sets F for

which D returns F on any syndrome compatible with F , that is, the event that diagnosis

D is correct regardless of faulty processors’ behaviour. More precisely,

Cor(D) = {F ⊂ U : ∀S∈σ(F)D(S) = F}.
The probability of error of diagnosis D is

Err(D) = 1− P (Cor(D)).

A diagnosis D is called a q-diagnosis if Err(D) 6 q.

If two subsets are associated then at most one of them can belong to Cor(D). Since

every set F and its complement are associated (the common compatible syndrome is the

one that gives result 0 for u and v both in or both outside F , and result 1 otherwise), we

have the following observation (see [11]).

Proposition 2.1. For any diagnosis D and any fault set F , F and U \F cannot both belong

to Cor(D).

Among complementary fault sets F and U \ F , the one with smaller size has higher

probability because p < 1
2
. Hence the highest possible value of P (Cor(D)) is obtained if

Cor(D) consists of all sets of size less than n
2

(plus half of all sets of size n
2

in the case of

even n). This implies the following result. Define Qn to be

n∑
k= n+1

2

(
n

k

)
pk(1− p)n−k,

for odd n, and

1

2

(
n

n/2

)
pn/2(1− p)n/2 +

n∑
k= n

2 +1

(
n

k

)
pk(1− p)n−k,

for even n.

Proposition 2.2. For any diagnosis D working for n processors,

Err(D) > Qn.

It was shown in [11] that the diagnosis strategy from [6], based on majority vote,

achieves this bound.

We will use the following version of Chernoff’s bound (see [12]).

Proposition 2.3. Let X be the number of successes in a series of n Bernoulli trials with

success probability r > 1
2
. Then

P (X 6
n

2
) 6 e−cn,

for some positive constant c depending on r but not on n.

Taking r = 1− p in Chernoff’s bound we get the following result.
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Corollary 2.1. We have

Qn 6 e
−c0n,

for some positive constant c0 depending on p but not on n.

The above constant c0 will be used often hereafter. We use |S | to denote the size of a

set S and log to denote the natural logarithm.

3. Nonadaptive diagnosis

In this section we establish the relation between the reliability of nonadaptive diagnosis

and the minimum number of tests it requires. We also study the minimum degree of test

assignments that permit q-diagnosis.

Theorem 3.1. Let e−c0n 6 q < 1. Then the minimum number of tests required by nonadap-

tive q-diagnosis for n processors is Θ(n log 1
q
).

Proof. Let e−c0n 6 q < 1. We first show a nonadaptive q-diagnosis using O(n log 1
q
)

tests. Let t = d 1
c0

log 1
q
e. The assumption q > e−c0n implies t 6 n. Let T be any subset

of U of size t. Consider the test assignment consisting of all tests (v, u), where v ∈ T
and u ∈ U. (This was called a tester graph in [6].) Consider the following diagnosis

strategy, T -Majority (see [6], [11]). Given a syndrome S , T -Majority outputs the fault set

F consisting of those processors u for which |{v ∈ T : S(v, u) = 1}| > t
2
, that is, processors

failed by the strict majority of testers are diagnosed as faulty. As shown in [6] and [11],

Cor(T -Majority) contains all fault sets f of size less than t
2
. Hence Proposition 2.3 implies

Err(T -Majority) 6 e−c0t 6 e−c0
1
c0

log 1
q = q,

and hence T -Majority is a q-diagnosis. Clearly it uses fewer than tn tests, which is

O(n log 1
q
).

In order to prove the lower bound, assume that a nonadaptive diagnosis algorithm

D uses at most nt tests. Hence at least one processor, call it u0, is tested by at most t

processors u1, . . . , ut. For every set F ⊂ U \ {u0, u1, . . . , ut}, the fault sets F ∪ {u0, u1, . . . , ut}
and F ∪ {u1, . . . , ut} are associated, hence at most one of them can be in Cor(D). The

latter fault set has higher probability because p < 1
2
. The family of all fault sets that do

not include {u1, . . . , ut} has probability 1 − pt. The family of all fault sets that include

{u1, . . . , ut} but do not contain u0 has probability pt(1− p). Consequently,

P (Cor(D)) 6 1− pt + pt(1− p) = 1− pt+1,

which implies Err(D) > pt+1. Thus any nonadaptive diagnosis using at most nt tests has

error probability at least pt+1. It follows that every nonadaptive q-diagnosis must use

Ω(n log 1
q
) tests.

The test assignment used to perform the above diagnosis, T -Majority, has the drawback

that processors from the set T test all other processors and hence they require n−1 incident
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communication links in the underlying multiprocessor system. Such interconnections are

difficult and costly to implement as n grows and hence it is important to investigate the

possibility of q-diagnosis for test assignments of low degree. In the rest of this section

we establish the lowest degree (up to a multiplicative constant) of a test assignment that

enables q-diagnosis and show a q-diagnosis for test assignments of such degree. We will

use the following lemma.

Lemma 3.1. Let q < 1. Then there exists a constant a depending on p such that if the

degree of a test assignment for n processors is t 6 a log n then for any diagnosis D, Err(D)

exceeds q, for sufficiently large n.

Proof. Take a constant a < (3 log 1
p
)
−1

. Any processor in the system has at most t

neighbours, and hence the set of processors at distance at most 2 of a given processor

is at most 1 + t2. Construct inductively the following set A of m = b n
t2+1
c processors.

Choose u1 arbitrarily. If u1, . . . , uk are already constructed, choose as uk+1 any processor

at distance at least 3 from all u1, . . . , uk . Thus all processors in A are at distance at least

3 and consequently they have disjoint sets of testers and do not test one another. Let

x = bm1/3c and y = x2. Let A1, . . . , Ax be disjoint subsets of A of size y. For a fixed i,

the probability of the event that all processors in Ai have a fault-free tester is at most

(1 − pa log n)y because sets of testers of different processors in A are disjoint. Since sets

Ai are disjoint, these events are independent for different indices i. Hence the probability

that in every set Ai there is a processor all of whose testers are faulty is at least

zn = (1− (1− pa log n)y)x > 1− xe−ypa log n

> 1− xe−yn−1/3

,

by the choice of a.

Now suppose that in every set Ai there is a processor ai all of whose testers are faulty.

Let Bi be the set of testers of ai. By construction, the sets {ai}∪Bi are pairwise disjoint for

distinct i. For any fault set F disjoint from all {ai} ∪ Bi, all fault sets F ∪⋃x
i=1 Bi ∪ S , for

S ⊂ {a1, . . . , ax}, are associated and F ∪⋃x
i=1 Bi has the largest probability among them.

It follows that, for any diagnosis strategy D,

P (Cor(D)) 6 1− zn + zn(1− p)x,
and hence

P (Err(D)) > zn(1− (1− p)x) > (1− xe−yn−1/3

)(1− e−px),
which converges to 1 as n grows.

Theorem 3.2. Let e−c0n/2 6 q < 1. Then the minimum degree of a test assignment permitting

q-diagnosis for n processors is Θ(log n+ log 1
q
).

Proof. Let e−c0n/2 6 q < 1. We first show a test assignment of degree O(log n+log 1
q
) that

permits nonadaptive q-diagnosis. Let t = d 1
c0

(log n + log 1
q
)e. Thus t < n and ne−c0t 6 q.

Partition all processors into b n
t
c disjoint sets, of sizes between t and 2t. Consider the

test assignment consisting of all tests (u, v), where u and v belong to the same set of the
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partition. The degree of this test assignment is O(log n + log 1
q
). Let Group-Maj be the

diagnosis that considers a processor faulty if and only if the majority of its testers consider

it faulty. If fault-free processors are a majority in every set of the partition, diagnosis

Group-Maj is correct. Hence

P (Err(Group-Maj)) 6 ne−c0t 6 q.

On the other hand, the lower bound argument from the proof of Theorem 3.1 shows

that the degree of a test assignment permitting q-diagnosis must be Ω(log 1
q
). Lemma 3.1

shows that this degree must be Ω(log n).

Our next result shows that restricting the degree of test assignments to the least possible

order O(log n+ log 1
q
) increases the number of tests required by nonadaptive q-diagnosis.

For a fixed q this minimum number of tests is linear in n if arbitrary test assignments

are possible (cf. Theorem 3.1), while it turns out to be Θ(n log n) for test assignments of

logarithmic degree.

Theorem 3.3. Let e−c0n/2 6 q < 1. Then the minimum number of tests in a test assignment

of degree O(log n+ log 1
q
) permitting nonadaptive q-diagnosis is Θ(n(log n+ log 1

q
)).

Proof. The diagnosis Group-Maj from the proof of Theorem 3.2 is a nonadaptive q-

diagnosis for a test assignment of degree O(log n+log 1
q
) (and thus using O(n(log n+log 1

q
))

tests). By Theorem 3.1 the number of tests for any q-diagnosis must be Ω(n log 1
q
). It

remains to show that the number of tests is Ω(n log n).

Fix q < 1 and consider a test assignment of degree t 6 c log n, for any constant c, with

at most dn log n tests, for d < (6 log 1
p
)
−1

. There is a subset B of at least n
2

processors that

have at most 2d log n testers. Construct the set A as in the proof of Lemma 3.1 choosing

processors only from B. Since B has size at least n
2
, it is possible to construct such a set

A ⊂ B of size m = b n
2(t2+1)

c. As before, processors in A have disjoint sets of testers and

do not test one another. Repeat the rest of the argument from the proof of Lemma 3.1

with a = 2d (d has been chosen to satisfy the condition imposed on a). As before, for

any diagnosis strategy D, P (Err(D)) converges to 1 as n grows and hence exceeds q for

sufficiently large n. This concludes the proof that the number of tests is Ω(n log n).

4. Adaptive diagnosis

In this section we consider the minimum number of tests required by adaptive q-diagnosis.

In the case of adaptive diagnosis this number of tests is not fixed and hence we consider

the worst case.

Theorem 4.1. Let e−c0n 6 q < 1. Then the minimum number of tests required in the worst

case by adaptive q-diagnosis for n processors is n+ Θ(log 1
q
).

Proof. Let e−c0n 6 q < 1. We first show an adaptive q-diagnosis using n + O(log 1
q
)

tests. Let t = d 1
c0

log 1
q
e. The assumption q > e−c0n implies t 6 n. Let T be any subset
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of U of size t. Blecher [4] showed an adaptive diagnosis working correctly in a set of t

processors under the assumption that fewer than t
2

processors are faulty. This diagnosis

was proved to use fewer than 3
2
t tests in the worst case. Call this diagnosis, applied to the

set T , T -Adaptive. Our diagnosis algorithm, Ada, works as follows. First run diagnosis

T -Adaptive on the set T . If all processors in T are diagnosed as faulty, diagnose all other

processors as faulty and stop. Otherwise pick any processor v ∈ T that was diagnosed as

fault-free by T -Adaptive and perform all tests (v, u), for u ∈ U \ T . Diagnose as faulty

(fault-free) processors that v considers faulty (fault-free).

The diagnosis Ada uses fewer than 3
2
t + n − t tests, which is n + O(log 1

q
). It remains

to show that it is indeed a q-diagnosis. If the majority of processors in T are fault-free,

T -Adaptive works correctly and finds a fault-free processor (in fact more than t
2

such

processors). Thus all processors in U \ T are also diagnosed correctly and the entire

diagnosis Ada is correct. It follows that Err(Ada) does not exceed the probability that

at most t
2

processors in T are fault-free. In view of Proposition 2.3 the latter event has

probability at most

e−c0t 6 e−c0
1
c0

log 1
q = q,

hence Ada is indeed a q-diagnosis.

In order to prove the lower bound assume that an adaptive diagnosis algorithm D

uses at most n + t − 2 tests. Suppose that the first t tests give result 1. Consider the

remaining n − 2 tests. There exists a processor u0 not tested by any of them. Hence u0

was tested by at most t processors u1, . . . , ut and all tests were in the first series. For every

set F ⊂ U \ {u0, u1, . . . , ut}, the fault sets F1 = F ∪ {u0, u1, . . . , ut} and F2 = F ∪ {u1, . . . , ut}
have a common compatible syndrome S , which gives value 1 on the first t tests. On the

remaining tests (u, v) this syndrome gives value 1 if v ∈ F and value 0 otherwise. Thus

at most one of the fault sets F1, F2 can belong to Cor(D). Repeating the argument from

the proof of Theorem 3.1 we get P (Err(D)) > pt+1. Hence any adaptive diagnosis using

at most n + t − 2 tests has error probability at least pt+1. It follows that every adaptive

q-diagnosis must use n+ Ω(log 1
q
) tests.

In a similar way to the nonadaptive case, it is important to construct adaptive q-

diagnosis algorithms whose test assignments have low degree and that use as few tests

as possible. We present here two algorithms: a simple algorithm that uses the optimal

number of tests and whose test assignment has degree O(log 1
q
), and a more elaborate

algorithm whose test assignment has degree O(1) and that uses fewer than 3n tests.

Theorem 4.2. Let 2e−c0n 6 q < 1. Then there exists an adaptive q-diagnosis for n pro-

cessors with test assignment of degree O(log 1
q
), and using n + O(log 1

q
) tests in the worst

case.

Proof. Let t = MAX[ 1
c0

log 2
q
, 4] = O(log 1

q
). The assumption q > 2e−c0n implies t 6 n.

Partition the n processors into ` = O(log n) sets A1, . . . , A`, where |A1| = t, |A2| = 1
2
t2, and

|Ai| = ( 1
2
)i−1ti (|A`| 6 ( 1

2
)`−1t`).
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The probability that the set Ai has a majority of correct processors is (by Proposition 2.3)

at least

1− e−c0
1
c0

log 2
q

(t/2)i−1

> 1−
(q

2

)i
.

Thus with probability 1− q all sets have a majority of correct processors.

The algorithm starts by running the Blecher algorithm [4] on the set A1. If a majority

of processors in the set A1 are correct, each of the first t/2 correct processors in A1 tests

t processors in the set A2, otherwise the algorithm fails. If a majority of processors in the

set Ai, 2 6 i 6 ` − 1 are found to be correct, each of the first t2/2 correct processors in

Ai tests t processors in Ai+1, otherwise the algorithm fails.

Clearly the degree of the algorithm is O(t) = O(log 1
q
), the algorithm fails with proba-

bility bounded by q, and the total number of tests is n+ O(log 1
q
).

Theorem 4.3. There exists an adaptive q-diagnosis for n processors that uses fewer than 3n

tests in the worst case, has test assignment of degree O(1), and failure probability q = e−Ω(n).

Proof. Since p < 1
2

is a constant, there is a constant p′ such that p < p′ < 1
2

and by the

Chernoff bound [12] the probability that the system has more than p′n faulty processors

is bounded by

q = e−
1
3 ( p
′
p
−1)2np = e−Ω(n).

Thus, with probability 1−e−Ω(n), the difference between the number of fault-free processors

and faulty processors in the system is at least 2( 1
2
− p′)n.

The algorithm is based on the following observation.

Proposition 4.1. Assume that two processors v and u test each other.

(1) If both tests return a non-faulty outcome, then either both processors are fault-free or

both are faulty.

(2) If at least one test returns a faulty outcome then at least one of the processors is

faulty.

The algorithm works in iterations. In each iteration we have a number of active sets of

processors, and several left-over sets. We start the first iteration with n active sets, each

with one processor; each processor is in exactly one set.

If n is odd we switch the status of one set from active to a left-over set.

We partition the remaining active sets into b n
2
c pairs. Assume that the sets {v1} and

{v2} are paired; then v1 tests v2, and v2 tests v1. If both tests return a fault-free outcome,

the two sets are combined into one active set {v1, v2}. If at least one of the tests has a

faulty outcome, the two sets are eliminated. Note that, because of property (1) above, the

two processors in a new active set are either both fault-free or both faulty. Property (2)

guarantees that the number of fault-free processors that were eliminated is no larger than

the number of faulty processors eliminated at that iteration.



332 A. Pelc and E. Upfal

Iteration i starts with ki active sets, each with 2i−1 processors. In each active set either

all processors are faulty or all processors are fault-free. Furthermore, each active set has

two processors that so far have in- and out-degree 1.

If ki is odd, one active set is marked left-over. The remaining active sets are partitioned

into pairs. Given a pair of active sets Aj, A`, let vj ∈ Aj and v` ∈ A` be two processors

with in- and out-degree 1. The two processors test each other. If the outcome of both

tests is fault-free, the two sets are combined into one active set of size 2i. Note that the

processors in the new set are either all fault-free or all faulty, and there are two processors

in the new set with in- and out-degree 1. If at least one of the tests gives a faulty outcome,

the two sets are eliminated. Note that in this case the number of fault-free processors

eliminated is bounded by the number of faulty processors eliminated.

The process terminates when there is only one active set left. Since no more than one

set was marked left-over in each iteration, and since the size of the active sets doubles in

each iteration, the size of the remaining active set A is larger than the sum of the sizes

of all the left-over sets. Since we have eliminated as many faulty processors as fault-free

processors, and since the majority of processors are fault-free (with probability at least

1 − q), all the processors in A must be fault-free, and, with probability at least 1 − q,

the set A has more than ( 1
2
− p′)n = cn processors for some constant c > 0. In the final

phase of the algorithm each processor in A tests 1
c

= O(1) processors outside this set to

complete the diagnosis of all the n processors.

The degree of this test assignment is bounded by 2 + 1
c

= O(1), the total number of

tests executed by the algorithm is fewer than 3n (fewer than 2n during the iteration and

fewer than n in the final phase), and its failure probability is bounded by e−Ω(n).

5. Conclusion

We have established the minimum number of tests (up to a multiplicative constant)

needed to diagnose an n-processor system with a given bound on error probability, both

for the nonadaptive and adaptive testing scenarios. In both cases we have given concrete

algorithms that match these bounds. We have also established the minimum order of

magnitude of the degree of test assignments permitting diagnosis with a given bound

on error probability. We have investigated test assignments permitting such diagnosis in

spite of low degree and few tests. Our results demonstrate that the flexibility yielded by

adaptive testing permits a significant saving in the number of tests for the same reliability

of diagnosis.
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