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A B S T R A C T

Frequency setting requires the determination of the dispatching headways of all bus lines in a city
network and constitutes the main activity in the tactical planning of public transport operations.
Determining the dispatching headways of bus services in a city network is a multi-criteria pro-
blem that typically involves balancing between passenger demand coverage and operational
costs. In this study, the problem of setting the optimal dispatching headways is formulated with
the explicit consideration of operational variability issues for mitigating the adverse effects of
passenger demand and travel time variations inherent to bus operations. The proposed model for
setting the dispatching headways of bus lines considers the demand, headway and travel time
variations along every section of each bus route for different times of the day, as well as op-
erational costs, vehicle capacity and fleet size constraints.

We first formulate the problem while accounting for the consequences of variability in service
operations. The resulting optimization problem is then solved by employing a Branch and Bound
approach together with Sequential Quadratic Programming in order to find the optimal dis-
patching headway for each bus line. Experimental results demonstrate (a) the improvement
potential of the base case dispatching headways when considering the service reliability; (b) the
sensitivity of the determined dispatching headways to changes in different criteria, such as
passenger demand and/or bus running costs, and (c) the convergence accuracy of the proposed
solution method when compared to heuristic approaches.

1. Introduction

Public transport operators need to continuously update service frequencies to cater for changes in traffic conditions and passenger
demand in both space and time. The service frequencies can be updated by modifying the dispatching headways of the respective bus
services since the frequency of one bus line is inversely proportional to its dispatching headway. Bus line frequencies can be adjusted
to the passenger travel needs subject to resource capacities and operational cost limitations by using information from passengers
(i.e., smartcard logs (Pelletier et al., 2011; Ma et al., 2013; Munizaga and Palma, 2012; Luo et al., 2017), smartphones (Alexander
et al., 2015; Gkiotsalitis and Stathopoulos, 2015; Calabrese et al., 2013; de Regt et al., 2017) and operating vehicles (Cortés et al.,
2011).

In transit planning, frequency setting follows the network design and precedes the timetable design and vehicle and crew
scheduling (refer to Kepaptsoglou and Karlaftis, 2009; Farahani et al., 2013; Ceder, 2007 for more details on public transport
planning processes). Setting the frequencies by determining the dispatching headways of bus lines and network design are commonly
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considered as two consequent problems (with the exceptions of Silman et al., 1974; Ramos, 2014; Szeto and Wu, 2011). Frequency
setting and network design are considered as two consequent problems due to the complexity of these problems, the inefficiency of
solving approaches and the fact that frequency setting can be adjusted as part of tactical planning.

Methods to determine dispatching headways for setting the frequencies of the services are based on either passenger load profile
rule-based techniques (Ceder, 2007, 1984; Hadas and Shnaiderman, 2012) or on minimizing passenger and operator costs Furth and
Wilson (1981), Cipriani et al. (2012) and Gkiotsalitis and Cats (2017). For more details one can refer to the literature reviews by
Ibarra-Rojas et al. (2015) and Guihaire and Hao (2008). The unsatisfied demand is a main factor of the above-mentioned problem and
is generally modeled by introducing a penalization weight in the objective function (Barra et al., 2007; Cipriani et al., 2012; Fan and
Machemehl, 2008). Common practice in public transit planning is to determine the dispatching headways based on accumulated
hourly passenger counts, average travel time, vehicle capacity and the minimum allowed frequency limit by time of day. One
exception is the work of Hadas and Shnaiderman (2012) which presented a new approach for setting the dispatching headways by
introducing the stochastic properties of Automatic Vehicle Location (AVL) and Automatic Passenger Counting (APC) data within a
supply chain optimization model. The optimization elements of that approach were the: (a) empty-seat driven (unproductive cost)
and (b) the overload and un-served demand (increased user cost).

Several studies have considered stochasticity in the tactical planning phase (Amberg et al., 2017). Li et al. (2013) considered
stochastic parameters such as demand, arrival times, boarding/alighting times, and travel times via a stochastic optimization ap-
proach and a meta-heuristic solver that minimizes the sum of the expected value of the company costs and the waiting time costs for
passengers. Bellei and Gkoumas (2010) modeled also the demand and dwell times scholastically while Barabino et al. (2017) pro-
posed an offline framework that identifies the bus stops and the time periods in which the reliability of the bus operations is not
sufficient using historical vehicle location data. An interesting extension of the models that determine the dispatching headways of
bus lines which tries to minimize the passenger waiting times and operational costs while increasing ridership came from Gkiotsalitis
et al. (2017), Verbas and Mahmassani (2013) and Verbas et al. (2015). Verbas et al. (2015) extended the model presented by Furth
and Wilson (1981) considering demand variations along the route; thus, enabling the split of the route into sub-routes that enjoy
homogeneous demand patterns in order to define dispatching headways for each sub-route independently. The variation of demand
was modeled by assuming temporal and spatial heterogeneity of the ridership elasticity with respect to dispatching headways and the
problem was formulated with a non-linear program which minimizes the weighted sum of ridership and wait time savings over all
stops, lines, and time intervals subject to constraints such as budget, fleet size, headway bounds for each line pattern, and bounds for
load factors.

Notwithstanding the above, to the best of the authors knowledge, none of the previous studies solved the problem of setting
dispatching headways while considering the reliability of service operations and the consequences of travel time and demand
variability during the day; even if the implications of the bus service reliability problem have been analyzed by several works such as
the work of Chen et al. (2009). Neglecting service variability at the planning phase leads to the selection of sub-optimal solutions and
the underestimation of both operational and passenger costs. Service reliability is mostly addressed at the operations control phase by
re-adjusting planned schedules or applying other control measures such as bus holding or speed control in real-time for reacting to
trip travel time and passenger demand changes (Gkiotsalitis and Maslekar, 2015; Moreira-Matias et al., 2016; Asgharzadeh and
Shafahi, 2017). However, the consideration of service reliability already at the tactical planning phase can potentially generate
solutions that tackle the inherent uncertainty of public transport operations which is particularly high at dense metropolitan areas
with high-demand bus operations.

In the remainder of this paper, we develop and apply a reliability-based optimization framework for setting the dispatching
headways of bus lines that considers historical operational data and is aware of the passenger waiting time variability at each stop
and how it is affected when changing the planned dispatching headways. In the following section, the problem description is pre-
sented considering the demand variations and the travel time variability from bus stop to bus stop over time. In addition, the multi-
objective problem of setting the optimal dispatching headways of several bus lines within a study area is formulated. An exact
solution method for solving the resulting discrete non-linear programming problem is described. The method is applied by using
General Transit Feed Specification (GTFS) data from 17 central bus lines in Stockholm and detailed AVL and APC data from central
bus lines 1 and 3. After discussing the experimentation results, concluding remarks about practical implications and future work
directions are presented in the closing section.

2. Reliability-based frequency setting problem

2.1. Problem formulation

In this work, we introduce the following notation for describing the main components of the frequency setting problem that
requires the determination of the dispatching headways of all bus lines in a study area.

L S{ , } is a network with L bus lines and S bus stops.

tl
th90 (hour) the total travel time value of a line l for which there is only a 10% chance for a bus trip to require

more travel time than that. This travel time includes the boarding/alighting times at each bus stop
and the layover times before starting a new trip

= …L L LL { , , , }L1 2 | | the bus lines of the network
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= …S S SS { , , , }l l l l S,1 ,2 ,| |l a vector denoting the stops of line ∈l L in a sequential order starting from the departure stop

ql (Nr. of buses) number of buses allocated to line l

γ (Nr. of buses) maximum number of available buses at the network level

bl j t, , (passenger boardings/

hour/stop)

total number of observed boardings for line l at stop j for a time period t. A time period t of 1 h is
commonly used in literature (Hadas et al. (2010)) for avoiding demand heterogeneity issues

kl (monetary cost/trip) operational cost per run for route l

hl (minutes/trip departure) the planned dispatching headway of bus line ∈l L over a period of the day in minutes (decision
variable of the frequency setting problem)

h h( )l j l, (minutes) the expected operational headways at stops ∈j Sl when the planned dispatching headway is hl
Varh h( )l j l, (minutes2) the expected variance of the operational headways at stops ∈j Sl when the planned dispatching

headway is hl
CVhl j, (unitless) the expected coefficient of variation of the operational headways at stops ∈j Sl when the planned

dispatching headway is hl
θ (Nr. of passengers) the passenger capacity of the vehicle

b h( )l j t l, , (passenger boardings/

hour/stop)

the expected boarding levels as a function of the planned dispatching headway hl

Ψl j t, , (passenger load/hour/

stop)

the observed hourly passenger load for line l at stops ∈j Sl for a time period t. It is computed as
the difference of accumulated boarding passengers and alighting passengers

hΨ ( )l j t l, , (passenger load/

hour/stop)

the expected passenger loading levels as a function of the planned dispatching headway hl

= …t t tT { , , , }T1 2 | | the hourly time periods for which the dispatching headway hl is applied
The planned dispatching headway, hl, of one bus line ∈l L can be selected from a pre-determined admissible set of values
∈h {2,3,4,5,6,7,8,9,10,12,15}l min. in order to adhere to the cyclic bus timetable requirement. The upper bound is set to 15min because

we focus on high frequency services where the frequencies are sufficiently high so that passengers do not coordinate their arrival with
vehicle arrivals (in this way, we allow at least 15 minheadwayperdeparture

60 minutes per hour
=4 departures per hour). By doing so, we can assume random

passenger arrivals at stops like most works in literature (see Furth and Wilson, 1981).
For setting the dispatching headways of bus lines, we form an objective function that considers four key components. First, we

consider the passenger waiting cost at every stop ∈j S. For this, we assume random passenger arrivals at stops resulting in a waiting
time that is half the time of the headway at that stop. Ideally, the planned dispatching headway of a line l, which is the headway
between successive trips at the departure stop, hl, will be maintained at any other stop ∈ −j SS { }l l,1 of line l. However, this is not the
case in real-world operations because of travel time variations that lead to bus bunching. For this reason, for each potential dis-
patching headway hl we estimate the passenger waiting time at any stop j by using historical data of the observed headways at that
stop from the real-world operations. Let assume that for different dispatching headways ′ ″ …h h h{ , , , }l l l we observed headways

′ ″ …h h h{ , , , }l j l j l j, , , at any bus stop ∈ −j SS { }l l,1 . Then, for each bus stop ∈ −j SS { }l l,1 we can estimate its operational headway by using the
dispatching headway at the departure stop according to the following expression:

⎧
⎨⎩

∈ −
=h h

j S h

h j S

S
( ):

expected operational headway at stop { } for

if
l j l

l l l

l l
,

,1

,1 (1)

These headway observations from past operations refer to a specific value of the dispatching headway hl and for each value of the
dispatching headway hl we use a different set of headway observations for calculating the average headway at that stop.

Using the expected value of the operational headways at any stop j for a planned dispatching headway hl, the waiting times of
passengers for that dispatching headway are:

∑ ∑ ∑
∈ ∈ =

h h
b h

( )

2
( )

l j

l j l

t t

T

l j t l

L S

,
| |

, ,

l 1

, where the term b h( )l j t l, , represents the hourly passenger boardings for line l and stop j as a function of the dispatching headway hl.
In the above expression, we assumed random passenger arrivals where the waiting time at each stop is equal to half of the average

headway at that stop. Many works in literature though consider also the headway variability for the estimation of the waiting time.
Osuna and Newell (1972) for instance defined the waiting time for passenger random arrivals as half of the average headway plus the
ration of the headway variance to twice the average headway. Adopting this approach, the expression of the waiting times of
passengers can be expanded as follows:

O ∑ ∑ ∑⎜ ⎟= ⎛
⎝

+ ⎞
⎠∈ ∈ =

h
h h Varh h

h h
b h( )

( )

2

( )

2 ( )
( )l

l j

l j l l j l

l j l t t

T

l j t l

L S

1
, ,

,

| |

, ,

l 1 (2)

where:

⎧
⎨⎩

∈ −
=Varh h

j S h

j S

S
( ):

expected headway variance at stop { } for

0 if
l j l

l l l

l
,

,1

,1 (3)
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The expected headway and headway variance for every bus stop j can be derived using the observed headways at each stop for
different values of dispatching headways.

In Eq. (2) we did not assume that the demand is inelastic with respect to passenger waiting times as many works in the literature
do (Ibarra-Rojas et al., 2015). Instead, we used the function b h( )l j t l, , to relate the number of boardings with the dispatching headway.
Several studies, such as Paulley et al. (2006) and Preston and James (2000) have shown that there is an elasticity for bus demand with
respect to passenger waiting times and the average value appears to be−0.64 for long-term operations. Let assume that a bus line l is
operated for a long period with a dispatching headway = ′r ho l and for that dispatching headway the observed passenger demand was
bl j t, , boardings and Ψl j t, , loadings per line/stop and hour. Then, if for 1% waiting time increase we have a 0.64% decrease in passenger
demand, the expected number of boardings for another dispatching headway, ≠ ′h hl l , can be approximated by the following
iterative function:

=

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

> ′
⎧
⎨
⎪

⎩⎪

= ′ =
= +

= −

< ′
⎧
⎨
⎪

⎩⎪

= ′ =
= −

= −

− −
− − −

− −
− − −

−
−

−
−

b h

h h

r h b r b

r r r

b r b r b r

h h

r h b r b

r r r

b r b r b r

( )

if :

, ( )

1%

( ) ( ) 0.64 ( )

if :

, ( )

1%

( ) ( ) 0.64 ( )

l j t l

l l

o l l j t o l j t

n n n

l j t n l j t n l j t n
r r

r

l l

o l l j t o l j t

n n n

l j t n l j t n l j t n
r r

r

, ,

, , , ,

1 1

, , , , 1 , , 1

, , , ,

1 1

, , , , 1 , , 1

n n

n

n n

n

1

1

1

1 (4)

where the initial value of = ′r ho l is updated in a recursive manner in order to investigate how much the expected passenger boardings
per line/stop and hour are affected by the dispatching headway change according to the bus demand elasticity.

From Eq. (4) one can observe that if > ′h hl l , then for every 1% increase of the dispatching headway ( = +− −r r r1%n n n1 1) the
number of boardings per line/stop and hour, b r( )l j t n, , , decrease by− − − −

−b r0.64 ( )l j t n
r r

r, , 1
n n

n

1

1
since − =− −r r r1%n n n1 1 which is always positive

in this case. In contrast, if < ′h hl l for every 1% reduction of the dispatching headway ( = −− −r r r1%n n n1 1) the boardings per line/stop
and hour, b r( )l j t n, , , increase by − − − −

−b r0.64 ( )l j t n
r r

r, , 1
n n

n

1

1
since − = −− −r r r1%n n n1 1 which is always negative in this case.

Eq. (4) shows that by reducing the planned dispatching headway the expected number of boarding passengers per line/stop for a
given time window (i.e. hour), bl j t, , , increases because passenger demand is sensitive to service improvements. However, this increase
in the hourly passenger boarding rate may not necessarily increase the number of boarding passengers per vehicle trip because the
increased demand is distributed over a larger number of trips.

After observing the form of the iterative function of Eq. (4), the expected number of boarding passengers for a planned dis-
patching headway can be further approximated using a closed-form, non-recursive expression. By plotting the output values of Eq. (4)
for different dispatching headways (Fig. 1), one can observe that these values can be reproduced by a non-recursive function that has
an exponential form. For this reason, we introduce a general exponential function for approximating Eq. (4) that has the following
form:

= +−b h ψ e ψ( )l j t l
ψ h

, , 1 3
l2 (5)

where ψ ψ ψ, ,1 2 3 are the parameters of the function which depend on the value of the dispatching headway under which the number of
passenger boardings was observed. These parameters are computed by fitting the function to the data using non-linear least squares.
To provide an example, a non-linear least squares fitting results to the parameter values of Fig. 1 for two hypothetical examples with
(a) dispatching headway ′hl =10min. with 25 observed hourly passenger boardings and (b) dispatching headway of ′ =h 5l min. with

Fig. 1. Approximated Hourly Passenger Boardings, b h( )l j t l, , , for different values of dispatching headways [ ′ =h 10l min and =b 25l g t, , boardings/h for the left figure;

′ =h 5l min and =b 100l g t, , boardings/h for the right figure], after approximating the iterative function of boardings with the exponential one of Eq. (5).
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100 observed hourly passenger boardings.
The same logic of Eq. (4) applies for approximating the number of loadings for a dispatching headway change, hΨ ( )l j t l, , , after using

the same incremental elasticity steps. Similarly, an exponential function can be used by following the logic of Eq. (5) for approx-
imating the iterative function of hΨ ( )l j t l, , with the use of a simpler exponential function.

Another objective is the improvement of service reliability. Service reliability is decoupled from the expected passenger waiting
time because the cost of an unexpected waiting time is experienced as delay and therefore has a more negative impact to passengers
than the anticipated waiting time as pointed out by Wardman (2004). In addition, transport authorities have increased the pressure to
bus operators to improve operational service reliability. For this, they have defined specific KPIs such as the Excess Waiting Time of
passengers (EWT) at stops for monitoring the service reliability and have developed incentive schemes for rewarding the performance
of operators. For instance, the Land Transport Authority (LTA) in Singapore LTA (2017) offers a 6000 Singaporean dollar bonus per
line for a 0.1min reduction of the excess waiting time of passengers at stops.

For measuring the service reliability, Chen et al. (2009) tested a set of metrics that can be applied to the stop or the line level and
proposed the use of the coefficient of variation, CVhl j, , for a stop-level reliability assessment:

=CVh
Varh h

h h

( )

( )
l j

l j l

l j l
,

,

, (6)

Using this approach, the service reliability objective that considers also the level of boardings for giving different weights to
different bus stops can be expressed as:

O ∑ ∑ ∑=
∈ ∈ =

h CVh b h( ) ( )l

l j

l j

t t

t

l j t l

L S

2 , , ,

l

T

1

| |

(7)

Finally, the objective function of setting the dispatching headways of bus lines should include the operational running costs which
can be expressed as:

O ∑ ∑=
= ∈

h
k

h
( )

/60
l

t t

t

l L

l

l
3

T

1

| |

(8)

This cost component has been used by Furth and Wilson (1981) for calculating the running costs and is equal to the running costs
of one bus allocated to a line lmultiplied by the number of buses per hour. It represents the variable costs such as driver and technical
staff, energy consumption and maintenance costs.

If we allocate a dispatching headway from the set =h {2,3,4,5,6,7,8,9,10,12,15} minl to a bus line, then we should ensure that the
number of buses allocated to that line is an integer number. In the ideal case, the 90th percentile of the total travel time of a line, tl

th90 ,
should be such that for a planned dispatching headway hl an integer number of vehicles is required. However, this is rarely the case
and we might need to round upwards the number of buses according to the following equation:

= ⎡
⎢⎢

⎤
⎥⎥

q
t

hl
l
th

l

90

(9)

If there is a depreciation cost of operating an extra bus, the operator would be willing to deploy a solution that requires fewer
buses. This can be translated to the following objective that penalizes the use of additional buses:

O ∑= ⎡
⎢⎢

⎤
⎥⎥∈

h
t

h
( )l

l

l
th

lL

4

90

(10)

Apart from the objectives, there are also resource limitations. One first limitation is the availability of buses. The total number of
buses assigned to every line should be at most equal to the total number of buses available at the network level:

∑ ⎡
⎢⎢

⎤
⎥⎥
⩽

∈
t

h
γ

l

l
th

lL

90

(11)

where γ is the total number of available buses and is a positive integer.
Another limitation is the vehicle capacity. The maximum hourly loading point (MLP) method (Lee and Vuchic, 2005; Ceder and

Israeli, 1998) has been extensively used as one of the two main methods for defining the optimal frequency per line that accomplishes
the desired level of occupancy at the most crowded stop during the peak demand hour. A modification of this method can be used for
defining the vehicle capacity constraint where the selected frequency should be such that the vehicle load at the peak hour and the
peak stop is still lower than the vehicle capacity. If hΨ ( )l j t l, , is the observed load for a planned dispatching headway hl for each hourly
time period for line l and stop j, then the maximum loading that occurs at stop ∗j and hour ∗t is expressed as:

= ∗ ∗max h hΨ ( ) Ψ ( )l l l j t l, , (12)

Then, the dispatching headway of line l should satisfy the inequality:

⩽h
θ

max h

60

Ψ ( )
l

l l (13)
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The importance of each one of these four objectives on the objective function of the problem depends on the operator’s man-
agement preferences and the operational context. Weighting factors can be determined based on passenger and operator cost esti-
mates (i.e. value of time, fixed and variable cost units). In the following, we form a single-objective function by introducing weight
factors α α α α, , ,1 2 3 4 that translate all costs to monetary terms, establishing thus trade-offs between compensatory objective function
components:

  

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
∑

∑

= + + +

+ ⎡⎢⎢ ⎤⎥⎥
⎡⎢⎢ ⎤⎥⎥ ⩽

⩽ ∈
∈ =

= … … ∈ ∈ = ∈ ∈ = = ∈

∈

∈

( )z α b h α CVh h b h α

α

γ

h l L

h

hmin ( ) ( ) ( ) ( )

subject to: Available Buses:

Capacity: for all lines

Allowed Dispatching Headways: Ω {2,3,4,5,6,7,8,9,10,12,15} minutes

h h l j

h h Varh h

h h
t t

t

l j t l

l j

l j l

t t

t

l j t l

t t

t

l L

k

h

l

t

h

l

t

h

l
θ

max h

l

ω

h
L S L S

L

L

{ , , , }
1

( )

2

( )

2 ( ) , , 2 , , , 3 / 60

4

60

Ψ ( )

elements

L l
l

l j l l j l

l j l

T

l

T T

l

l

l
th

l

l
th

l

l l

1

, ,

,
1

| |

1

| |

1

| |

90

90

(14)

α α α α, , ,1 2 3 4 have positive values because the respective objective needs to be minimized and their units are: α1 (monetary cost unit
per waiting minute for each passenger); α2 (monetary cost unit per passenger); α3 (unitless); α4 (monetary cost unit per utilized bus).

Finding the optimal dispatching headway for each bus line hl results in a combinatorial problem since any changes in the
dispatching headway of a bus line affects all other lines in the network because of changes in the allocation of a limited resource (i.e.
vehicles). Hence, every choice regarding the planned dispatching headway of one line has implications to the dispatching headway
choices of other lines; yielding an exponential number of ω L| | combinations for calculating the optimal solution when using simple
enumeration (brute-force). Due to the exponential time complexity, the problem is computationally intractable and allows an optimal
solution search only on small networks.

One of the main problems of the objective function z h( ) is the absence of analytical expressions that relate the expected headway
at bus stops, h h( )l j l, and the expected headway variance, Varh h( )l j l, with the planned dispatching headway, hl. Because of this, the
objective function can be either minimized with the use of simple enumeration -which is applicable only to very small networks- or,
alternatively, with the use of heuristics that do not guarantee the convergence to the global optimum. For this reason, this work
proposes the use of statistical analysis or empirical expressions for extracting the relationship between h h Varh h( ), ( )l j l l j l, , and the
dispatching headway hl from historical operational data.

Finally, the aim of the model described in Eq. (14) is to allocate buses to lines so that the objective function is minimized and, at
the same time, the capacity of buses allocated to each line is sufficient for absorbing the respective passenger demand based on the
max load point of the load profile. If this is not possible given the maximum allowable fleet size, γ , a feasible solution does not exist

and the bus operator should decide which bus lines should exhibit oversaturation by relaxing the constraint ⩽h
θ

max h

60

Ψ ( )
l

l l

for some

of the lines ∈l L. Notwithstanding, our model will still attain a solution by distributing the set of available buses in such a way that
the objective function is minimized.

3. Solving the continuous problem of setting dispatching headways

The discrete Nonlinear Programming Problem (NLP) for determining the optimal dispatching headways for each bus line as
described in Eq. (14) can be solved using discrete optimization algorithms. Several discrete optimization algorithms, such as the
Branch and Bound (B&B) method which is used in this study and is described in the following section, deploy a strategy that requires
solving a series of continuous NLP sub-problems for providing a direction towards the optimal discrete solution. The continuous NLP
sub-problems are simpler than the original discrete NLP of Eq. (14) and their solutions constitute a state space search for finding the
discrete optimal solution. In our case, one can transform the optimal dispatching headway determination problem (Eq. (14)) to the
continuous problem of Eq. (15) by allowing the planned dispatching headways (decision variables) to take real values. The discrete
set of allowed dispatching headway values for each bus line ( …{2,3, ,15} min) is now used to set the boundary constraints:
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where …+ +c c, ,L L| | 2 3| | 2 are the boundary constraints ensuring that all planned dispatching headway values, = … …h hh { , , , }L l1 , are within
the limits {2–15}min. In addition, if E is the set of equality constraints, then = ∅E , whereas the set of inequality constraints is
= … +I L{1,2,3, ,3| | 2} and the total number of constraints is = + = +m I E L3| | 2. For finding the optimal solution of the dispatching
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headways with numerical optimization, we generate new iterates of an initial guess of dispatching headways denoted as h by solving
inequality constraint Quadratic subproblems (QP) at each iterate. The method of Sequential Quadratic Programming (SQP) is selected
instead of others (such as Interior Point or the Augmented Lagrangian Method) because it is more suitable for tackling the nonlinear
constraints of Eq. (15). Interior point methods (also referred to as barrier methods) and Lagrangian methods utilize multipliers to
treat the constraints as penalties after introducing them to the main objective function. As expressed in many exact optimization
books such as Nocedal and Wright (2006), these approaches, which are effective when constraints are linear, underperform compared
to the SQP method when the optimization problem has significant nonlinearities in the constraints.

The SQP, which is developed in the 1970s, is well-described in the book of Nocedal and Wright (2006) and the article of Boggs
and Tolle (1995) from which we adopted the main elements of the description of the SQP method that are presented in the appendix.
SQP generates new iterates of the initial guess dispatching headways, =hk 0, by solving inequality constraint Quadratic sub-problems
(QP) at each iterate k. The idea behind the SQP solution method is to model the dispatching headways of the current iterate, hk, by a
quadratic programming subproblem and then use the minimizer of this sub-problem to define a new iterate of dispatching headways,

+hk 1, until convergence.
For all those inequality QP sub-problems that should be solved at each iteration, the well-known active-set method can be utilized.

In the active-set method, the equality constraints are always active and the active-set is updated at any iteration by solving an
equality QP where different inequality constraints are considered as active (one can refer to Murty and Yu (1988) for a more detail
description of the active set method).

4. State-space search for the discrete problem of setting dispatching headways with Branch and Bound (B&B)

After solving the continuous frequency setting problem assuming that dispatching headway variables for each bus line
= …∗ h hh { , , }L L L1 | | can take any real value within the range of [2–15]min, one has to find the optimal solution of the discrete opti-

mization problem where h values belong to the discrete set = …Ω {2,3,4, ,15} min.
The goal of the branch-and-bound (B&B) method is to find the values of dispatching headways, h, that minimize the value of the

scalar objective function of Eq. (14), among some set Ω of candidate solutions. The search space contains ω L| | elements where ω is the
length size of the discrete set =Ω {2,3,4,5,6,7,8,9,10,12,15} min. from which the dispatching headways can take their values. It is
evident that brute-force cannot be applied in our case because a mid-sized bus network with 35 bus lines requires the inspection of all

+e2.8102437 36 elements of set Ω.
In B&B, our starting point is the enumeration tree which branches dynamically through newly developed nodes. Initially, our

enumeration tree has only one node, the tree root. In our case, the root is the solution of the continuous frequency setting problem
where the dispatching headways were considered continuous variables: ∗h . The objective function value of the continuous solution is

∗z h( ) and is the lowest bound (LB) of the INLP of Eq. (14). This is the best solution so far, known as the incumbent solution, and ∗z h( ) is
the incumbent objective. However, this is not the solution of our discrete problem of setting the dispatching headways and, due to the
absence of a feasible solution for the discrete NLP, we initialize the upper bound value of the problem as = +∞bupper .

A typical iteration has three main components: selection of the node to process, branching and bound calculation. If it can be
established that the subspace of a node cannot contain the optimal solution, the whole subspace is discarded, else it is stored in the
pool of live nodes = −A N F where N is the set of all generated nodes and F is the set of discarded nodes. Its objective function value is
also stored in the set of bounds B.

Initially, the selection of the node to process is trivial because we have only one node (the root). Then, new branches and nodes
are dynamically generated. During branching, we assign all discrete dispatching headway values from set Ω to one variable ∈h hi ;
thus, generating ω new branches starting from the root while all other variables remain continuous (real numbers). All new branches
have new end-nodes and each end-node ∈i N has a set of assigned integer values for some dispatching headway variables h while all
other variables h are continuous. The objective value (bound) of each node is calculated by solving the restricted continuous NLP

problem of setting the dispatching headways with the algorithmic framework described in the previous section by assuming additional
equality constraints that dictate a number of continuous dispatching headway variables h to be equal to their already assigned integer
values for this node. If at one node there are already g assigned integer values from set Ω to variables = … =h g h g{ , , }g g1 1 , then the
bound of this node is computed from the restricted continuous NLP:
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The solution of the restricted continuous NLP with …h h{ , , }g1 already assigned dispatching headway values from set Ω is the bound
of this node since if we continue branching from this node (i.e., assign integer values from Ω to more continuous variables of this
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restricted continuous NLP) the newly generated subproblems would return inferior objective function values. After the third step of
every B&B iteration (bound calculation of all newly generated nodes) we discard entire subspaces if it is established that some of the
nodes cannot contain the optimal solution. If, for instance, one newly generated node cannot provide a feasible solution (i.e., given
the already assigned values from set Ω to some of the variables …h h{ , , }g1 of this node there is no solution of the restricted continuous
NLP that satisfies all existed constraints), then this node and its entire subspace can be disregarded since there are no continuous
values of the dispatching headways that can solve this restricted problem; thus, there would also not be any discrete dispatching
headway values that provide a feasible solution. All discarded nodes are added to the set F whereas the remaining live set = −A N F is
left with fewer nodes. In addition, after each iteration the selected node that generated the new branches is also discarded from
further consideration and is added to F.

The node for the new B&B iteration is the incumbent solution node, which is the node i at the live set = −A N F that has the lowest
bound value = ∀ ∈B B j Amin ,i j . If after a number of B&B iterations we have a node at which all dispatching headways h have been
assigned with discrete values from the set Ω, then we have a first possible solution for the discrete NLP. Then, we can proceed with a
more vigorous strategy for ruling out nodes from the set A and “pruning” the solution space. For doing this, we replace the upper
bound of the problem = +∞bupper with the objective function value of this candidate discrete NLP solution. Initially, nodes that
belong to set A and their bound value is higher than the bupper are omitted because if they currently have inferior objective function
values, then their objective function values will remain inferior and would further degrade in next instances when some of their
remaining continuous variables would be replaced with discrete ones. In addition, if later on we find another possible discrete
solution of the NLP with lower objective function value than bupper , then this becomes the currently chosen discrete NLP solution and
we update also the value of bupper while the procedure continuous until there are no remaining nodes at the live set = ∅A (all
branching possibilities have been exhausted).

To summarize the above, the algorithmic framework that is introduced for setting the optimal dispatching headways of bus lines
while also considering operational data insights regarding the stop-level headway variability that is translated to waiting time
reliability is composed of: (i) a method that estimates the relationship between the dispatching headways and the expected opera-
tional headways at each stop from historical data; (ii) a SQP algorithm that solves the continuous NLP problem of setting the
dispatching headways; and (iii) a B&B algorithm that uses SQP at each iteration for solving restricted continuous NLP sub-problems
and allocating buses to lines. This procedure is described in Fig. 2 for providing an overview of the proposed framework.

5. Experimental results

5.1. Case study description

The proposed method is applied to a case study network in Stockholm, Sweden. Our study area is the bus network of central
Stockholm which contains 17 bus lines, =L {1,2,3,4,50,53,55,56,59,61,65,66,69,72,73,74,77}, for which GTFS data is available. Fig. 3
presents the case study network.

Stockholm bus operators design their schedules based on the 90th percentile of the vehicle running times during the respective
time-of-day, day-of-the-week and season. In general, they derive the planned dispatching headways of the service lines based on the
average load profile method while also considering a set of policy constraints.

In our experimentation, we select first two lines for detailed analysis in order to enable the enumeration of all solutions and
benchmark the B&B/SQP approach against brute-force. Second, we apply our method to 17 lines operating in Stockholm inner-city to
test the scalability of our method and its performance for a real-sized network.

5.2. Demonstration using two selected lines

Our small-scale demonstration of setting optimal dispatching headways uses data from bus lines 1 and 3, two high demand bus
lines in the case study network. Detailed Automatic Vehicle Location (AVL) and Automatic Passenger Counting (APC) data are
available for these lines for a five months period, from August to December 2011. Line 1 connects the main eastern harbor to a
residential area in the western part of the city through the commercial centre. Line 3 serves as a north–south connection through
Stockholm’s old city, connecting two large medical campuses. The datasets contain a total number of 8,241 trips and the vehicle
travel time for each line (per direction) expressed as mean± standard deviation is presented in Table 1. Table 1 presents also the total
number of boarding passengers per line trip for each direction and the 90th percentiles of the total round trip travel times.

For simplifying the notation, we denote the planned dispatching headway variables for each line as =h h h{ , }1 2 . The bus stops of
the bi-directional line 1 are = …S {1,2,3,4, ,65}1 where 33 stops belong to direction 1 and 32 stops to direction 2. The bus stops of line 3
are = …S {1,2,3,4, ,51}2 where 26 belong to the 1st direction and 25 to the 2nd. In this demonstration, we set the dispatching headways
for the time period 8:00 am to 12:00 pm. The passenger boardings, bl j t, , , alightings and the bus loads, Ψl j t, , , for that time period are
presented in Fig. 4. Those values are the average hourly boardings/alightings and loadings from August to December 2011. For
brevity reasons, Fig. 4 presents only the hourly demand levels of bus line 1.

As shown in Fig. 4, the most boardings at direction 1 occur at stops 5–9 and 11–15 while the highest loading levels are observed at
stop 10 throughout the 4-h period. On the other hand, the boardings at direction 2 change significantly from hour to hour and do not
follow a certain pattern. The same holds true for the passenger loading at stops where stops 7, 14–21 appear to be the most loaded
ones but do not follow a common pattern over the 4-h period.

Apart from the passenger demand, the AVL data from those five months is used for deriving the relationship between the
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dispatching headways and the headways at the bus stops. In this work, we utilize the Support Vector Regression (SVR) method using
non-linear kernels. SVR is selected as the mean to establish the relationship between the dispatching headways and the resulting
operational headways at stops but, in principle, it can be substituted by any other such method or empirical relationship. SVR is
selected because it can be embedded within the SQP optimization framework and allows the SQP to compute objective function
values for any possible dispatching headway solution. We should also note here that it is also a generic method and can be applied to
datasets from different cities after an initial training.

The SVR model is trained with the use of historical data sets of observed headways and returns the expected values
h h Varh h( ), ( )l j l l j l, , for different dispatching headways hl. As demonstrated in Fig. 5, the relationship between the headway at the first
bus stop and the observed headways at the other stops may not be well-explained using linear fitting. For this reason, we use the
Gaussian Radial Basis Function (RBF) kernel to compute the inner product in a higher dimensional feature space. For instance, if for
some dispatching headway values = ′ ″ …r h h h{ , , , }x l l l we observed headways = ′ ″ …r h h h{ , , , }y l j l j l j, , , at stop j; then, the Gaussian RBF is:

= − −K r r exp γ r r( , ) ( || || )x y x y
2 (17)

For deriving the expected headway at every bus stop for different values of dispatching headways, RBF support vector regressions
are performed. After applying the SVR RBF method to the historical data, we present the expected relation between the dispatching
headways and the expected headway variability at any other stop in Fig. 6.

The key observations from Fig. 6 are: (i) the expected headway variation is close to zero at the first bus stops and exercises a

Fig. 2. Overview of the solution framework for exact optimization of dispatching headways.
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proportional increase when moving to downstream stops; (ii) dispatching headway values of 4–12min result in higher headway
variations at the last stops of line 1 compared against dispatching headway values of 2–4 or 12–15min; and (iii) line 3 does not show
a clear pattern - dispatching headways of 2–6min result in a higher downstream headway variability for direction 1 whereas the same
variability for direction 2 is observed for dispatching headways of 6–15min.

At this point, we should note that the headway variance at each stop measures the difference of the observed headways at that
stop from the respective dispatching headways (in ideal operations where the travel times between bus stops and the dwell times
remain stable, this variance should be equal to zero and the observed headway at any stop should be equal to the dispatching
headway).

In this small-scale, two-line experiment, we can apply brute-force optimization for exploring the solution space and converging to
the global optimum. The total number of buses that are available for bus lines 1 and 3 from 08:00 to 12:00 is =γ 40 and the vehicle
capacity =θ 40 passengers. In addition, the weight factors α α α α, , ,1 2 3 4 that translate all objectives of Eq. (14) to a single compensatory
term are selected so that the passenger waiting timesO h( )l1 and the coefficient of variationO h( )l2 have almost equivalent importance
as the runningO h( )l3 and fixedO h( )l4 costs for the currently deployed solution (dispatching headways h1 =5–8min and h2 =5–8min

Fig. 3. A schematic network representation of Stockholm inner-city bus lines.

Source: http://sl.se/ficktid/karta/vinter/SthlmInnerstad.pdf.

Table 1

Statistics per line direction. The values are presented as mean± s.d.

Trip travel times (s) Passenger boardings (per trip) Round trip tl
th90 (s)

Line 1: dir.1 ±3017 425 ±101 50 6807
dir.2 ±2755 480 ±98 51

Line 3: dir.1 ±2607 465 ±70 37 6486
dir.2 ±2746 448 ±60 29
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from 08:00 to 12:00). By adopting this approach, we derive the underlying weights that were implicitly used when setting the
current dispatching headways which have balanced user and operator costs in the local context. Ratios between weights were set
based on the local estimates of cost parameters Tra (2015) and this resulted in the following weight factor values:
≃ ≃ ≃ ≃α α α α0.5; 1.5; 1.5; 11 2 3 4 .
Using the above values, the result of setting the dispatching headways expressed in Eq. (14) is presented in Fig. 7 where the 2D

plot enumerates all possible feasible and infeasible solutions after evaluating =ω 112L| | times the objective function. It can be ob-
served by simple inspection that the dispatching headways =h h( , ) (8,8)1 2 min with objective function score =z 49280.554 is the global
optimum solution. We further analyze the result by investigating separately the results for the passenger-related and the operator-

Fig. 4. Boardings, alightings and bus loadings for each hour from 08:00 to 12:00 for Line 1 (directions 1 and 2). At each hour, the trip frequency is∼ 8–10 bus trips per

line direction.
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related objective function components. As it is clear from the problem formulation of Eq. (14), the first two terms of the objective
function that are multiplied by weights α α,1 2 reflect passenger waiting times and service reliability whereas the last two terms, that
are multiplied by weights α α,3 4, correspond to operational costs. Therefore, in Fig. 8 we plot the first two and the last two terms of the
objective function separately to explore the properties of passenger-related and operational-related costs for different values of the
dispatching headways.

Fig. 5. Observed headways for different values of dispatching headways at selected stops according to the 5-month AVL data.
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Fig. 8a depicts the form of the objective function if one considers only the first two terms of the objective function that are related
to the passenger costs. From Fig. 8a one can observe that the dispatching headways that minimize the passenger-related costs are

=h h( , ) (5,6)1 2 min and their values are lower than the computed dispatching headways, =h h( , ) (8,8)1 2 min, when considering also the
operational costs. The reason behind this is that the function form of the operational costs which is presented in Fig. 8b exhibits a
monotonically decreasing behavior that results in optimal dispatching headways of 15min. This monotonic behavior is expected
because if the dispatching headways increase, the number of bus trips decreases; thus, the operational costs decrease as well.
Therefore, compromising the conflicting priorities of the passenger-related and the operational-related costs with the use of ratios
between weights that are set based on local estimates of cost parameters Tra (2015) ( ≃ ≃ ≃ ≃α α α α0.5; 1.5; 1.5; 11 2 3 4 ), results in the
optimal solution of =h h( , ) (8,8)1 2 minutes. This analysis can facilitate a discussion on the passenger-related costs and the operational-
related costs with the transport planning authority for re-evaluating the ratios between different objective function terms. For in-
stance, the transport authority might be willing to increase further the operational costs for satisfying the passenger-related costs by
applying dispatching headways which are closer to the =h h( , ) (5,6)1 2 min values.

Returning to the analysis of Fig. 7 that considers both the passenger-related and the operational-related costs, one can observe
that very short dispatching headways yield infeasible solutions because they require many buses for performing the operations. For

instance, for operating under dispatching headways =h h( , ) (2,2)1 2 min a total number of ⎡⎢⎢ ⎤⎥⎥ + ⎡⎢⎢ ⎤⎥⎥ = 112
t

h

t

h

th th
1
90

1

2
90

2
buses is required

Fig. 6. Relation between the expected headway variance at each downstream stop and the planned dispatching headway as it is derived after applying RBF Support

Vector Regression.
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where the total number of available buses is =γ 40. Apart from the fleet number violation though, very short dispatching headways
had also higher objective function scores because the operational costs are higher. In addition, dispatching headways of more than
12min violated the vehicle capacity constraint for both lines 1 and 3 because the bus loading at the most congested stop is higher
than the vehicle capacity of =θ 40 passengers. Finally, the optimal solution, =h h( , ) (8,8)1 2 min, requires 29 buses which are less than
the total number of available buses.

In this two-line experiment, we can also demonstrate the use of our algorithmic framework. At first, the continuous NLP problem
of setting the dispatching headways is solved with the SQP algorithm returning dispatching headways =∗h{ 7.73,7.89} min which is
the lowest bound of the discrete NLP with =∗z h( ) 49273.971. After three branching iterations presented in Fig. 9, the B&B attains a
discrete solution =h h( , ) (8,8)1 2 min with =∗z h( ) 49282.554. The B&B search terminates at the third iteration because an integer
solution =h h( , ) (8,8)1 2 min is calculated and the upper bound becomes equal to =b 49282.554upper which is lower than any other value
from the remaining nodes that belong to the live set =A {2,4,5}.

In Fig. 9 we obtained the objective function score of each one of the five (5) generated nodes of the B&B method by applying the
SQP optimization method for solving the respective nonlinear optimization problem. In order to demonstrate how the proposed
method performs in terms of iterations until convergence, we present the iterations of the SQP optimization algorithm for solving
each one of the 5 nonlinear optimization problems in Table 2. Each nonlinear problem was solved in 4–13 iterations with the use of
SQP and the total number of evaluations of the objective function with our method is + + + + =13 10 13 4 6 46 compared to the 121
evaluations required by the simple enumeration method that was presented in Fig. 7. As presented in Table 2, the objective function
values oscillate significantly at the first iterations of the SQP method but stabilize rapidly (in most cases, after 2–5 iterations).

The optimal dispatching headways are excepted to vary when the passenger demand or the operational costs change. This is
examined in this study by performing a sensitivity analysis for deriving the stability region of each dispatching headway solution.
Fig. 10 presents the optimal dispatching headways for different levels of passenger demand and bus running costs. From Fig. 10a one

Fig. 7. Objective function score for different planned dispatching headways for line 1 and 3. Infeasible solutions violate either the line capacity constraint or require

more buses than the available ones.

Fig. 8. Plot of the passenger-related optimum [left] and the optimum that minimizes the operational costs [right].
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can observe that the dispatching headway solution =h h( , ) (8,8)1 2 min is valid if the passenger demand is reduced by less than 40% or
does not increase by more than 33%. If it decreases by more than 40%, the optimal dispatching headway of bus line 1 becomes 9min.
Even if the optimal solution remains stable for up to 40% passenger demand reduction; further reductions affect significantly the
optimal solution because the running costs for serving low-demand bus services become too high. Consequently, for another 40%
passenger demand reduction the optimal dispatching headway of bus line 1 increases significantly to 12min and of line 3–10min.
Then, the dispatching headways take their higher possible values of =h h( , ) (15,15)1 2 min for a significant demand reduction of more
than 94%.

Fig. 9. Solution of the discrete NLP problem of setting the optimal dispatching headways with branch and bound.

Table 2

SQP iterations required until convergence along with the respective objective function score changes for each one of the branches generated by the B&B method.

Iter. ⩽ ⩽h2 151 ⩽ ⩽h2 71 ⩽ ⩽h8 151

⩽ ⩽h2 152 ⩽ ⩽h2 152 ⩽ ⩽h2 152

h1 h2 z h( ) h1 h2 z h( ) h1 h2 z h( )

1 14.986 15.000 57516.91 6.988 15.000 54908.04 14.986 15.000 57516.91
2 9.250 2.000 80031.52 7.000 2.000 79918.44 9.250 2.000 80031.52
3 8.924 6.960 49575.33 7.000 2.000 79918.44 8.924 6.960 49575.33
4 8.831 8.172 49383.41 7.000 4.346 53452.67 8.831 8.172 49383.41
5 8.803 7.960 49364.70 7.000 7.426 49379.58 8.803 7.960 49364.70
6 8.731 7.836 49353.13 7.000 7.957 49334.32 8.731 7.836 49353.13
7 8.528 7.716 49332.77 7.000 7.896 49333.50 8.528 7.716 49332.77
8 8.015 7.617 49297.42 7.000 7.890 49333.50 8.015 7.617 49297.42
9 7.776 7.722 49279.91 7.000 7.890 49333.50 8.000 7.745 49284.64

10 7.717 7.877 49274.05 7.000 7.890 49333.50 8.000 7.886 49280.28
11 7.733 7.889 49273.97 8.000 7.893 49280.27
12 7.734 7.890 49273.97 8.000 7.891 49280.27
13 7.733 7.890 49273.97 8.000 7.888 49280.27

Iter. ⩽ ⩽h8 151 ⩽ ⩽h8 151

⩽ ⩽h2 72 ⩽ ⩽h8 152

h1 h2 z h( ) h1 h2 z h( )

1 14.991 7.000 52122.34 14.986 15.000 57516.91
2 8.823 7.000 49541.87 8.886 8.000 49379.71
3 8.000 7.000 49455.06 8.802 8.000 49365.85
4 8.000 7.000 49455.06 8.404 8.000 49313.31
5 8.000 8.000 49282.55
6 8.000 8.000 49282.55
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The dispatching headways demonstrate a different sensitivity pattern when the bus running costs change as presented in Fig. 10b.
For instance, a 24% reduction of running costs requires a change of optimal dispatching headways into (h h,1 2)= (7,8) min whereas a
reduction of more than 70% change the optimal dispatching headways values to (h h,1 2)= (7,7) min. In addition, if the running costs
rise by more than 71%, bus line 1 should increase its planned dispatching headway to 9min. The information of the stability regions
of the optimal headways is very useful for bus operators because it gives them a degree of confidence that the deployed dispatching
headways remain optimal when slight passenger demand and running cost variations are observed. Furthermore, those regions
provide information to bus operators regarding the threshold values of passenger demand and running costs upon which they should
act by changing the values of the deployed dispatching headways.

5.3. Impacts of considering service reliability in setting the dispatching headways

The optimal dispatching headways of this small-scale, 2-line scenario were computed by considering also the service reliability
aspect expressed in Eq. (14). In Eq. (14) the service reliability recognizes the passenger waiting time variability at downstream stops
during real-world operations and is also explicitly expressed in the objective function as the coefficient of variation of passenger
waiting times at each stop as proposed by Chen et al. (2009). If one does not consider the service reliability in the analysis, the
waiting time variations of passengers at stops are excluded from Eq. (14) and the problem of setting the dispatching headways
becomes merely a trade-off between passenger demand coverage and running costs reduction as expressed in the modified Eq. (18)
that does not consider operational headway variabilities.
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Optimizing the base-case scenario of Eq. (18) that does not consider operational headway variations results in different optimal
dispatching headway values ( = =h h8, 71 2 ) min as expressed in Fig. 11.

Fig. 11 shows the objective function form for different values of dispatching headways. As it is evident from Fig. 11, the objective
function has significantly higher scores for dispatching headways of more than 10min and less than 4min. This occurs because (i) the
line-level unsatisfied demand increases rapidly for a dispatching headway of more than 10min and penalizes disproportionately the
objective function; and (ii) the line-level operational costs increase significantly for dispatching headways of 4min or less due to the
need of many more running buses.

In contrast, our reliability-based optimization of the dispatching headways, which was demonstrated at the previous sub-section,
yields a profoundly different objective function as can be observed in Fig. 12.

The form of the objective function of Fig. 12 for different dispatching headway values is less smooth due to the consideration of
headway variability at downstream stops and the explicit inclusion of the reliability-dependent expression for passenger waiting

Fig. 10. Sensitivity of optimal frequency setting solutions.
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times in the objective function.
From Fig. 12 one can observe that the optimal dispatching headways ( = =h h8; 81 2 min) differ from the case of not considering

operational headway variations. In addition, the objective function value increases significantly only for dispatching headways of
4min or less. In contrast, this pattern is not observed for dispatching headways longer than 10min because the increased unsatisfied
demand is penalizing the objecting function; but, at the same time, the lower headway variability that is observed at the downstream
bus stops of line 1 for such dispatching headway values compensates for this reduction in performance as can be seen in Fig. 6.

In general, the analysis of the historical AVL data in Stockholm resulted in a headway variation pattern that supports higher
dispatching headways and this is why the optimal dispatching headway solution that considers the service reliability is not the same
as the base-case one. However, this can change from city to city and time period to time period. For this reason, the utilization of the
proposed method for setting the dispatching headways of bus lines should be repeated on a regular basis (i.e., as part of seasonal
timetable design routines) to adjust to the new patterns of observed headways.

5.4. Network-wide application

For deriving the planned schedules of the = …L {1,2, ,17} central bus lines of Fig. 3 we developed a data processing module for

Fig. 11. Objective function values for different dispatching headways without considering the passenger waiting time variability.

Fig. 12. Objective function values for different dispatching headways considering the passenger waiting time variability.
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converting GTFS data from.txt formal to sql databases. This facilitates data queries and enables the development of web-based
applications providing a front-end to the operational control team.

For the scalability and algorithmic convergence tests, we compared the simple enumeration results against (i) the B&B technique
with continuous sub-problem optimization with SQP and (ii) a heuristic Genetic Algorithm (GA) solution method. The B&B and the
heuristic GA techniques are programmed in Python 2.7 following the respective algorithmic steps described in this paper. For
implementing the SQP algorithm, we use pyOpt which is a Python-based package for formulating and solving nonlinear constrained
optimization problems. More specifically, we deploy a multi-start SQP strategy where we generate initial solution guesses and we
apply the SQP steps for each one of the solution guesses by using the Feasible Sequential Quadratic Programming (FSQP) method
from the pyOpt package which is capable of handling nonlinear inequality constraints and is based on the paper of Lawrence and Tits
(1996). The computational performance tests of the above-mentioned algorithms are implemented on a 2556MHz processor machine
with 1024MB RAM.

The GA solution method is tailored to the characteristics of the dispatching headway setting problem and is comprised of three
population members (two “parent” candidate solutions and one “offspring” candidate solution). Initially, the first parent candidate
solution is a vector of dispatching headways denoted as = …h hh { , , }A

L
A

L
A
L1 | |

where each bus line dispatching headway …{ }h h, ,L
A

L
A
L1 | |

is
randomly selected from the discrete set =Ω {2,3,4,5,6,7,8,9,10,12,15}min. In a similar manner, the second parent candidate solution is
denoted as = …h hh { , , }B

L
B

L L
B
| |1

and the offspring candidate solution is denoted as = …h hh { , , }O
L
O

L
O
L1 | |

where initially all dispatching
headways take random values from the set Ω.

At each GA iteration it is checked whether the offspring satisfies the constraints of the optimization problem and performs better
than its parents by checking if <z zh h( ) ( )O A or <z zh h( ) ( )O B . If this is the case, then the parent solution with the worst performance
is replaced with the offspring solution (elitism) by setting =h hA O if >z zh h( ) ( )A B or =h hB O if ⩾z zh h( ) ( )B A . If this is not the case,
the offspring candidate solution is updated during a crossover/mutation phase. At the crossover phase, the dispatching headway of
each bus line ∈h hi

O O has 50% chance to be replaced by the corresponding dispatching headway of the first parent, hi
A, and 50%

chance to be replaced by the dispatching headway of the second parent, hi
B. Mutation is also allowed by introducing a 10% prob-

ability for each bus line headway ∈h hi
O O to take a random value from the set Ω since the dispatching headways of the bus line that

do not belong to the two parent candidate solutions might yield a further minimization of the objective function and need to be
explored. Finally, the GA terminates if for many iterations the crossover/mutation phases cannot generate a new offspring candidate
solution that performs better than its parents. In such case, we assume that we have reached a minimum point and declare the better
performing parent solution as the approximate global optimum.

The scalability and algorithmic convergence tests demonstrate the computational complexity of each solution method and their
accuracy level (convergence rate to the global optimum). The scalability/convergence tests include larger parts of the central bus
network of Stockholm starting from 2 bus lines and moving up to the 17 bus lines shown in Fig. 3. For the simple enumeration
method, only results from 6 bus lines were able to be computed due to the computational complexity and memory exhaustion. For
instance, optimizing the entire central bus network of Stockholm requires several years if we use simple enumeration while the
proposed B&B multi-start strategy returns a solution in 55min. This computational time attests for its applicability as part of the
tactical planning routine. In Fig. 13a the detailed computational costs of (i) Simple Enumeration, (ii) B&B with a multi-start SQP
strategy that generates a large number of initial guesses scattered across the solution space from which each convergence starts and
(iii) GA are presented. The figure is constructed based on the results of 10 test scenarios. Each one of these scenarios contains a

Fig. 13. Computational and convergence results from setting the dispatching headways of the central Stockholm bus lines.
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different number of bus lines in central Stockholm drawn from the set: {2,3,4,5,6,10,12,15,16,17}. The final scenario with 17 bus lines
allocates the desired dispatching headways to all =L {1,2,3,4,50,53,55,56,59,61,65,66,69,72,73,74,77} bus lines in central Stockholm. The
dispatching headways test cases of {10,12,15,16,17} bus lines or more are computed only with the Branch and Bound and the Discrete
GA solution method due to the prohibitive computational cost of Simple Enumeration. Therefore, the computational cost of Simple
Enumeration for 10, 12, 15, 16 and 17 bus lines in Fig. 13a is approximated.

From Fig. 13a it is evident that the computational cost of Simple Enumeration increases exponentially with the number of bus
lines whereas the GA and the B&B with a multi-start SQP strategy enjoy a polynomial computational cost increase. In addition,
Fig. 13b displays the objective function scores and the convergence rates of the optimal dispatching headway solutions attained by
Simple Enumeration (for up to 6 bus lines), the proposed B&B method and the discrete GA respectively. It is evident that for up to 5
bus lines all solution methods converge to the global optimum which is also the solution with Simple Enumeration. In the case of 6
bus lines, the GA solution is inferior to the global optimum (convergence rate of 97.89%) while our B&B solution method reaches still
a 100% convergence.

For the remaining test-case scenarios of {10,12,15,16,17} bus lines we cannot use simple enumeration to validate whether the B&B
solutions or the discrete GA solutions are the global minimizers. Our B&B solution method managed though to compute dispatching
headway solutions that improved the objective function score by up to 18% compared with the discrete GA solutions yielding a strong
benefit for bus operators that will be able to allocate buses to lines more efficiently.

6. Discussion and concluding remarks

In this work we modeled the network-wide problem of setting optimal dispatching headways that determine the frequencies of
bus services with the explicit consideration of the inherit variability to bus operations (demand, travel time and passenger waiting
times variations). In addition, we introduced a B&B method with a multi-start strategy for generating initial guesses and using SQP in
order to converge to the global optimum solution of the discrete, nonlinear problem of setting the dispatching headways. Results from
a real-size network demonstrate that our solution method converged to the global optimum computed with brute-force on small-sized
bus networks. Moreover, the proposed method returns superior solutions by up to 18% when compared to heuristic solution methods
such as GA for larger-scale scenarios.

Using historical AVL and APC data from two bi-directional bus lines in central Stockholm, the optimal bus dispatching headways
based on several aspects (passenger demand coverage, waiting time variability at stop level, operational costs, cost of utilizing extra
buses) were examined by investigating the impact of the corresponding aspect to the objective function.

The problem formulation and solution method presented in this paper can be used for tactical planning of dispatching headways
that considers explicitly the variabilities during bus operations. The sensitivity analysis of the determined dispatching headways that
considers reliability aspects allowed also to identify the range of values under which the specification of weight values does not affect
the solution obtained, allowing the service operator to select solutions that are robust to differences in priority setting. The method
proposed in this paper assumes that AVL data from all bus trips at the network level is available for deriving the travel time and,
subsequently, the headway patterns at downstream stops for different values of dispatching headways. Our problem formulation
assumes that there is no interlining, i.e. the dispatching headway for each line is determined separately, assuming that vehicles run
back and forth on the same route. By providing information on deadheading possibilities, future research can enhance the
fleet allocation flexibility with interlining; something that is especially advantageous in case of a strongly directional (i.e. asym-
metric) demand (Ceder and Stern, 1981). The implications of the planned dispatching headways on operations and possible inter-
actions with real-time control strategies can be potentially studied using a transit simulation model that is capable of accounting for
day to day variations in waiting time uncertainty (Cats and Gkioulou, 2017).

Regarding the practicality of the proposed method that determines the dispatching headways, we note that our approach utilizes
the existing resources (available vehicles) without (i) requesting extra resources for improving the passenger-related costs or (ii)
deploying service or rolling stock variants such as short-turning and interlining services. Given the computational efficiency of the
proposed approach, it is considered feasible to apply the proposed solution approach as part of the transit planning. The results
suggest that the solution obtained can lead to substantial savings compared with existing approaches, although the extent to which
these savings will materialize depends on the exact vehicle and crew scheduling.

The model presented in this paper can be further extended in future research by considering additional constraints such as bus
drivers’ rostering and by including the associated labor in the objective function. Determining the optimal daily times when the
dispatching headways should change values as function of temporal variations in travel time and demand patterns can be also a
promising subject for future research.

Appendix A. Detailed description of the SQP method

SQP generates new iterates of the initial guess dispatching headways, =hk 0, by solving inequality constraint Quadratic sub-pro-
blems (QP) at each iterate k. The idea behind the SQP solution method is to model the dispatching headways of the current iterate, hk,
by a quadratic programming QP subproblem and then use the minimizer of this sub-problem to define a new iterate of dispatching
headways, +hk 1, until convergence.

Given that the boundary constraints are inequality constraints and both the objective function and the constraints, z c, i, are
continuously differentiable at a point hk, then if hk is a local optimum and the regularity conditions are satisfied at this point there is a
Lagrange multiplier vector λk with m elements such that the first order necessary Karush-Kuhn-Tucker (KKT) conditions are satisfied:
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is the Lagrangian function L � �→+: L m of the constrained NLP of setting the dispatching headways and, at the initial iteration, an
initial guess of the Lagrange multipliers =λk 0 should be also provided.

To model the current dispatching headway solution hk by a quadratic programming (QP) subproblem and then use the minimizer
of this subproblem to define a new iterate +hk 1 until convergence, a linearization of the constraints is required since QP problems
tackle only linear constraints. This can be modeled by using the current iteration values of the dispatching headways vector hk and
the Lagrange multipliers λk for finding the minimizer p which is a vector of L| | elements by solving the following QP subproblem:
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where = ∇ ∇ … ∇⊺J c c ch h h h( ) [ ( ), ( ), , ( )]m1 2 is the Jacobian matrix of the constraints vector with ×L m| | elements and L∇ λh( , )hh k k
2 is the

Hessian matrix of the Lagrange function with ×L L| | | | elements. After solving the above inequality QP problem the iterate values are
updated ( + +λh ,k k1 1)=( + +p λh ,k k k 1) where pk and +λk 1 are the solution and the corresponding Lagrange multiplier of the inequality
QP. Iterations then continue until convergence according to the algorithm:

1: function SQP( …z c c E Ih h h( ), ( ), , ( ), ,m1 )
2: With an initial guess of dispatching headways and Lagrange multipliers choose an initial iteration pair ( λh ,k k);
3: Set ←k 0;
4: while a convergence test is satisfied

5: Compute L∇ ∇⊺ ⊺z z λ J ch h h h h( ), ( ) , ( , ), ( ) , ( )k k hh k k k
2 , where c is vector of m elements;

6: Solve the Inequality_QP L∇ ∇ −⊺ ⊺z λ z E I J ch h h h h( ( ), ( , ), ( ) , , , ( ) , ( ))hh k k k k k
2 sub-problem:

7: L� + ∇ + ∇∈ ⊺z z p p λ ph h hmin ( ) ( ) ( , )p k k hh k k
1

2
2

L

8: subject to + ⩾J p ch h( ) ( ) 0k k

9: Inequality QP function returns solution pair ( +p λ,k k 1)

10: Set ( + +λh ,k k1 1)←( + +p λh ,k k k 1)

11: end while

12: return optimal solution ∗h and the objective function value ∗z h( );
13: end function

The Hessian, Jacobian and other first and second order derivatives can be numerically approximated with the use of finite
differences in an adaptive manner, coupled with Richardson’s extrapolation methodology (Richardson, 1911) to provide a maximally
accurate result. The SQP algorithm convergence criterion can be the step direction stagnation (i.e., reach at an inequality QP sub-
problem where its solution returns = …p {0, ,0}k which indicates that there is no better direction than the current one).
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