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Abstract—This paper is focused on reliable fuzzy H∞ controller
design for active suspension systems with actuator delay and
fault. Takagi-Sugeno (T-S) fuzzy model approach is adapted
in the study with consideration of the sprung and unsprung
masses variation, the actuator delay and fault, and other suspen-
sion performances. By utilizing parallel-distributed compensation
scheme, a reliable fuzzy H∞ performance analysis criterion is
derived for the proposed T-S fuzzy model. Then, a reliable
fuzzy H∞ controller is designed such that the resulting T-S fuzzy
system is reliable in the sense that it is asymptotically stable and
has a prescribed H∞ performance under given constraints. The
existence condition of the reliable fuzzy H∞ controller is obtained
in terms of linear matrix inequalities Finally, a quarter-vehicle
suspension model is used to demonstrate the effectiveness and
potential of the proposed design techniques.

Index Terms—H∞ control, actuator delay, actuator fault, active
suspension systems with uncertainty, Fuzzy control.

I. INTRODUCTION

VEHICLE engineering has approved the crucial role of

a vehicle suspension playing in evaluating the vehicle

dynamics performance. A suspension component has vital

functions: for instance, to support the vehicle weight, to

provide effective isolation of the chassis from road excitations,

to keep tyre contact with the ground, and to maintain the

wheels in appropriate position on the road surface. The roles

of a vehicle suspension system are to adequately guarantee the

stability of the vehicle, while to provide as much comfort as

possible for the passengers by serving the basic function of

isolating passengers from road-induced vibration and shocks

[1]–[4]. Considerable attentions and efforts have been paid

to the challenging issue of how to optimize the required
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suspension performances, namely, ride comfort, road handling,

and suspension deflection. It is evident that many vehicle

models and controller design methods have been reported in

[5]–[7]. On the other hand, many active suspension control

approaches have been presented to handle the tradeoff by

utilizing various control techniques such as fuzzy logic and

neural network control [8], gain scheduling control [9], linear

optimal control [10], adaptive control [11] and H∞ control [2],

[12], [13] and their combined methods.

It should be noticed, however, that all the aforementioned

suspension control results are under a full reliability as-

sumption that all control components of the systems are in

ideal working conditions. Due to the growing complexity of

automated control systems, various faults are likely to be

encountered, especially faults from actuators and sensors [14]–

[16]. During the past few decades, many researches have

attempted to resolve the reliable and fault tolerant control

problems for dynamic systems with uncertainty such as actu-

ator and sensor faults, a great number of theoretic results have

also been presented [17]–[20]. For instance, the reliable H∞

controller design problem was been investigated at a context of

linear systems [21], and a controller was designed ensuring the

resulting control system reliable, i.e., guaranteed asymptotic

stability and H∞ performance, under the assumption that all

control components of sensors and actuators are operational.

As a matter of fact, an active suspension system is different

from its counterpart of a passive suspension system in that its

actuator has capability of adjusting force to meet the criteria

of the vehicle dynamics, such as guaranteeing the stability

of the vehicle, securing passenger comfort and satisfying the

suspension performance.

However, when either the actuator or sensor faults occur in

an active suspension system, the conventional controllers can

not achieve better performance in comparison with the reliable

and fault-tolerant controllers as discussed in [22]. Therefore,

it is challenging to design a reliable controller such that the

system stability and performance of the active suspension

closed-loop system can be tolerated with sensor or actuator

faults. Due to the electrical and electromagnetic characteristics

of the actuators and transmission of the measurement infor-

mation, electrohydraulic actuators are preferably employed

to track the desired forces in order to avoid input time

delays, it is a commonly key factor to degrade the control

performances and even cause instability in the control systems.

Controller design schemes recently have been presented for

linear systems with different types of delays [23]–[25]. There

exist two mainstreams of controller design methods involving
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actuator delays. One is to design a controller by using the

integrated system model including actuator dynamics [26]; the

other is to consider the actuator time delay in the controller

design process in order to design a controller that can stabilize

the system and guarantee the closed-loop performance in spite

of the existence of time delay [27].

An active suspension system has the ability to enhance

vehicle dynamics by relaxing external impact such as road

surface on vehicle travel comfort. In terms of its control

design, uncertainty of vehicle sprung and unsprung masses

such as its loading conditions should be taken into account

to meet vehicle travel performance criteria. For instance, the

polytopic parameter uncertainties was been employed to model

the varying vehicle sprung or unsprung masses [2], [28], [29].

The parameter-dependent controllers was proposed for the

quarter-car suspension systems with sprung mass variation

[29]. The parameter-independent sampled-data H∞ controller

design strategy was presented to handle both sprung and

unsprung mass variations in a case study of a quarter-car

suspension system [2]. The state of the art in suspension

control design in these scenarios, however, could not provide

feasible performance for uncertain active suspension systems

with actuator delay and fault. Clearly, there is a need for a new

controller design method which has capability of satisfying the

control condition. On the other hand, since fuzzy sets were

proposed by Zadeh [30], fuzzy logic control has developed

into a conspicuous and successful branch of automation and

control theory. The T-S fuzzy model has been proved as an

effective theoretical method and practical tool for representing

complex nonlinear systems and applications [31]–[34].

T-S fuzzy model based systems are described as a weighted

sum of some simple linear subsystems, and thus are easily ana-

lyzable, the success on control analysis and synthesis problems

have been also demonstrated by various techniques [35]–[37],

[37]–[40]. Recently, research has been conducted to challenge

the reliability for the continuous-time T-S fuzzy systems [41]–

[44]. However, in the context of vehicle suspension control

design, there are few results on reliable fuzzy H∞ controller

design for T-S fuzzy systems with both actuator delay and

fault. On the other hand, fuzzy controller design had been

investigated for suspension systems in the past years, for

example, [45]–[47]. In particular, a T-S model-based fuzzy

control design approach was presented for electrohydraulic

active suspension systems with input constraints [47]. It is

evident, however, there are few results on fuzzy H∞ controller

design for uncertain active suspension systems with actuator

delay and fault.

This paper is concerned with the problem of reliable fuzzy

H∞ control for uncertain active suspension systems with actu-

ator delay and fault based on the T-S fuzzy model approach.

The vehicle dynamic system is established by the fact that

vehicle sprung and unsprung mass variations, the actuator

delay and fault have been taken account into the suspension

performances. The parallel-distributed compensation (PDC)

scheme is, then, used to develop reliable fuzzy H∞ perfor-

mance analysis condition for the proposed T-S fuzzy system,

the reliable fuzzy H∞ controller is designed to guarantee the

systems asymptotic stability and H∞ performance, simultane-

ously satisfying the constraint performances. Further, the linear

matrix inequality (LMI)-based condition of reliable fuzzy H∞

controller design is derived. Finally, the proposed method

is evaluated on a quarter-car suspension model. Simulation

results demonstrate the designed reliable fuzzy H∞ controller

has robust capability of guaranteeing better suspension per-

formance with uncertainty of the sprung and unsprung mass

variations, the actuator delay and fault.

The reminder of this paper is organized as follows. The

problem to be addressed is formulated in Section 2. Section

3 presents the reliable fuzzy H∞ controller design results and

Section 4 provides fuzzy H∞ controller design scheme. Sim-

ulation results are provided to evaluate the proposed method

in Section 5, finally the paper is concluded in Section 6.

Notation: The notation used throughout the paper is pre-

sented. The superscript T stands for matrix transposition. Rn

denotes the n-dimensional Euclidean space. ∥·∥∞ denotes the

H∞ norm for matrices. The notation P > 0 (≥ 0) is used

to denote a symmetric and positive definite (semi-definite)

matrix. In symmetric block matrices or complex matrix ex-

pressions, an asterisk * is employed to represent a term that

is readily induced by symmetry and diag{. . .} stands for

a block-diagonal matrix. sym(A) is used to denote A + AT

for simplicity. Matrices, if the dimensions are not explicitly

stated, are assumed to be compatible for algebraic operations.

The space of square-integrable vector functions over [0,∞) is

denoted by L2[0,∞), and for w = {w(t)} ∈ L2[0,∞), its norm

is denoted by ∥w∥2 =
√

∫ ∞
t=0 |w(t)|2 dt.

II. PROBLEM FORMULATION
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Fig. 1. A quarter-car model

There is a substantially growing interest in investigating

the modeling and active control design for active suspension

systems in the past three decades. It is due to the fact

that these systems play an important role in ensuring the

suspension performance, such as ride comfort, road holding,

and suspension deflection. A quarter-vehicle model has been

used widely in the literature for designing active suspension

controller, as shown in Fig. 1, where ms is used to denote

the sprung mass, which represents the car chassis; mu is the

unsprung mass, which represents mass of the wheel assembly;

u(t) stands for the active input of the suspension system; zs

and zu denote the displacements of the sprung and unsprung
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masses, respectively; zr is used to denote the road displacement

input; cs and ks are damping and stiffness of the suspen-

sion system, respectively; kt and ct stand for compressibility

and damping of the pneumatic tyre, respectively. Then, the

dynamic equation of the suspension model is established as

follows:

muz̈u(t)+ cs[żu(t)− żs(t)]+ ks[zu(t)− zs(t)]

+kt [zu(t)− zr(t)]+ ct [żu(t)− żr(t)]

= −u(t) ,

msz̈s(t)+ cs[żs(t)− żu (t)]+ ks[zs(t)− zu(t)]

= u(t) . (1)

Denote x1(t) = zs(t) − zu(t) as the suspension deflection,

x2(t) = zu(t)− zr(t) as the tire deflection, x3(t)= żs(t) as the

sprung mass speed, x4(t)= żu(t) as the unsprung mass speed,

and w(t) = żr(t) as the disturbance input, respectively. The

equations in (1) can be rewritten as:

ẋ(t) = A(t)x(t)+B1 (t)w(t)+B(t)u(t) , (2)

where

A(t) =









0 0 1 −1

0 0 0 1

− ks
ms

0 − cs
ms

cs
ms

ks
mu

− kt
mu

cs
mu

− cs+ct
mu









,

B(t) =









0

0
1

ms

− 1
mu









, B1 (t) =









0

−1

0
ct
mu









,

x(t) =
[

x1(t) x2(t) x3(t) x4(t)
]T

.

For the control design problems of suspension systems, their

performances, such as ride comfort and suspension deflection,

road holding are the fundamentals being taken into account.

It is widely accepted that ride comfort can be generally

quantified by the body acceleration in the vertical direction

in the context of a quarter-vehicle model, hence it is practical

to choose body acceleration, z̈s(t), as the first control output. It

indicates that one of the objectives is to minimize the vertical

acceleration, z̈s(t), to secure vehicle travel comfort.

Recall H∞ control method, the value of H∞ norm is defined

as an upper bound of the root mean square gain, the main

objective is to minimize the H∞ norm of the transfer function

from the disturbance w(t) to the control output z1(t) = z̈s(t)
with an emphasis on ride comfort improving. Meanwhile, the

following required performances have to be taken into account

as well:

I) The suspension deflection cannot exceed a maximum

value constrained by mechanical structure, that is,

|zs(t)− zu(t)| ≤ zmax, (3)

where zmax is the maximum suspension deflection.

II) The dynamic tyre load has to be less than the static tyre

load in order to ensure a firm uninterrupted contact of the

wheels on the road,

kt (zu(t)− zr(t))< (ms +mu)g. (4)

Based on the above criteria, the body acceleration z̈s(t)
is chosen as the performance control output, the suspen-

sion stroke zs(t) − zu(t) and relative dynamic tire load

kt (zu(t)− zr(t))/(ms +mu)g are chosen as the second control

output z2(t). Therefore, the following system is derived to

present the active vehicle suspension system:

ẋ(t) = A(t)x(t)+B1 (t)w(t)+B(t)u(t) ,

z1(t) = C1 (t)x(t)+D1 (t)u(t) ,

z2(t) = C2 (t)x(t), (5)

where A(t) , B1 (t) and B(t) are defined in (2), and

C1 (t) =
[

− ks
ms

0 − cs
ms

cs
ms

]

, D1 (t) =
1

ms

, (6)

C2 (t) =

[

1
zmax

0 0 0

0 kt

(ms+mu)g
0 0

]

.

Note that the suspension suspension system in (5) is a

model with uncertainty in that the sprung mass ms and the

unsprung mass mu vary in the given ranges, in which ms and

mu denote ms (t) and mu (t) respectively. In the meantime, the

actuator delay and fault should be taken into account since the

suspension performance could be affected by these factors. It

leads to the system as:

ẋ(t) = A(t)x(t)+B1 (t)w(t)+B(t)u f (t −d (t)) ,

z1(t) = C1 (t)x(t)+D1 (t)u f (t −d (t)) ,

z2(t) = C2 (t)x(t),

x(t) = φ(t), t ∈
[

−d̄,0
]

, (7)

where φ(t) is a vector-valued initial continuous function

defined on t ∈
[

−d̄,0
]

. d (t) denotes the time-varying delay

satisfying

0 ≤ d (t)≤ d̄, d (t)≤ µ. (8)

Considering the fault channel from controller to actuator,

u f (t) = mau(t), (9)

ma is used to represent the possible fault of the corresponding

actuator u f (t). m̌a ≤ ma ≤m̂a, where m̌a and m̂a are constant

scalars and used to constrain lower and upper bounds of the

actuator faults. Three following cases are considered corre-

sponding to three different actuator conditions:

1) m̌a = m̂a = 0, then ma = 0, which implies that the

corresponding actuator u f (t) is completely failed.

2) m̌a = m̂a = 1, thus we obtain ma = 1, which represents

the case of no fault in the actuator u f (t).

3) 0 < m̌a < m̂a < 1, which means that there exists partial

fault in the corresponding actuator u f (t).

The sprung mass ms(t) and the unsprung mass mu(t)
are uncertainties, which vary in a given range, i.e. ms (t) ∈
[msmin,msmax] and mu (t) ∈ [mumin,mumax] . It is to say that

the uncertainty scenarios of the mass ms (t) is bounded by

its minimum value msmin and its maximum value msmax. In

addition, the mass mu (t) is bounded by its minimum value

mumin and its maximum value mumax. Next, we obtain the
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values of 1
ms(t)

and 1
mu(t)

from ms (t) ∈ [msmin,msmax] and

mu (t) ∈ [mumin,mumax] . Then we have

max
1

ms (t)
=

1

msmin

=: m̂s, min
1

ms (t)
=

1

msmax
=: m̌s,

max
1

mu (t)
=

1

mumin

=: m̂u, min
1

mu (t)
=

1

mumax
=: m̌u.

The sector nonlinear method [32] is employed to represent
1

ms(t)
and 1

mu(t)
by,

1

ms (t)
= M1 (ξ1 (t)) m̂s +M2 (ξ1 (t)) m̌s,

1

mu (t)
= N1 (ξ2 (t)) m̂u +N2 (ξ2 (t)) m̌u,

where ξ1 (t) =
1

ms(t)
and ξ2 (t) =

1
mu(t)

are premise variables,

M1 (ξ1 (t))+M2 (ξ1 (t)) = 1,

N1 (ξ2 (t))+N2 (ξ2 (t)) = 1.

The membership functions M1 (ξ1 (t)) , M2 (ξ1 (t)) , N1 (ξ2 (t))
and N2 (ξ2 (t)) can be calculated as

M1 (ξ1 (t)) =

1
ms(t)

− m̌s

m̂s − m̌s

, M2 (ξ1 (t)) =
m̂s − 1

ms(t)

m̂s − m̌s

,

N1 (ξ2 (t)) =

1
mu(t)

− m̌u

m̂u − m̌u

, N2 (ξ2 (t)) =
m̂u − 1

mu(t)

m̂u − m̌u

.

The member functions are labelled as Heavy, Light, Heavy

and Light as shown in Fig.2. Then, the system with uncertainty

in (7) is represented by the following fuzzy model:

1

0

0

1 1M t2 1M t

1 t

HeavyLight

(a)

1

0

0

1 2N t2 2N t

2
t

HeavyLight

(b)

Fig. 2. (a) Membership functions M1 (ξ1 (t)) and M2 (ξ1 (t)) (b) Membership
functions N1 (ξ2 (t)) and N2 (ξ2 (t))

Model Rule 1: IF ξ1 (t) is Heavy and ξ2 (t) is Heavy,

THEN

ẋ(t) = A1x(t)+B1u f (t −d (t))+B11w(t) ,

z1 (t) = C11x(t)+D11u f (t −d (t)) ,

z2 (t) = C21x(t) ,

matrices A1, B1, B11, C11, D11 and C21 are obtained by

replacing 1
ms(t)

and 1
mu(t)

with matrices A(t) , B(t) , B1 (t) ,

C1 (t) , D1 (t) and C2 (t) with m̂s and m̂u respectively.

Model Rule 2: IF ξ1 (t) is Heavy and ξ2 (t) is Light,

THEN

ẋ(t) = A2x(t)+B2u f (t −d (t))+B12w(t) ,

z1 (t) = C12x(t)+D12u f (t −d (t)) ,

z2 (t) = C22x(t) ,

matrices A2, B2, B12, C12, D12 and C22 are obtained by

replacing 1
ms(t)

and 1
mu(t)

with matrices A(t) , B(t) , B1 (t) ,

C1 (t) , D1 (t) and C2 (t) with m̂s and m̌u respectively.

Model Rule 3: IF ξ1 (t) is Light and ξ2 (t) is Heavy,

THEN

ẋ(t) = A3x(t)+B3u f (t −d (t))+B13w(t) ,

z1 (t) = C13x(t)+D13u f (t −d (t)) ,

z2 (t) = C23x(t) ,

matrices A3, B3, B13, C13, D13 and C23 are obtained by

replacing 1
ms(t)

and 1
mu(t)

with matrices A(t) , B(t) , B1 (t) ,

C1 (t) , D1 (t) and C2 (t) with m̌s and m̂u respectively.

Model Rule 4: IF ξ1 (t) is Light and ξ2 (t) is Light,

THEN

ẋ(t) = A4x(t)+B4u f (t −d (t))+B14w(t) ,

z1 (t) = C14x(t)+D14u f (t −d (t)) ,

z2 (t) = C24x(t) ,

matrices A4, B4, B14, C14, D14 and C24 are obtained by

replacing 1
ms(t)

and 1
mu(t)

with matrices A(t) , B(t) , B1 (t) ,

C1 (t) , D1 (t) and C2 (t) wit m̌s and m̌u respectively.

Fuzzy blending allows to infer the overall fuzzy model as

follows:

ẋ(t) =
4

∑
i=1

hi (ξ (t))
[

Aix(t)+Biu f (t −d (t))+B1iw(t)
]

,

z1 (t) =
4

∑
i=1

hi (ξ (t))
[

C1ix(t)+D1iu f (t −d (t))
]

,

z2 (t) =
4

∑
i=1

hi (ξ (t))C2ix(t) , (10)

where

h1 (ξ (t)) = M1 (ξ1 (t))×N1 (ξ2 (t)) ,

h2 (ξ (t)) = M1 (ξ1 (t))×N2 (ξ2 (t)) ,

h3 (ξ (t)) = M2 (ξ1 (t))×N1 (ξ2 (t)) ,

h4 (ξ (t)) = M2 (ξ1 (t))×N2 (ξ2 (t)) .

It is apparent that the fuzzy weighting functions hi(ξ (t))
satisfy hi (ξ (t)) ≥ 0, ∑4

i=1 hi (ξ (t)) = 1. In order to design

a fuzzy reliable controllers, PDC is adapted and the following

fuzzy controller is obtained:

Control Rule 1: IF ξ1 (t) is Heavy and ξ2 (t) is Heavy,

THEN u(t) = Ka1x(t).

Control Rule 2: IF ξ1 (t) is Heavy and ξ2 (t) is Light,

THEN u(t) = Ka2x(t).
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Control Rule 3: IF ξ1 (t) is Light and ξ2 (t) is Heavy,

THEN u(t) = Ka3x(t).
Control Rule 4: IF ξ1 (t) is Light and ξ2 (t) is Light,

THEN u(t) = Ka4x(t).
Hence, the overall fuzzy control law is represented by

u(t) =
4

∑
j=1

h j(ξ (t))Ka jx(t) (11)

where Ka j ( j = 1,2,3,4) are the local control gains and

u(t − d (t)) = ∑4
j=1 h j(ξ (t −d (t)))Ka jx(t − d (t)). Therefore,

in this paper, we assume that h j(ξ (t −d (t))) is well

defined for t ∈
[

−d̄,0
]

, and h j (ξ (t −d (t))) ≥ 0, ( j =
1,2,3,4) ∑4

j=1 h j (ξ (t −d (t))) = 1. For simplicity, the fol-

lowing notations will be used:

hi =: hi (ξ (t)) , hd
j =: h j (ξ (t −d (t))) .

Applying the fuzzy controller (11) to system (10) yields the

closed-loop system:

ẋ(t) =
4

∑
i=1

4

∑
j=1

hih
d
j [Aix(t)+Bima (t)Ka jx(t −d (t))

+B1iw(t)] ,

z1 (t) =
4

∑
i=1

4

∑
j=1

hih
d
j [C1ix(t)+D1imaKa jx(t −d (t))] ,

z2 (t) =
4

∑
i=1

hiC2ix(t) . (12)

The T-S fuzzy system in (12) is established based on the

practically measurable sprung ms(t) and unsprung mu(t). The

sector nonlinearity method [32] is employed to analyze the

variation of the sprung ms(t) and unsprung mu(t) and present

the T-S fuzzy system in (12).

Without loss of generality, it is assumed, w ∈ L2[0,∞), and

∥w∥2
2 ≤wmax <∞. The objective in this subsection is to design

the feedback gain matrices Ka j ( j = 1,2,3,4) such that the

following requirements are satisfied:

(1) the closed-loop system is asymptotically stable;

(2) under zero initial condition, the closed-loop system

guarantees that ∥z1∥2 < γ ∥w∥2 for all nonzero w ∈ L2[0,∞),
where γ > 0 is a prescribed scalar;

(3) the following control output constraints are guaranteed:
∣

∣{z2(t)}q

∣

∣≤ 1, q = 1,2. (13)

III. RELIABLE FUZZY CONTROLLER DESIGN

In this section, reliable fuzzy H∞ state-feedback controller is

derived for the active suspension system with actuator delay

and fault. It ensures that the closed-loop system in (12) is

asymptotically stable, and it also guarantees a prescribed gain

from disturbance w(t) to performance output z1(t), under the

condition that the suspension stroke and tire deflection con-

straints are satisfied. First, the following lemma is presented,

Lemma 1: ( [21]) For a time-varying diagonal matrix

Φ(t) = diag{σ1(t),σ2(t), · · · ,σp(t)} and two matrices R and

S with appropriate dimensions, if |Φ(t)| ≤V , where V > 0 is

a known diagonal matrix, then for any scalar ε > 0, it is true

that

RΦS+ST ΦT RT ≤ εRV RT + ε−1STV S.

Next, the following scalars is introduced which will be used

in the later development in this paper. Ma0 = (m̌a + m̂a)�2,

La = [ma −Ma0]�ma0 and Ja = (m̂a − m̌a)�(m̂a + m̌a). Thus,

one has ma = Ma0(I+La) and LT
a La ≤ JT

a Ja ≤ I. Then, it leads

to the following theorem.

Theorem 1: Consider the closed-loop system in (12). For

given scalars d̄ > 0, µ and matrices Ka j, if there exist matrices

P > 0, Q > 0, S > 0, R > 0, N j, and M j with appropriate

dimensions and positive scalars ε1i j > 0 and ε2i j > 0 (i, j =
1,2,3,4) such that the following LMIs hold for q = 1,2:

















Φ
i j
11

√
d̄M Φ

i j
13 Φ

i j
14 Φ

i j
15 Φ

1i j
16

0 −R 0 0 0 0

0 0 −I 0 D1i 0

0 0 0 −R
√

d̄RBi 0

0 0 0 0 −ε1i jJ
−1
a 0

0 0 0 0 0 −ε1i jJ
−1
a

















< 0,

(14)
















Φ
i j
11

√
d̄N Φ

i j
13 Φ

i j
14 Φ

i j
15 Φ

2i j
16

0 −R 0 0 0 0

0 0 −I 0 D1i 0

0 0 0 −R
√

d̄RBi 0

0 0 0 0 −ε2i jJ
−1
a 0

0 0 0 0 0 −ε2i jJ
−1
a

















< 0,

(15)
[

−P
√

ρ {C2i}T
q

∗ −I

]

< 0,

(16)

where

Φ
i j
11 = Ξ

i j
11 + sym(Ξ2) , Ξ

i j
11 =

[

Θ
i j
11 Θ

i j
12

∗ −γ2I

]

,

Θ
i j
11 =





sym(PAi)+Q+S PBiMa0Ka j 0

∗ −(1−µ)S 0

∗ ∗ −Q



 ,

Θ
i j
12 =





PB1i

0

0



 ,Ξ2 =
[

M N −M −N 0
]

,

Φ
i j
13 =

[

C1i D1iMa0Ka j 0 0
]T

,

Φ
i j
14 =

[ √
d̄RAi

√
d̄RBiMa0Ka j 0

√
d̄RB1i

]T

,

Φ
i j
15 =

[

BT
i P 0 0 0

]T
,

Φ
1i j
16 =

[

0 ε1i jMa0Ka j 0 0
]T

,

Φ
2i j
16 =

[

0 ε2i jMa0Ka j 0 0
]T

,

M =
[

MT
1 MT

2 MT
3 MT

4

]T
,

N =
[

NT
1 NT

2 NT
3 NT

4

]T
.

Furthermore,

(1) the closed-loop system is robustly asymptotically stable;
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(2) the performance ∥Tz1w∥∞ < γ is minimized subject to

output constraints (13) with the disturbance energy under the

bound wmax = (ρ −V (0))/γ2, where Tz1w denotes the closed-

loop transfer function from the road disturbance w(t) to the

control output z1(t).
Proof: Considering the Lyapunov-Krasovskii functional as

follows:

V (t) = xT (t)Px(t)+
∫ t

t−d̄
xT (s)Qx(s)ds

+
∫ t

t−d(t)
xT (s)Sx(s)ds

+
∫ 0

−d̄

∫ t

t+α
ẋT (s)Rẋ(s)dsdα. (17)

The derivative of V (t) along the solution of system (12) is

expressed as

V̇ (t) ≤ 2xT (t)Pẋ(t)+ xT (t)(Q+S)x(t)

−xT
(

t − d̄
)

Qx
(

t − d̄
)

+ d̄ẋT (t)Sẋ(t)

−(1−µ)xT (t −d (t))Qx(t −d (t))

−
∫ t

t−d(t)
ẋT (s)Rẋ(s)ds

−
∫ t−d(t)

t−d̄
ẋT (s)Rẋ(s)ds. (18)

To develop H∞ performance analysis criterion, the system (12)

is stable with w(t) = 0; then the H∞ performance index is

satisfied. For any appropriately dimensioned matrices M̂ and

N̂, the following equalities hold directly according to Newton-

Leibniz formula:

η1 (t) = 2ξ T (t)M̂

×
(

x(t)− x(t −d (t))−
∫ t

t−d(t)
ẋ(s)ds

)

= 0,

η2 (t) = 2ξ T (t) N̂

×
(

x(t −d (t))− x
(

t − d̄
)

−
∫ t−d(t)

t−d̄
ẋ(s)ds

)

= 0,

where

ξ T (t) =
[

xT (t) xT (t −d (t)) xT
(

t − d̄
) ]

,

M̂ =
[

MT
1 MT

2 MT
3

]T
, N̂ =

[

NT
1 NT

2 NT
3

]T
.

Adding η1 (t) and η2 (t) into the right hand side of (18),

the following inequalities is obtained:

V̇ (t) ≤
4

∑
i=1

4

∑
j=1

hih
d
j ξ

T (t)
[

Ξ̂i j +d (t)M̂R−1M̂T

+
(

d̄ −d (t)
)

N̂R−1N̂T
]

ξ (t)

−
∫ t

t−d(t)

[

ξ T (t)M̂+ ẋT (s)R
]

R−1

×
[

M̂T ξ (t)+Rẋ(s)
]

ds

−
∫ t−d(t)

t−d̄

[

ξ T (t) N̂ + ẋT (s)R
]

R−1

×
[

N̂T ξ (t)+Rẋ(s)
]

ds

≤
4

∑
i=1

4

∑
j=1

hih
d
j ξ

T (t)
[

Ξ̂i j +d (t)M̂R−1M̂T

+
(

d̄ −d (t)
)

N̂R−1N̂T
]

ξ (t)

=
4

∑
i=1

4

∑
j=1

hih
d
j ξ

T (t)

[

d (t)

d̄

(

Ξ̂i j + d̄M̂R−1M̂T
)

+
d̄ −d (t)

d̄

(

Ξ̂i j + d̄N̂R−1N̂T
)

]

ξ (t) ,

where

Ξ̂i j = Θ̂
i j
11 + sym

(

Π̂2

)

+ϒd̄RϒT ,

and

Π̂2 =
[

M̂ N̂ − M̂ −N̂
]

, ϒ =
[

Ai BimaKa j 0
]T

,

where the matrix Θ̂
i j
11 is the matrix Θ

i j
11, where the term

PBiMa0Ka j is replaced by PBimaKa j. It is found that

Ξ̃1
i j =





Θ̂
i j
11 + sym

(

Π̂2

)

√
d̄M̂

√
d̄ϒR

∗ −R 0

∗ ∗ −R





≤





Θ
i j
11

√
d̄M̂ Φ̃

i j
14

∗ −R 0

∗ ∗ −R



+ ε−1
1i j ΛT JaΛ+ ε1i j∆Ja∆T ,

Ξ̃2
i j =





Θ̂
i j
11 + sym

(

Π̂2

)

√
d̄N̂

√
d̄ϒR

∗ −R 0

∗ ∗ −R





≤





Θ
i j
11

√
d̄N̂ Φ̃

i j
14

∗ −R 0

∗ ∗ −R



+ ε−1
2i j ΛT JaΛ+ ε2i j∆Ja∆T ,

and

Φ̃
i j
14 =

[ √
d̄RAi

√
d̄RBiMa0Ka j 0

]T

,

Λ =
[

BT
i P 0 0

√
d̄BT

i R 0

]

,

∆T =
[

0 Ma0Ka j 0 0 0
]

.

From (14)–(15) and according to Schur complement, Ξ̃1
i j < 0

and Ξ̃2
i j < 0 are obtained, it is to say that

Ξ̂i j + d̄M̂R−1M̂T < 0, Ξ̂i j + d̄N̂R−1N̂T < 0.

It leads to V̇ (t) < 0, then the system in (12) is asymptoti-

cally stable for the delay d (t) satisfying (8). Next, the H∞

performance of the system in (12) is established under zero

initial conditions. Firstly, the Lyapunov functional is defined

as shown in (17). It is not difficult to achieve:

V̇ (t)+ zT
1 (t)z1(t)− γ2wT (t)w(t)

≤
4

∑
i=1

4

∑
j=1

hih
d
j ξ̄

T (t)
[

Ξ̌i j +d (t)MR−1MT

+
(

d̄ −d (t)
)

NR−1NT
]

ξ̄ (t)

=
4

∑
i=1

4

∑
j=1

hih
d
j ξ̄

T (t)

[

d (t)

d̄

(

Ξ̌i j + d̄MR−1MT
)

+
d̄ −d (t)

d̄

(

Ξ̌i j + d̄NR−1NT
)

]

ξ̄ (t) ,

where

Ξ̌i j = Φ̌
i j
11+Φ̌

i j
13Φ̌

i jT
13 +Φ̌

i j
14Φ̌

i jT
14 , ξ̄ T (t)=

[

ξ T (t) wT (t)
]

,
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and Φ̌
i j
11, Φ̌

i j
13 and Φ̌

i j
14 are the matrices Φ

i j
11, Φ

i j
13 and Φ

i j
14 in

which the terms PBiMa0Ka j, KT
a jMa0DT

1i and
√

d̄KT
a jMa0BT

i R

are replaced by the terms PBimaKa j, KT
a jmaDT

1i and KT
a jmaBT

i

respectively. According to Schur complement and the above

method, we develop

V̇ (t)+ zT
1 (t)z1(t)− γ2wT (t)w(t)< 0, (19)

for all nonzero w ∈ L2[0,∞). Under zero initial conditions, we

have V (0) = 0 and V (∞) ≥ 0. Integrating both sides of (19)

yields ∥z1∥2 < γ ∥w∥2 for all nonzero w ∈ L2[0,∞), and the

H∞ performance is established.

In what follows, we will show that the hard constraints

in (13) are guaranteed. Inequality (19) guarantees V̇ (t)−
γ2wT (t)w(t)< 0. Integrating both sides of the above inequality

from zero to any t > 0, we obtain

V (t)−V (0)< γ2
∫ t

0
wT (s)w(s)ds < γ2 ∥w∥2

2 . (20)

From the definition of the Lyapunov functional in (17), we

obtain that xT (t)Px(t) < ρ with ρ = γ2wmax +V (0). Similar

to [2], the following inequality hold

max
t>0

∣

∣{z2(t)}q

∣

∣

2

≤ max
t>0

∥

∥

∥

∥

∥

4

∑
i=1

hix
T (t){C2i}T

q {C2i}qx(t)

∥

∥

∥

∥

∥

2

= max
t>0

∥

∥

∥

∥

∥

4

∑
i=1

hix
T (t)P

1
2 P− 1

2 {C2i}T
q {C2i}qP− 1

2 P
1
2 x(t)

∥

∥

∥

∥

∥

2

< ρ ·θmax

(

4

∑
i=1

hiP
− 1

2 {C2i}T
q {C2i}q P− 1

2

)

, q = 1,2,

where θmax(·) represents maximal eigenvalue. From the above

inequality, it leads to that the constraints in (13) are guaran-

teed, if

ρ ·
4

∑
i=1

hiP
− 1

2 {C2i}T
q {C2i}q P− 1

2 < I, (21)

which means

4

∑
i=1

hi

(

ρ ·P− 1
2 {C2i}T

q {C2i}q P− 1
2 − I

)

< 0,

which is guaranteed by the feasibility of (16). The proof is

completed. �

Remark 1: In this paper, the free-weight matrices method

[48] has been utilized to propose the delay-dependent H∞

performance analysis condition for the time-varying actuator

delay d (t). How to develop the less conservative condition is

still a challenging research topic. The interval time-varying

delay [49] and present less conservative results have been

targeted in our future work.

In what follows, the reliable fuzzy H∞ controller existence

condition is presented for the active suspension system in (12),

it is based on reliable fuzzy H∞ performance analysis criterion

in Theorem 1.

Theorem 2: Consider the closed-loop system in (12). For

given scalars d̄ > 0 and µ , if there exist matrices P̄> 0, Q̄> 0,

S̄ > 0, R̄ > 0, Ya j, N̄ j, and M̄ j with appropriate dimensions and

positive scalars ε̄1i j > 0 and ε̄2i j > 0 (i, j = 1,2,3,4) such that

the following LMIs hold for q = 1,2:

















Φ̄
i j
11

√
d̄M̄ Φ̄

i j
13 Φ̄

i j
14 Φ̄

1i j
15 Φ̄

i j
16

0 R̄−2P̄ 0 0 0 0

0 0 −I 0 D1i 0

0 0 0 −R ε̄1i j

√
d̄Bi 0

0 0 0 0 −ε̄1i jJ
−1
a 0

0 0 0 0 0 −ε̄1i jJ
−1
a

















< 0,

(22)
















Φ̄
i j
11

√
d̄N̄ Φ̄

i j
13 Φ̄

i j
14 Φ̄

2i j
15 Φ̄

i j
16

0 R̄−2P̄ 0 0 0 0

0 0 −I 0 D1i 0

0 0 0 −R ε̄2i j

√
d̄Bi 0

0 0 0 0 −ε̄2i jJ
−1
a 0

0 0 0 0 0 −ε̄2i jJ
−1
a

















< 0,

(23)
[

−P̄
√

ρP̄{C2i}T
q

∗ −I

]

< 0,

(24)

where

Φ̄
i j
11 = Ξ̄

i j
11 + sym

(

Ξ̄2

)

, Ξ̄
i j
11 =

[

Θ̄
i j
11 Θ̄

i j
12

∗ −γ2I

]

,

Θ
i j
11 =





sym(AiP̄)+ Q̄+ S̄ BiYa j 0

∗ −(1−µ) S̄ 0

∗ ∗ −Q̄



 ,

Θ̄
i j
12 =





B1i

0

0



 , Ξ̄2 =
[

M̄ N̄ − M̄ −N̄ 0
]

,

Φ̄
i j
13 =

[

C1iP̄ D1iYa j 0 0
]T

,

Φ̄
i j
14 =

[ √
d̄Ai

√
d̄BiYa j 0

√
d̄B1i

]T

,

Φ̄
1i j
15 =

[

ε̄1i jB
T
i 0 0 0

]T
,

Φ̄
2i j
15 =

[

ε̄2i jB
T
i 0 0 0

]T
,

Φ̄
i j
16 =

[

0 Ya j 0 0
]T

,

M̄ =
[

M̄T
1 M̄T

2 M̄T
3 M̄T

4

]T
,

N̄ =
[

N̄T
1 N̄T

2 N̄T
3 N̄T

4

]T
.

Then a reliable controller in the form of (11) exists, such that

(1) the closed-loop system is asymptotically stable;

(2) the performance ∥Tz1w∥∞ < γ is minimized subject to

output constraints (13) with the disturbance energy under the

bound wmax = (ρ −V (0))/γ2.

Moreover, if inequalities (22)–(24) have a feasible solution,

then the control gain Ka j in (11) is given by Ka j =M−1
a0 Ya jP̄

−1.
Proof: From (R̄− P̄) R̄−1 (R̄− P̄)≥ 0, we have −P̄R̄−1P̄ ≤

R̄−2P̄. After replacing R̄−2P̄ in (22)–(23) with −P̄R̄−1P̄ and

performing corresponding congruence transformation by

diag
{

P̄−1, P̄−1, P̄−1, I, P̄−1, I, R̄−1, ε̄−1
1i j I, ε̄−1

1i j I
}

,

and by

diag
{

P̄−1, P̄−1, P̄−1, I, P̄−1, I, R̄−1, ε̄−1
2i j I, ε̄−1

2i j I
}

,
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together with the change of matrix variables defined by

P = P̄−1, R = R̄−1, Q = P̄−1Q̄P̄−1,

K j = M−1
a0 YjP̄

−1, S = P̄−1S̄P̄−1, ε1i j = ε̄−1
1i j ,

ε2 = ε̄−1
2i j , M = diag

{

P̄−1, P̄−1, P̄−1, I
}

M̄P̄−1,

N = diag
{

P̄−1, P̄−1, P̄−1, I
}

N̄P̄−1.

It is concluded that the conditions in (14) and (15) hold. On

the other hand, (24) is equivalent to (16) by performing a sim-

ple congruence transformation with diag
{

P̄−1, I
}

. Therefore,

all the conditions in Theorem 1 are satisfied. The proof is

completed. �

Remark 2: In the study, the conservative will

be reduced if the matrices Q, S, R, M and N

are replaced by ∑4
i=1 hiQi, ∑4

i=1 hiSi, ∑4
i=1 hiRi,

∑4
i=1 hiMi = ∑4

i=1 hi

[

MT
1i MT

2i MT
3i MT

4i

]T
and

∑4
i=1 hiNi = ∑4

i=1 hi

[

NT
1i NT

2i NT
3i NT

4i

]T
. However,

computation complexion of the existence condition in

Theorem 2 of reliable fuzzy H∞ controller design will be

increased intensively. Thus, the above proof is employed to

handle the tradeoff in this study.

IV. FUZZY H∞ CONTROLLER DESIGN

In the section, fuzzy H∞ controller design is presented for

active suspension systems with actuator delay based on T-S

fuzzy model method. If there is no actuator fault in the active

suspension system, then we obtain,

ẋ(t) = A(t)x(t)+B1 (t)w(t)+B(t)u(t −d (t)) ,

z1(t) = C1 (t)x(t)+D1 (t)u(t −d (t)) ,

z2(t) = C2 (t)x(t), (25)

Based on the above presented fuzzy modeling, the overall

fuzzy model is inferred as follows:

ẋ(t) =
4

∑
i=1

hi (ξ (t)) [Aix(t)+Biu(t −d (t))+B1iw(t)] ,

z1 (t) =
4

∑
i=1

hi (ξ (t)) [C1ix(t)+Diu(t −d (t))] ,

z2 (t) =
4

∑
i=1

hi (ξ (t))C2ix(t) . (26)

In addition, the overall fuzzy control law is represented by

u(t) =
4

∑
j=1

h j(ξ (t))Ks jx(t) (27)

For the case of the standard controller (27), the closed-loop

system is given by

ẋ(t) =
4

∑
i=1

4

∑
j=1

hih
d
j [Aix(t)+BiKs jx(t −d (t))+B1iw(t)] ,

z1 (t) =
4

∑
i=1

4

∑
j=1

hih
d
j [C1ix(t)+D1iKs jx(t −d (t))] ,

z2 (t) =
4

∑
i=1

hiC2ix(t) . (28)

Employing the similar method proposed in the previous sec-

tion, the following corollary is obtained for the fuzzy H∞

performance analysis at the context of the system in (28) with

actuator delay.

Corollary 1: Consider the closed-loop system in (28).

Given scalars d̄ > 0, µ and matrices Ks j, if there exist matrices

P > 0, Q > 0, S > 0, R > 0, N j, and M j ( j = 1,2,3,4) with

appropriate dimension such that the following LMIs hold for

q = 1,2:









Φ́
i j
11

√
d̄M Φ́

i j
13 Φ́

i j
14

0 −R 0 0

0 0 −I 0

0 0 0 −R









< 0, (29)









Φ́
i j
11

√
d̄N Φ́

i j
13 Φ́

i j
14

0 −R 0 0

0 0 −I 0

0 0 0 −R









< 0, (30)

[

−P
√

ρ {C2i}T
q

∗ −I

]

< 0, (31)

where

Φ́
i j
11 = Ξ́

i j
11 + sym(Ξ2) , Ξ́

i j
11 =

[

Θ́
i j
11 Θ

i j
12

∗ −γ2I

]

,

Φ́
i j
13 =

[

C1i D1iKs j 0 0
]T

,

Θ́
i j
11 =





sym(PAi)+Q+S PBiKs j 0

∗ −(1−µ)S 0

∗ ∗ −Q



 ,

Φ́
i j
14 =

[ √
d̄RAi

√
d̄RBiKs j 0

√
d̄RB1i

]T

,

Take into account the matrices Ξ2, Θ
i j
12, M and N in Theorem

1, we obtain,

(1) the closed-loop system is asymptotically stable;

(2) the performance ∥Tz1w∥∞ < γ is minimized subject to

output constraints (13)..
Similarly, the fuzzy H∞ controller design condition as below

is derived from Theorem 2.

Corollary 2: Consider the closed-loop system in (28).

Given scalars d̄ > 0 and µ , the closed-loop system (12) is

asymptotically stable with an H∞ disturbance attenuation level

γ , if there exist matrices P̄ > 0, Q̄ > 0, S̄ > 0, R̄ > 0, Ys j, N̄ j,

and M̄ j ( j = 1,2,3,4) with appropriate dimensions such that

the following LMIs hold for q = 1,2:









Φ̀
i j
11 Φ̄

1i j
12 Φ̀

i j
13 Φ̀

i j
14

0 R̄−2P̄ 0 0

0 0 −I 0

0 0 0 −R









< 0, (32)









Φ̀
i j
11 Φ̄

2i j
12 Φ̀

i j
13 Φ̀

i j
14

0 R̄−2P̄ 0 0

0 0 −I 0

0 0 0 −R









< 0, (33)

[

−P̄
√

ρP̄{C2i}T
q

∗ −I

]

< 0, (34)
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where

Φ̀
i j
11 = Ξ̀

i j
11 + sym

(

Ξ̄2

)

, Ξ̀
i j
11 =

[

Ξ̀
i j
11 Θ̄

i j
12

∗ −γ2I

]

,

Φ̀
i j
13 =

[

C1iP̄ D1iYs j 0 0
]T

,

Θ
i j
11 =





sym(AiP̄)+ Q̄+ S̄ BiYs j 0

∗ −(1−µ) S̄ 0

∗ ∗ −Q̄



 ,

Φ̀
i j
14 =

[ √
d̄Ai

√
d̄BiYs j 0

√
d̄B1i

]T

,

Ξ̄2, Θ̄
i j
12, M̄ and N̄ are defined in Theorem 2. Then a standard

controller in the form of (27) exists, such that

(1) the closed-loop system is asymptotically stable;

(2) the performance ∥Tz1w∥∞ < γ is minimized subject to

output constraint (13).

Moreover, if inequalities (32)–(34) have a feasible solution,

then the control gain Ks j in (27) is given by Ks j = Ys jP̄
−1.

Remark 3: When the derivative of d (t) is unknown, and

the delay d (t) satisfies 0 < d (t)≤ d̄, by setting S = 0 in (18)

and the LMIs-based conditions in Theorems 1–2 and Corollary

1–2, the reliable fuzzy H∞ controller and fuzzy H∞ controller

can be obtained for the systems in (12) and (28) under the

condition that the actuator delay d (t) satisfies 0 < d (t) ≤ d̄

respectively.

It is can be seen from the LMI-based conditions in Theorem

2 and Corollary 2 both dependent on the matrix variables and

the objective scalar γ , which implies that γ can be included

as an optimization variable to obtain a lower bound of the

guaranteed H∞ performance. Based on the different conditions,

reliable fuzzy H∞ controller and fuzzy H∞ controller can be

designed with the minimal γ by solving the following convex

optimization problems:

minγ s.t. (22)− (24).

P̄ > 0, Q̄ > 0, S̄ > 0, R̄ > 0, ε̄1i j > 0, ε̄2i j > 0,Ya j,M̄, N̄.(35)

and

minγ s.t. (32)− (34).

P̄ > 0, Q̄ > 0, S̄ > 0, R̄ > 0,Ys j,M̄, N̄. (36)

V. SIMULATION RESULTS

A quarter-vehicle active suspension system is exploited to

demonstrate the effectiveness of the proposed approach in this

section. The quarter-vehicle suspension model parameters in

Table 1 are used for this study. The sprung mass ms (t) is

TABLE I
QUARTER-CAR MODEL PARAMETERS

ks kt cs ct

42720N/m 101115N/m 1095Ns/m 14.6Ns/m

assumed to set as the range [873kg,1073kg] and the unsprung

mass mu (t) to [104kg,124kg]. In this study, the maximum

allowable suspension stroke is set as zmax = 0.1 m with ρ = 1.

For the actuator delay d(t)= 5+5sin( 1
50
) ms satisfying d̄ = 10

ms and µ = 0.1, we consider fuzzy H∞ controller design for

the uncertain active suspension systems in (28). By using the

convex optimization in (36), it is found that the minimum

guaranteed closed-loop H∞ performance index γmin is 5.3011

and the fuzzy controller gain matrices

Ksi = 104 ×
[

−3.3260 5.6998 −2.5167 0.2824
]

,
(37)

where i = 1,2,3,4.

It is expected that the desired fuzzy H∞ controller in (27)

with the parameters in (37) can be designed such that: 1)

the sprung mass acceleration z1(t) is as small as possible;

2) the suspension deflection is below the maximum allowable

suspension stroke zmax = 0.1 m, which means that x1 (t)/zmax

below 1; 3) the relation dynamic tire load ktx2(t)/(ms(t) +
mu(t))g < 1. We first consider the following test road distur-

bance as

zr(t) = 0.0254sin2πt+0.005sin10.5πt+0.001sin21.5πt(m).
(38)

According to [47], the road disturbance has a similar fre-

quency as the car body resonance frequency (1Hz) under the

condition that high-frequency disturbance added to simulate

the rough road surface. In order to carry out the simulation

for the fuzzy H∞ controller as in (28), the variational sprung

mass ms (t) and the variational unsprung mass mu (t) are set

as: ms (t) = 973+ 100sin(t) kg and mu (t) = 114+ 10cos(t)
kg, for deriving the fuzzy membership functional hi (ξ (t))
(i = 1,2,3,4). By using the fuzzy H∞ controller in (27) with

the parameters in (37), we derive the corresponding closed-

loop fuzzy system. Fig. 3 depicts the responses of body vertical

accelerations and the actuator force for the open- (e.g., passive)

and closed-loop (e.g., active) systems. Fig. 4 demonstrates the

responses of suspension stroke and tire deflection constraint

for both the passive and active systems. It is observed from

Fig. 3 that the proposed fuzzy H∞ control strategy reduces

the sprung mass acceleration significantly in comparison with

the passive suspension under the same road disturbance. The

designed fuzzy H∞ controller can achieve the less value of

the maximum body acceleration for the active suspension

system than the passive system, and passenger acceleration in

the active suspension system is reduced significantly, which

guarantees better ride comfort. In addition, it can be seen that,

from Fig. 4, the suspension deflection constraint x1(t)/zmax < 1

and the relation dynamic tire load constraint ktx2(t)/(ms(t)+
mu(t))g < 1 are guaranteed, which implies the road holding

capability is ensured by the desired fuzzy controller. These

two figures confirm that the designed standard state-feedback

fuzzy H∞ controller can achieve better ride comfort and road

handling, guarantee constraint suspension deflection for the

active suspension system.

To further evaluate the effectiveness of the proposed fuzzy

H∞ controller design strategy with actuator delays, the road

disturbance as below is taken into account. In the context of

active suspension performance, the road disturbance can be

generally assumed as discrete events of relatively short dura-

tion and high intensity, caused by, for example, a pronounced

bump or pothole on an otherwise smooth road surface. The
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Fig. 3. (a) Responses of body vertical accelerations, (b) Response of active
force.

road surface is represented by,

zr(t) =

{

A
2
(1− cos( 2πV

L
t)), if 0 ≤ t ≤ L

V
,

0, if t > L
V
,

(39)

where A and L are the height and the length of the bump.

Assume A = 50 mm, L = 6 m and the vehicle forward velocity

as V = 35 (km/h). Fig. 5 illustrates the the responses to body

vertical accelerations and the actuator force; Fig. 6 presents the

responses to suspension stroke and tire deflection constraint

for the passive and active systems under the introduced road

disturbance, respectively. The simulation results convincingly

demonstrate that the fuzzy H∞ controller offers better suspen-

sion performance than the open-loop suspension system.

The effectiveness and advantages of the proposed reliable

fuzzy H∞ controller design for active suspension systems with

actuator delay and fault will be demonstrated in what follows.

The parameters notation in the fuzzy H∞ controller design in

the above section is applied here as well. It is assumed that

there exists the following actuator fault, namely, m̌a = 0.1,
m̂a = 0.5, which implies Ma0 = 0.3 and Ja = 0.2. Based on

the convex optimization presented in (35), we can obtain the

minimum guaranteed closed-loop H∞ performance index γmin
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Fig. 4. (a) Responses of suspension deflection constraint, (b) Responses of
tire stroke constraint.

is 28.6991 and the reliable fuzzy controller gain matrices

Ka1 = 104 ×
[

4.1910 −0.9700 −2.5381 0.5713
]

,

Ka2 = 104 ×
[

4.1916 −0.9829 −2.5381 0.5711
]

,

Ka3 = 104 ×
[

4.1964 −0.9751 −2.5382 0.5706
]

,

Ka4 = 104 ×
[

4.2149 −0.9439 −2.5388 0.5701
]

.

(40)

For the two kinds of road disturbances, namely, the first case

road disturbance as shown in (38) and the second case road

disturbance as given in (39). In Figs. 7–10, the responses to

the open and closed-loop systems with the actuator delay and

fault via the standard fuzzy H∞ controller Ksi and reliable

controller Kai (i = 1,2,3,4) are based on the two different

types of road disturbances. These figures show that the less

value of the maximum body acceleration is achieved for the

active suspension system, the suspension deflection constraint

x1(t)/zmax < 1 is guaranteed and the relation dynamic tire

load ktx2(t)/(ms(t)+mu(t))g is below 1 in comparison with

the passive suspension system, by utilizing the standard fuzzy

H∞ controller Ksi and reliable controller Kai (i = 1,2,3,4) for

different three types road disturbances respectively. However,

it can be observed from Figs. 7 and 9 that the reliable

fuzzy H∞ controller achieves less value of the maximum body

acceleration than the standard H∞ controller for the active

suspension system with actuator delay and fault. From Fig.
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Fig. 5. (a) Responses of body vertical accelerations, (b) Response of active
force.

8 and 10, it can be seen that Kai (i = 1,2,3,4) is capable to

provide a much more steady control force in fault condition

than conventional controller Ksi (i = 1,2,3,4).

To further evaluate the suspension system performance

under different fuzzy controllers Ksi and Kai (i = 1,2,3,4), the

root mean square (RMS) values of the body acceleration are

exploited to demonstrate its advantages. The road disturbances

can also be generally assumed as random vibrations, which

are consistent and typically specified as random process with

a given ground displacement power spectral density (PSD) of

Gq (n) = Gq (n0)

(

n

n0

)−c

, (41)

where n0 denotes the spatial frequency and n0 is the reference

spatial frequency of n0 = 0.1 (1/m); Gq (n0) is used to stand

for the road roughness coefficient; c = 2 is the road roughness

constant. Related to the time frequency f , we have f = nV

with V for the vehicle forward velocity. Based on the equation

(41), we can obtain the PSD ground displacement:

Gq ( f ) = Gq (n0)n−2
0

V

f 2
. (42)

Accordingly, PSD ground velocity is given by

Gq̇ ( f ) = (2π f )2
Gq ( f ) = 4πGq (n0)n2

0V, (43)

which is only related with the vehicle forward velocity. When

the vehicle forward velocity is fixed, the ground velocity can
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Fig. 6. (a) Responses of suspension deflection constraint, (b) Responses of
tire stroke constraint.

be viewed as a white-noise signal. We choose the four differ-

ence road roughness Gq (n0) = 16×10−6 m3, 64×10−6 m3,
256×10−6 m3 and 1024×10−6 m3, which are corresponded

to B Grade (Good), C Grade (Average), D Grade (Poor) and

E Grade (Very Poor) for the vehicle forward velocity V = 35

(km/h), respectively.

RMS are strictly related to the ride comfort, which are

often used to quantify the amount of acceleration transmitted

to the vehicle body. The RMS value of variable x(t) is

calculated as RMSx =
√

(1/T )
∫ T

0 xT (t)x(t)dt. In our study,

we choose T = 100 s to calculate the RMS values of the

body acceleration, suspension stroke and relative dynamics tire

load for different road roughness coefficient Gq (n0), which are

listed in Tables II–IV by using the fuzzy controller Ksi and

reliable fuzzy controller Kai, respectively. It can be observed

that these tables indicate that the improvement in ride comfort

and the satisfaction of hard constraints can be achieved for

the different load conditions by using reliable fuzzy controller

Kai compared with the fuzzy controller Ksi for the uncertain

suspension systems with actuator delay and fault.

VI. CONCLUSIONS

This paper has investigated the problem of reliable fuzzy

H∞ control for active suspension systems with actuator delay

and fault. The sprung and unsprung mass variations, the

actuator delay and fault, and the suspension performance
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TABLE II
RMS BODY ACCELERATION

Parameter Passive systems Fuzzy Controller Reliable Fuzzy Controller

Gq (n0) = 16×10−6 m3 0.0081 0.0046 0.0041

Gq (n0) = 64×10−6 m3 0.0152 0.0092 0.0083

Gq (n0) = 256×10−6 m3 0.0284 0.0183 0.0166

Gq (n0) = 1024×10−6 m3 0.0644 0.0387 0.0351

TABLE III
RMS SUSPENSION STROKE

Parameter Passive systems Fuzzy Controller Reliable Fuzzy Controller

Gq (n0) = 16×10−6 m3 1.7635×10−4 9.7651×10−5 9.5584×10−5

Gq (n0) = 64×10−6 m3 3.3536×10−4 1.9626×10−4 1.9057×10−4

Gq (n0) = 256×10−6 m3 6.2909×10−4 3.9088×10−4 3.8283×10−4

Gq (n0) = 1024×10−6 m3 0.0014 8.2616×10−4 8.0992×10−4

TABLE IV
RMS RELATIVE DYNAMICS TIRE LOAD

Parameter Passive systems Fuzzy Controller Reliable Fuzzy Controller

Gq (n0) = 16×10−6 m3 8.3596×10−4 5.2554×10−4 4.9612×10−4

Gq (n0) = 64×10−6 m3 0.0016 0.0010 9.9561×10−4

Gq (n0) = 256×10−6 m3 0.0030 0.0021 0.0020

Gq (n0) = 1024×10−6 m3 0.0067 0.0044 0.0042
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Fig. 7. (a) Responses of body vertical accelerations, (b) Response of active
force.
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Fig. 8. (a) Responses of suspension deflection constraint, (b) Responses of
tire stroke constraint.
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Fig. 9. (a) Responses of body vertical accelerations, (b) Response of active
force.

have all been taken into account to construct the T-S fuzzy

system for the control design objective. Based on the PDC

scheme and stability theory, the reliable fuzzy H∞ performance

analysis condition has been derived for the proposed T-S

fuzzy system presenting the active suspension system with

uncertainty. Then, the reliable fuzzy H∞ controller has been

designed such that the resulting closed-loop T-S fuzzy system

is asymptotically stable with H∞ performance, and simulta-

neously satisfies the constraint suspension performance. A

quarter-vehicle suspension model has been used to validate

the effectiveness of the proposed design method. Simulation

results have clearly demonstrated that the designed reliable

fuzzy controller has the capability of guaranteeing a better

suspension performance under sprung and unsprung mass

variations, actuator delay and fault.
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