RELIABLE GROUP COMMUNICATION IN DISTRIBUTED SYSTEMS
By
SRIVALLIPURANANDAN NAVARATNAM
B.Eng.(Hons.), The University of Madras, 1983

M.A.Sc., The University of British Columbia, 1986

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
October 1987

© Srivallipuranandan Navaratnam, 1987

4 6

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree .at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. | further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of _ COMbuyt Wy Sunu
]

"~ .”* The University of British Columbia
1956 Main Mall

Vancouver, Canada

VveT 1Y3

Date)L,p’ ,0”8%’

DE-6(3/81)

Abstract

This work describes the desigh and implementation details of a reliable
_group communication meché.ni’sm. The mechanism guarantees that messages will
be received by 2_111 the operat?onal members of the group or by none of them
'(atomicity). In _addjtion, the sequence of messages -will be the same at each ’ of
" the reci;;ients (ordér). The message ordering pfoperty can ‘be used to simplify
-distributed database systems and distributed processing algorithms. The proposed
me_chanism continues to operate despite process, host -and con’xmu_nication link

failures (survivability). Survivability is essential in fault-tolerant applications.

il

Table of Contents

Abstract

List of Tables
List of Figures
Acknowledgements

Chapter One
Introduction

1.1 Goal of the Thesis

1.2 Motivation

1.3 Underlying System Model and Assumptions

1.4 General Design Philosophy of the Proposed Group
Communication Mechanism '

1.5 Related Work

1.6 Outline of the Thesis

Chapter Two
Properties of a Reliable Group Communication
Mechanism
2.1 Full Delivery
2.2 Correctness
2.2.1 Order
2.2.2 Atomicity
2.2.3 Survivability
2.3 Outline of the Group Send Primitives
2.4 Chpater Summary

Chapter Three
Design of the Proposed Group Communication
Mechanism
3.1 Primary and Secondary Group Managers
3.2 Design of the Group Send Primitives
3.2.1 Ordered Group Send (OGSEND) Primitive
3.2.2 Unordered Group Send (UGSEND) Primitive
3.3 Failure Detection and Recovery Procedures
3.3.1 Group Member Failure

12

12
13
13
15
16
16
18

20

21
22
22
25
27
28

3.32 Secondary Manager Host Failure
-3.3.3 Primary Manager Host Failure
3.4 New Primary Manager Selection Scheme: An Overview
3.4.1 Succession List Selection Scheme : A Finite State
Model
3.4.1.1 Description of the States
3.5 Network Partition '
3.5.1 Discarding Messages From Different Subgroups
3.5.2 Merging Subgroups : '
3.5.2.1 Detection of “Subgroups
3.52.2 Resolving the Leadership
3.6 Chapter Summary

Chapter Four
Implementation Details and Performance of the
Proposed Group Communication Mechanism
4.1 Group Management
4.1.1 Creating a Group
4.1.2 Registering a Group
4.1.3 Joining a Group
4.1.4 Leaving a Group
4.2 Organization of the Manager Member List
4.3 Group Communication -
4.3.1 Ugsend Implementation
4.3.2 Ogsend Implementation
4.3.3 Detection of Duplicates
4.4 Worker Processes ‘
4.4.1 Courler
4.4.2 Prober
4.43 Vulture v
4.5 Failure Detection and Recovery
4.5.1 Secondary Manager Failure
4.5.2 anary' Manager Failure
4.6 Network Partition
4.7 Performance of the Group Send Primitives
4.8 Chapter Summary

Chapter Five
Conclusions

jv

28
31
33

34
35
38
42
43
43
44
48

50

51
52
52
53
55
55
57
57
58
59
60
61
62
63
63
64
65

-66
67 .

69

71

Bibliography
Appendix A

75
77

4.1

4.2

List of Tables

Elapsed time (milli seconds) for ugsend and ogsénd .

Sending process in the same host as the primary manager.

Elapsed time (milli seconds) for ugsend and ogsend.

Sending process in the same host .as a secondary manager.

vi

68

68

11
1.2
1.3
1.4

2.1

3.1
3.2
3.3
3.4
3.5(a)
3.5(b)
3.5(¢)
3.6

4.1
4.2
4.3

Al
A2
A3
A4
Ab

List of Figures

Distributed database update using group IPC
Single . sender - multiple receivers

Multiple sender - single receiver

Multiple senders - multiple receivers

Happened before relation for ordered delivery
Group manager's message transmission

Vulture process
Prober process

State transition diagram of primary manager selection scheme -

Group view before the network partition

Group view after the network partition

Group view after the network remerge

State transitiori diagram of primary managers reSolving
leadership upon network remergence

Manager member list
Receive buffers
Courier process

V domain of local network-connected machines
Send-receice-reply message transaction

Send operation in V

ReceiveSpecific operation in V

Reply operation in V

vii

® NN W

23
29
30
35
39
40
41

45

56
60
61

77
78
80
82
83

Acknowledgements

I would like to acknowledge my appreciation to both my supervisors Dr. Samuel
Chanson and Dr. Gerald Neufeld, who have given valuable advice and guidance

during the course of this research.
I-would also like to thank Ravi who aided with ideas and critisism.

Encouragement from Mehrnaz and Cindy is gratefully acknowledged.

viii

Chapter One

Introduction
1.1 Goal of the Thesis

This thesis is concerned with the design and implementation of reliable
one-to-many inter process communication (IPC) mechanism for supporting
distributed computations in an environment where -certain typés of failure could
occur. One-to-many IPC (also known as multicast or group communication) refers
to an activity by which a single message may be transferred from one process
to many other processes which may be in the same or different hosts in the
distributed system. The mechanism guarantees that the message will be received
by all the operational receivers or by none of them. It also ensures that the
messages sent from the senders will be delivered in the same order to all the
receivers. The foilowing section describes the motivation behind this work by
bringing out examples where a reliable group communication mechanism such as
the one proposed is necessary. Section 1.3 briefly describes the underlying system
model and the assumptions made in the design of the group communication
mechanism. The design philosophy of the pfoposed group communication
mechanism and a general description of the scheme is given in Section 1.4,
Section 1.5 reviews previous work and highlights their differences from our
proposed mechanism. Section 1.6 concludes this chapter by giving an outline of

the thesis.
1.2 Motivation

One of the promises of distributed computing is a more available

computing system. To achieve this goal it is necessary to replicate computations

and databases at different hosts which allows a computation to continue to run
despite the failures of some of the hosts. In this environment a set of
distributed cooperating processes, possibly residing on different hosts, can be
viewed as a single logical entity called a process group. The individual processes
of a group are sometimes called members of the group. Such an architecture
allows certain critical resources to be maintained on more than one host and be
conveniently shared by client processes with enhanced modularity, performance
ahd reliability [4]. The clients access the members of' the group as a single
logical entity using the group’s logical name. Hence there is a need to
communicate the same information to all members of a group. Thus, many
applications can benefit from a multiple-destination message transport mechanism
‘such as broadcast and multicast. Broadcast is 'the delivery of a message to all
the destination addresses. Multicast is the delivery of a message to some

specified subset of the possible destinations.

Requirement for reliable group communication mechanism arises in
applications that are distributed to achieve parallel processing, resource sharing,
data availability and reliability. For example, consider an application that updates
replicated copies of a distributed database maintained on different hosts as
illustrated in Figure 1.1. In order to perform an update to the database, a
process first requests the database managers (DBMs) on each host to obtain a
lock on the item to be updated. Each DBM will reply with an indication whether
or not the lock is available. Here the set of DBMs can be viewed as a process
group and the request message can be sent to the DBM group. Clearly this
request must be performed reliably in order to assure that all the DBMs will
receive the request message. Once it is confirmed that all the locks are acquired,
a notification containing the update can tﬂén be sent to the DBM group. This

notification must also be reliably delivered to each DBM.

update procaess

Q group IPC

Figure 1.1 Distributed database update using group [PC

In some- app}licati‘ons “where several processes are interacting with the same
' gi'oup, it is required that the meséagés_ sent t;o the group must not bnly be .
delivered to all the membérs but niust . aléo be deliveréd ‘in the same order.
Requiring all the members of a group to receive the fnessages in the same
seqﬁenée is stricter (and thus includes higher overhead) than just requiring them
to obtain all the messages. However this property is useful in distributed
systems. If the members of a g_roup- residing at different hosts receive messages
in diffefent order, they may not arrive at the same state at all, or niay require
additional communications to synchronize their states. Furthermore, message
sequencing can be used to simplify the design of concurrency control and érash

recovery procedures in a distributed database system [3].

1.3 Underlying System Model and Assumptions

The prototype model of the proposed group commnunication mechanism is‘
built on top of the V Kernelf, a distributed operating system running on a
number of SUN workstations in our Distributed Systems ‘Research Laboratory.
These workstations are diskless and connected to a 10 Mbps Ethernet which is a
broadcast network. However, the principles of the proposed mechanism is not

dependent on the underlying kernel or the network.

In the context of our work two types of processes run in each host;
processes responsible for implementing the group communication mechanism and
application processes which make use of the group communication mechanism. We
assume that the application processes may fail but the processes responsible for
implementing the group communication mechanism never fail unless the host
machine itself fails. We also assume that when processes or hosts fail they
simply cease execution without making any malicious action (.e., fail stop) [16].
If the host at which a failed process was executing remains operational, we
assume that this failure is detected by the underlying operating system and that
all the interested parties are notified [14]. On the other hand if the host itself
fails, all the processes executing in it fail and processes at other hosts can
detect this only by timeouts. Furthermore, we assume that the underlying system
provides a reliable one-to-one message transport protocol. In other words, error
detection and correction mechanisms (such as checksum, timeout ‘and
retransmission) exist which guarantee a unicast message to be delivered to it’s

destination free of errors.

In the environment where our proposed group communication mechanism is
built, no information survives host failures. Since hosts are diskless there is no

possible recovery from stable storage. Therefore the case of a process in a host

¥ The semantics of IPC facilities provided by the V Kernel is described in
Appendix A,

receiving a message before host failure and one where the host fails before the
message is delivered to it are indistinguishable. Thus, our group communication
mechanism can only guarantee that all operational members of a group will

receive all the messages in the same order.

1.4 General Design Philosophy of the Proposed Group Communication

Mechanism

The design of the group communication meéchanism should be general and
not dependent on specific characteristics of the .group or functions available from
the underlying network. For example the group may be static or dynamic
depending on whether their membership list may change. The underlying
hardware may or may not support broadcast and multicast facilities. Consider the
case where the underlying hardware supports only a single-destination message
transport mechanism (unicast). In this case, delivery of a message to the group
can be achieved only by maintaining the list of members in the group, and
sending the message to individual members using one-to-one IPCs. However if the
underlying hardware supports broadcast and multicast then the members of a
group can subscribe to a particular multicast address. A message intended for
the group can be sent to this address and only those hosts where one or more

members of this group reside will read the message.

Broadcast networks such as Ethernet gives the impression that they
provide reliable delivery in the hardware; but in reality they do not. Messages
transmitted in these networks are available to all the receivers, but some or all
of the receivers may lose messages. Some examples [15] of how this may
happen are given below:

1. The buffer memory might be full when a message arrives at the interface

unit.

2. The interface unit might not be monitoring the network at the time the
message is delivered.
3. In a contention network, an undetected collision that affects only certain

network interface units could cause them to miss a message.

Unlike the reliable transport of the wunicast packet where the sender can
retransmit the message packet until the receiver acknowledges, it is hard to
support reliable transport of multicast packets unless the number and identity of
the group members are known. If the membership list is. maintained, then the
message can be multicast to the members in a datagram fashion first and
ﬁlembers whose acknowledgements are not received within a fixed time interval

can be sent the message again on a one-to-one basis.

Thus, for reliable delivery of messages to all members of a group, some
coordination méchanisms are needed to maintain the group membership list. For
the static group where the group membership never changes, the coordination
mechanism can ‘be built into the underlying system. However for the dynamic
group where members may join or exit at any time, a group manager is
necessary to maintain the membership list. However, this scheme will be render
ineffective if the host where the group manager is executing fails. One solution
to this problem is to replicate the group‘ manager at all member sites and selectv
a new group manager among these replicas in case of failures. Thus, a group
will have one primary group manager (or simply primary manager) and zero or
more secondary managers. Mechanisms for selecting the primary manager include

token scheme [3], succession list [10] and election [12].

In addition to reliable delivery of messages to all members of the grouf),.

the group communication mechanism must also ensure that messages are

delivered in the same order: to all the members. In a system with a single
sender and many receivers, sequencing messages to all _of the receivers is trivial.l
If the sender initiates the - next irndticast transmission only after confirming that
the ﬁx'evioﬁs multicast message has been received by all the members, then the
“messages will be’ delivered in the same order. This is illustrateci in Figure 1.2.
'On the other hand, in a system with .many senders and a single receiver - the
rfxessages will be delivered to the rééeiver in the order in which they arrive at
the receiver’s host. Ordering in this case is é non-problem as illustrated in

Figure 1.3.

y msg 1
s msg 3

Nz
3
4
N

Figure 1.3 Multiple senders - single receiver

msg 1
N

Figure 1.4 Multiple senders - multiple receivers

In general, grbup communication fnechanism must operate .between many
ser_lders and many receivers. In such a system, .a message sent from a- sender
may arrive at a destination before the arrival of a message ‘fx"'q‘m another
sénder; however this order may be reversed at another destination.” A solution [4]
to order messé’ges in such a system is to make it appe:/:lr as a combination of
two simple sysbems, one with many senders and a single receiver,. the other
with a single sender and many receivers. .Tﬁerefore the senders will send their
messages to a single receiver which then tr;an_‘smits the messages to the rest of
the receivers in an orderly fashion. Thus, the single_ receiver acts as a funnel
process as shown 'in Figure 1.4. This idea can be incdbrporated into our design
without any additional | cost because the group managers which we use to
guarantee reliable delivery can be used as the funnel processes as well. Thus in
our scheme, the ser;ders will send the messages intended for a particular group
to it’s primary manager which will then reliably and orderly transmit them to

the members of this group.

1.5 Related Work

Although group communication has received considerable attention
[1,3,4,7,8,9], only a few distributed systems have actually implemented such
facilities. We have chosen to look at four such projects which we consider

relevant to our work.

V system [7] deﬁnes reliable group communication to mean ‘that at least
one member of the group receives the message and replies to it. Each host has
information only about local members of the groups. This information includes the
identifiers of the local members and their group addresses. So when messages
are sent to a group address, hosts where members of this group are executing
will receive it and deliver it to the members. The underlying kernel will
retransmit the packet until at least one of the members of the group
~acknowledges the message. Therefore the V Kernel supports a very basic group
communication mechanism to transport a message to mutiple processes; additional

properties such as reliability and order have to be built on top of it.

Cristian et al. [8] proposed a protocol for the reliable and ordered delivery
of a message to all hosts in a distributed system (i.e., broadcast) whereas our
focus is on the delivery of a message to a set of processes, several (or all) of
which could reside on a single host. Their protocol is based on a simple
information diffusion technique. A sender sends a message on all it’s (outgoing)
links and when a new message is received on some (incoming) links by a host,
it forwards that message on all other (outgoing) links. After the reception of the
message at a host, it’s delivery is delayed for a period of time determined by
the intersite message delivery latency. The messages are tirﬁe stamped to enable
order delivery and to detect duplicates. The performance of this protocol is

dependent on the accuracy with which the clocks are synchronized and the

10

operating system’s task scheduling mechanism which is responsible for scheduling

the relay task which relays an incoming message to the adjacent hosts.

Chang et al. [2] proposed a protocol which, like Cristian’s work, is
responsible for the delivery of a message to all the hosts in the distributed
system. However their philosophy is éimilar to our’s where the rhessages are
funneled through a coordinator called token host. Senders send their messages to
the token host which. then transmits the message to the rest of the hosts. The
protocol places the responsibility on the receiver hosts for reliable delivery. The
token host sequences the messages and transmits them to the rest of the hosts
in a datagram fashion. If a host misses a sequence number then it sends the
token host a negative acknowledgement for »the missing message. The token host

is rotated among the operational hosts to provide reliability and resilency.

Birman’s ISIS system [1] supports reliable group communication mechanism
similar to our’s. However, to ensure the order property, the messages are not
funneled through a coordinator, instead a two-phase protocol is used. The protocol
maintains a set of priority queues for each member, one for each stream of
messages, in which it bufférs messages before placing them on the delivery
queue. When a message is received by a member, it temporarily assigns this
message an integer priority value larger than the priority value of any message
that was placed in the priority queue corresponding to the message’s stream.
Each member sends back this priority value to the sender. The sender collects-
all the replies and computes the maximum value of all the priorities received. It
sends this value back to the recipients which assign this priority to the new
message and place it on the priority queue. The messages are then transferred
from the priority queue to the delivery queue in order of increasing priority.

This guarantees order. However, the sender has to reliably communicate with the

11
members twice before the message is delivered.

All the above works make the same assumptions as outlined in Section
1.3. In addition to these, they also assume that the underlying network‘ never
bartitions. We do not make such an assumption. In our scheme if the network
partitions resulting in subgroups of sites, communication withinb these subgroups
remains possible. When the networks remerge agaiﬁ, the proposed mechanism

merges these subgroups to form a single group.
1.6 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter Two examines the
properties of reliable group communication mechanism. Issues related to reliability,
namely, availability, order, atomicity and survivability as applicable to our group
communication mechanism are also discussed. In Chapter Three we describe our
group communication mechanism in detail and discuss how the scheme works in
the presence of failures. Chapter Four describes the implementation details and

the performance of the proposed mechanism. Chapter Five concludes this work.

12

Chapter Two

Properties of a Reliable Group Communication Mechanism

An important property ‘of group communication mechanisms is reliability.
Many researchers use the term reliability to mean full delivery of the message,
i.e., assuming the sender does not fail in the middle of transmission, messages
are delivered to all members of the group [4,7]. However, in this thesis, we
consider a group communication mechanism reliable only if it satisfies the two
aspects of reliability: full delivery and correctness. Issues related to correctness
are order, atomicity and survivability., The order property guarantees that
messages sent from all the senders are delivered in the same order to all
operational members of the group. Atomicity ensures that every message
transmitted by a sender is either delivered to all operational membersb of the
group or to none of them. Survivability is a measure of how well the
mechanism is able to tolerate and recover from failures. The following section
briefly discusses the concept of full delivery and in Section 2.2, issues related to
‘the correctness of the group communication mechanism in a distributed system
running on a cluster of diskless workstations are discussed. Section 2.3 outlines
the group send primitive_s provided by the proposed group communication
mechanism which satisfies the above properties. Section 2.4 concludes this

chapter.
2.1 Full Delivery

Full delivery ensures that a message sent to a group will be delivered to
all operational members provided the sender does not fail in the middle of the
transmission. If the underlying network supports broadcast or multicast facilities
then one way to implement full delivery is for the sender to broadcast the

message to the group first in a datagram fashion and later transmit the

13

message individually to the members which- did not receive the message the first
time wusing one-to-one FIPC._ However, if the underlying network supports only
unicast then the sender may adopt the brute-force method of sending the
message to each member individually using‘ one-to-one IPC. Therefore as long as
the underlying system supports one-to-one IPC which guarantees reliable delivery
of a message to it’s destination, the group communication mechanism can ensure

the full delivery property.
2.2 Correctness

In addition to full delivery, we also attempt to ensure the correctness of
the proposed group communication mechanism. In this section we will discuss the

issues related to the correctness property.
2.2.1 Order

" In a distributed system where processes coordinate their actions by sending
messages to one another and do not use a global clock for synchronization,
events can only be ‘ partially ordered in terms of the happened before relation
[13]. If we assume that sending or receiving a message is an event in a

process then we can define the happened before relation denoted by -> as

follows.

1. If p and q are events in the same process and if p occurs before q, then
p->q.

2. If event p corresponds to sending a message by one process and event b

corresponds to receiving the same message by another process, then p->gq.
3. If p->q and g->r then p->r. Two distinct events p and q are concurrent

if p->q and g->p.

14

Another way of viewing the deﬁniljzion ‘of happened before is to say that p->q -
means that it is possible fori' event p to causally affect event q [13].. Consider
an event b corresponding to sending a message B to a group G. Let b’ be an
event of sending a message B; to the same grt;up G. If the two events are
initiated by the same process and if b occurs before b’ then b->b’. Therefore all
‘the members of the group 'ivili receive the messages B and B’ in the sgme'

o»rder: ‘B ﬁrstﬂ and B’ second.

Howe\lrer if the events b and b’ are initiated by two different sources S
and S’ fespectively, one cannot causally relate the events b and b’ in general
unless both sources send their messages to a single receiver R, which then
transmits them to the members. Thus .using _the above example, assume that C
is the event corréspondin_g to R tre;nsmittiﬁg the f“mess,age‘ B to the vv;nembers of
" the group after it has received it from souf&e S. The happened vbefore relation
denoting this actipn is givén by b-Sc. Similarly, if ;:’ is thé event of R sending
" the message B’ th the group members after kR has received it from -source S,

then b’->c’. Since events ¢ and ¢’ occur in the same process R, and R can only

time

S R

Figure 2.1 Happened before relation for ordered delivery

15

send a message at a time, evenps ¢ and ¢’ cannot occur simultaneously. If c->¢’
then b->b’ elée if ¢->c then b’->b. The happened before relation c->c’ is
illustrated in Figure 2.1. Thus, by using a single receiver to first receive the
' messagesb from the sources and then transmitting to the members, one cé.h
guarantee that the messages will be delivered to the members in the same

order.

For some applications it is not sufficent that messages from different
senders are received in the same order but it is also necessary that this order
be the same as some predetermined one. Birman [1] gives a following example
of such a condition. Consider a process p which instructs a group of devices
with the message "place wine bottlés under taps" and process g that orders the
same group of devices with the message "open taps". Clearly, it is | impoftant
that the first message be delivered to all members of the group before the
second one. One way this can be implemented in a distributed system that does
not use a global clock for synchronization is to require the process p to send a
message to process q after the wine bottles have indeed been placed under the
taps. This message causally relates the group message from p to that from q.
Our proposed group -communication mechanism does not provide this facility which

is left to the application programs.
2.2.2 Atomicity

Atomicity ensures that every message sent to a group is either delivered
to all operational members of the group or to none of them. It is important to
distinguish the difference beﬁween full delivery and atomicity. Full delivery
ensures the delivery of messages to all members as long as thé sender -does not
fail during the message transmission. However if the sender fails in the middle

of the message transmission, it is possible that some of the members have not

16

received the message resulting in a partial delivery. Partial delivery is harmful
in many applications. Consider an applicationv using the group communication
‘mechanism to implement a replicated file service. Here, all the file servers will
belong to a group and updates are sent to this group wusing the group
communication mechanism. If an update is not delivered to any of thg file
servers, the files at the servers will sti.ll be consistent with one another.
However, if an update is delivered only to some file servers then some files will
be updated while others are not, resulting in inconsistencies. Therefore if a
message is delivered to at least one operational member of a group then the
group communication méchanism must make sure that this message will be
delivered to the rest of the operational members as well. Atomicity property

guarantees such an action.
2.2.3 Survivability

Survivability guarantees continuous operation despite failures. In the
proposed group communication mechanism, the failure of the primary manager in
the middle of a message transmission will result in a partial delivery. In order
to survive such failures, the primary manager is Areplicated in all the member
sites. In case the primary manager fails, a new primary manager is selected
from among these replicas‘ using some selection mechanism. The new primary
manager must finish any incomplete message transmission initiated by the failed
primary manager before resuming normal operation. Failures may occur during
the selection of new primary manager, and the network may partition. The
survivability property must ensure that the group communication mechanism will
survive any such failures and still provide order and atomicity to message

transmission.

2.3 Outline of the Group Send Primitives

17

In this section, we first summarize the properties of the proposed group
communication mechanism and outline the two primitives provided by the

proposed mchanism.

Our reliable group communication mechanism satisfies the following
properties.

1. A message sent to a group must be delivered to all operational members
of the group or to none of them.

2, If message B is sent to a group before message B’ by the same sender,
then if B’ is received, B is also received.

3. If two messages B and B’ are sent by the sarﬁe sender to the same
groui), then the messages are received by the members of the group in the
same order as they were initiated.

4, If two messages B and B’ are sent by two different senders to the same
group then the messages are received by all the members of the group in

the same order, either B first and B’ or B’ first and B.

Although the last property 1is essential in many applications, some
applications do not require an order to be enforced between two messages as the
outcome of one may not causally affect the other. For example, consider a
computation which updates copies of two different varigbles V1l and V2
maintained by the members of a group. Assume message B broadcast from a
source in the computation is responsible for updating V1 and B’ from another
source in the same computation is responsible for updating V2. In such a
scenario it is not necessary that both messages be received by the members of
the group in the same order as updating the variable V1 does not have any
effect on V2 and vice versa. The only requirement here is that all members

must receive the updates or none of them should receive the updates.

18

Since the overhead in enforcing the order property is non-trivial, our group
communication mechanism provides two primiﬁves. One guarantees delivery of the
messages in the same order to all members of a group "and the other
guarantees only atomicity, but messages may be delivered in some arbitary order.
The former type of message transmission is known as OGSEND 4(Ordered Group
Send). OGSEND messages will be delivered in the same order to all members of
a group or to none of them. OGSEND message transmission is initiated by
invoking og;end(msg, gid, msgtype) where msg is a pointer to the message to be
transmitted and gid is the identifier of the group to which the members belong.
The second type of transmission UGSEND (Unordered Group Send) does not
guarantee ordered delivery but ensures atomicity. UGSEND message transmission
is initiated by invoking ugsend(msg, gid, msgtype). In both the primitives if the
IMMEDIATE _REPLY_BIT is not set in msgtype, then the process which invokes
these primitives will be unblocked only after the message is delivered to all the
opgrational members of the group. Otherwise, the sending process may be
unblocked before the message is indeed delivered to the members of the group as

explained in Section 3.2.
2.4 Chapter Summary

Properties of a reliable group communication mechanism includes full
delivery and correctness. Full delivery ensures that a message sent to a group
will be delivered to all operational members provided the sender does not fail in
the middle of the transmission. Issues related to correctness are order, atqmicity
and survivability. In the proposed mechanism ordering is achieved by funneling
the messages through a single process. Atomicity guarantees that if the message
is delivered to at least one operational member of a .gToup, then it will be

delivered to the rest of the operational members as well. Survivability ensures

19

continous operation despite host, process and network failures. The proposed
mechanism provides two group send primitives ogsend and ugsend with the

above properties.

20

Chapter Three

Design of the Proposed Group Communication Mechanism

This chapter describes the design philosophy of the proposed group
communication mechanism. We have seen in Chaptér Two that a reliable group
communication mechanism requires some form of coordination to ensure full
delivery and the correctness properties. Thus, in the proposed group
communication mechanism, each group has a primary manager process which
maintains the membership list of the group and also acts as a funnel process

for the messages transmitted to the members of the group.

In order to ensure survivability in case of primary manager failure, the
primary manager is replicated in all the member sites. We call these replicas
secondary managers. These secondary managers do not take part in any group
management activities which are only carried out by the primary manager.
Secondary managers act as backups, so that in case of primary manager failure,
one of the secondary managers will take over as the new primary manager.
Section 3.1 describes the activities of the primary and the secohdary managers
as well as the group state information maintained by them. In Section 3.2, the
design of the group send primitives outlined in Section 2.3 is discussed. Section
3.3 describes the failure detection and recovery procedures for group members,
primary manager and secondary managers. Obviuosly, failure of the primary
manager. is more serious than the failure of the secondary managers. A new
primary manager must be selected from among the sécondary managers. There
are several schemes proposed in the literature to select a leader in an
environment such as ours. Section 3.4 gives an overview of the selection schemes
and presents a new scheme based on finite state model used in our proposed

group communication mechanism. Section 3.5 deals with a different kind of

21
failure, i.e., failure due to network partition. Section 3.6 concludes this Chapter.
3.1 Primary and Secondary Group Managers

Each group has a primary manager and zero or more secondary
managers. When a new group is created, a primary manager for this group is
also created in the same host by the underlying group mechanism. When | a
member from a different host joins the group, and a secondary manager for this
group does not already exist on the joining member’s host, a secondary manager
for this group will also be created on that host. The primary as well as the
secondary managers maiﬁtain the process identifiers (pids) of the members of the
group local to their respective hosts in the local group member list. Also the
primary and secondary manégers maintain the pids of all the managers for the
group in their manager member lists. When a new secondary manager is
created, the primary manager’s manager member _list is copied into the new
secondary manager’s manager member list. The primary manager then updates
it’s manager member list with the pid of the new secondary manager and

informs all the secondary managers of the group to update their lists as well.

When a member joins the group from a host where the primary or a
secondary manager for this group already exists, the pid of the new member is
simply added to the local group member list. Although group membership
information is distributed across all the hosts, the primary and sécondary
managers maintain information about those members of the group executing
locally (i.e., local members). Thus, when a message is sent to a group, the
group communication mechanism must make sure that the message is delivered
to all the group managers each of which will then deliver the message to it’s
local members. This requires less space, less network traffic and reduced code

complexity compared to the case of replicating the entire membership information

22
in the primary manager and in all the secondary managers.
3.2 Design of the Group Send Primitives

This section presents the design details of the group send primitives
ogsend and ugsend (outlined in Section 2.4), which make use of the primary
manager and the secondary managers to provide the reliable properties discussed

in Chapter Two.

3.2.1 Ordered Group Send (OGSEND) Primitive

Messages sent to a group by invoking the ogsend primitive are delivered
in the same order to all members of the group. OGSEND messages to a group
are first received by the primary manager for that group, which will then
sequence the messageé in the order they were received and send them to it's
local members and to the secondary managers of the group. When the secondary
managers receive the message, they deliver it to their local members. After
ensuring that the message is received by -all the secondary managers (.e., after
all the secondary managers acknowledge the receipt of the message), the primary
manager unblocks the sender which has remained blocked after invoking ogsend.
A high level description of the message ftransmission activity of the primary
manager is given in Figure 3.1. The primary manager will receive a new
message for transmission only after it has completed the delivery of the previous
message. Messages arrived at the primary manager’s host while it is not ready
to receive will be queued first-in-first-out (FIFO) in the primary manager’s
message queue by the underlying system. When the primary manager is ready
to receive a message, the underlying system will deliver the first message in the
message queue (if any) to it. Since the message queue is FIFO, messages will.

be delivered to the primary manager in the order they arrive.

23

Type : group manager
Task :sending a group message

FOREVER DO
Begin
Receive (from source)
‘Send (to all members)
Reply (to source)
End o

Figure 3.1 Group fnanager's message_transmission

The method of transmittingk ‘a message from the primary manager to
secondary managers depends on the functionality of the wunderlying network
.architecture. If the network only supports wunicast facility, then the primary
managé'r‘ can send _t_he message to the individual secondary managers using
one-to-one IPC. However, if the network'. also supports’ broadcast facility then the
.messagca- can be first mulficas_t to the group’é secondary managers in a datagram
'fashi"(_)‘n.' "The primary manager then waits for a specific time period for
acknowiédgefnénts. If acknowledgements are not received from some secondary
managers at the expiration of the>‘ time_ inber\;.él, the pri£nary Ar:nanager_ resends
the message to these secondary managers using one-to-one IPC. This allows the
primary manager to exploit the positive acknowledgement and retransmission
properties of the one-to-one IPC for reliable delivery and to determine the failures

described in Section 3.3.

Leg’s assume that it takes an ax'refage of T1 seconds for’ a message from
a primary manager to be delivered to the secondary managers, an average of
T2 secondé for this message to be processed by a secondary manager, and an
average of T3 seconds f'or an acknowledgement from a secondary manager to be
received and processed by the primary manager. Thus, if the group has n

secondary managefs, then it will take (T1 + T2 + nT3) seconds for all the

24

secondary managers to acknowledge for primary manager’s message (assuming no

resends).

If T2 includes the time required by a secondary manager ‘to deliver the
message to it’s local members and to receive their acknowledgements (i.e.,
one-to-one IPC), then” T2 is an application dependent quantity. Thus, if some
local members take a long time to process the sender’s message, then their
secondary manager cannot send an acknowledgement to the primary manager
immediately which in turn cannot unblock the sendef. However, if the sender
wishes that all the members should receive the message before the primary
manager unblocks it, then there is no other alternative .than to wait for the
secondary managers to acknowledge after guaranteeing that the message is

received by all of their local members.

On the other hand, it may be acceptable to unblock the sender after the
secondary managers have received the message without waiting for
acknowledgements from all the group members. Inv this case, the secondary
managers can send acknowledgements to the primary manager without waiting to
deliver the message to their local members. The primary manager then unblocks
the sender. The secondary managers will queue the messages in the delivery
queue for the local members and when the local members are ready to receive,

they can obtain the messages from the delivery queue.

The implementation provides flexibility for the applications to specify which
scheme they prefer using the IMMEDIATE REPLY bit of the msgtype parameter

in ogsend and ugsend primitives.

The mechanism described so far is inadequate to guard against duplicate

messages. For example, acknowledgements for the datagram from some secondary

25

managers may not be received by the prirﬁary manager within the specific time
périod if the message or the acknowledgement is lost. Thus, when the primary
manager resends a message, the secondary managers which did not receive the
message the first time around will be receiving the right messasge. However,
those secondary managers whose acknowledgemeﬁts were lost will be receiving a
duplicate message. Therefore, the group communication mechanism should
incorporate some duplicate detecting scheme. In our proposed mechanism, the
primary and secondary managers use transaction identifiers to detect and
discard duplicate messages. Transaction identifiers are simply integer values. The
primary manager maintains a variable called ogsend-send-seq-no (ossno) which
keeps track of the next OGSEND message’s transaction identifier. When a
OGSEND message transmission is initiated, the primary manager assigns the
ossno to the message and transmits it to the secondary managers. The ossno is
then incremented by one ready to be used with the next OGSEND message. On
the receiving end, the secondary managers maintain a variable called
oésend-receive-seq-no (orsno) to keep track of the transaction identifier of the
next incoming OGSEND message. When an OGSEND message is received by a
secondary manager, the ossno and orsno are compared and depending on their -

values, the message is either delivered to the local members or discarded.

The OGSEND primitive therefore guarantees the delivery of the messages
to all operational members of the group in the same order. Failure detection and
recovery procedures of OGSEND message transmission in the event of primary

manager failure will be discussed in section 3.3.
3.2.2 Unordered Group Send (UGSEND) Primitive

Although many applications require that messages be delivered to all the

members of a group in the same order, some applications do not require such

26

strict ordering with it’s attendant overhead. For these applications, the proposed
group communication mechanism provides a primitive called ugsend. Messages
transmitted by invoking ugsend are guaranteed to be delivered to all the

members of the group but in some arbitary order.

Unlike ordered delivery, unordered delivery does not require that the
messages be funneled through a single receiver. Thus, we hav.e multiple senders
and multiple receivers. If each sender maintains a list of all the receivers’ pids
then évery sender can participate in the message transmission activity. Even
though the messages from senders can be guaran.teed to be delivered to all the

members, they may not be delivered in the same order.

In the proposed group communication mechanism, each secondary manager
has information about the primary manager as weli as all the secondary
managers (manager member list). Thus, every secondary manager can initiate a
message transmission similar to the primary manager’s OGSEND transmission.
For example assume that ¢ is the event corresponding to secondary manager C
transmitting the message M to the- members of the group after it has received
it from sender S. Similarly, ¢’ is the event of secondary manager C’
transmitting the message M’ to the members of the group after C’ has received
it from sender S’. Since events ¢ and ¢’ occur at different processes, it is
possible that both events may occur at the same time. Under such

circumstances, message M will be delivered before message M’ to some members

of the group and in the reverse order to the rest of the members.

Thus, when applications invoke the ugsend primitive to send messages to
a group, the group communication mechanism first checks to see whether there
is a manager for this group available in the sender’s host. If there is, the

message will first be sent to it which will then transmit it to the rest of the

27

managers, each of which in turn deliver the message to thier local members.
However if a local manager does not exist, then the message is sent to the
primary manager for the group which then transmits it to it’s local members

and to the secondary managers for the group.

Similar to OGSEND transmissién, UGSEND transmission ' needs a
mechanism to detect duplicates. In our scheme, when the primary or a secondary
manager for a group transmits a UGSEND message; a ugsend-send-seq-no
(ussno) is assigned to the message. The recipients will have the corresponding
ugsend-receive-seq-no (ursmo). When a manager for the group receives a
UGSEND message, the ussno and wursno are compéred and depending on their

values the message will either be delivered to the local members or discarded.
3.3 Failure Detection and Recovery Procedures

To ensure that the group communication mechanism provides reliable
service, the survivability property must be guaranteed. Survivability is a measure
of how well a system can tolerate and recover from failures. Our discussion in
this section will focus on two aspect';s of failures: process failures and host
failures. We have assumed that application processes such as group members
may fail, but operating system processes such as primary or secondary managers
which are used to implement the group communication mechanism are well
debugged and do not fail unless the host machine itself fails. When the host
fails all the processes in it fail. Therefore host failures are more serious than
process failures. Suppose the host fails while a primary or a secondary manager
executing in it is in the middle of a message transmission, it is possible that
some of the members will not receive the message resulting in a partial
delivery. The following section briefly describes failures of group members. In

Section 3.3.2, failure detection and completion of any incomplete UGSEND

28

message transmission in the event of secondary manager failure will be discussed.

The case of primary manager failure is described in Section 3.3.3.

3.8.1 Group Member Failure

Failure of a group member does not affect group communication activities
in the other opérational group members. Our group communication mechanism
guarantees that all the operational group members of the group will receive the
messages sent to them. The failure of a member is detected when a primary or
a secondary manager tries to deliver a message to the failed member using a
one-to-one IPC (refer to Section 3.2.1). On detecting the failure of one of it’s
local members, the primary or the secondary manager simply removes the failed
member’s pid from it’s local group member list. After the removal, if the local
group member list maintained by a secondary manager becomes empty, then this
manager ceases execution, On the other hand if the primary manager’s list
becomes empty and it’s manager member list is also empty, then the primary

manager ceases execution and the group is considered nonexistent.
3.3.2 Secondary Manager Host Failure

If a secondary manager fails, the primary manager has to detect this and
finish any incomplete UGSEND message transmission initiated by the failed
secondary manager. To detect the failure of secondary managers, the primary
manager has many options. . All these schemes exploit the positive

acknowledgement property of one-to-one IPC to determine process failure.

In one scheme, the primary manager will detect the secondary manager
failure in the next OGSEND or UGSEND message transmission, or a
transmission of a group view update such the creation of a new secondary

manager for the group. When the primary manager tries to send a message to

29

the individual secondary managers using one-to-one IPC, if a secondary manager.
has failed then the underlying system will inform the primary manager that it

is trying to send a message to a nonexistent process (see Appendix A).

Another scheme is to create a wvulture pljoéess to look for the failure of‘
a s."econdary“man‘ag_er. A vulture pijéess» -is a light weight process create;‘l by the
priﬁlary manager at it’s Host. Since ihe propoged @echahism_ is built on top of
the V Kernel, the vulture process takes advantage of the ReceiveSpecific IPC
‘primitive provided by the underlying system to detect secondary manager failures.
A high level description of the vulture process to detect the failure of secondary
manager sm(i) is shown in Figure 3.2. The wvulture wﬂl be received blocked - on
seéoddary fnanager sm(i) as loné as. the latte'r_“does n_o£ send any messages “to
it. However, if sm@) fails, the 'ﬁnderlying "'kernél in »the vulture’é host will
unblocp:k the vulture and potify 1t that it "is trying to récgivé a message from a
nonexistent process (s‘e‘e'- Appéndix A) The vuiture then : ihfor_mé 'th'g primary
mé’nager about j;he, failure of secondary manager sxh(i). F\& phis ‘scheme: to wdr-k,
the primary manager has to create n vﬁltures if t\hére aré n "secbndary

managers in the groi;tp.

Rather than creating a vulture process for each secondary manager, the
primary manager may create a single process. called a prober to probe the

liveliness of it’s - secondary managers. The prober periodically sends probe message

Type : -vulture ' B
Task :detect failure of primary manager {pm)

-Begin ‘
ReceiveSpecific (from pm)
Send ("pm failed” to secondary manager)
End :

Figure 3.2 Vulture process

30

ARE YOU__ALIVE to each sécondary manager. The probe message uses
one-t.o-one IPC’s bo which the secondary managers will reply with I_AM__ ALIVE

messages. If a secondary manager falls then the underlying system will inform
the prober that it is trying to send a message to a nonexistent process and the
' brober will notify the faiiure to thevprimary. manager. A high level description of

the prober process is given in Figure 3.3.

The first scheme may take longer, before the primary manager detects a
secondary manager has failed. This is due to the fact that the primary manager
depends on it'’s next message transmission which may not happen for a long
time to detect the failure. The second scheme is expensive because each
"second_ary manager néeds a separé.te vulture process. The third .option is less
expeﬁsive than the second scheme since only. a single process has to be created
on the primary manager’s | site to detect 'thé failures of .all the_v secondary
: managefs, 'It is also 'faster than the first scheme because it does not depend on
the next message tranéfﬁissibn. >Ourb protbtype 'irnpleméntatioh uses- the third

" scheme.

Typé‘ : ‘prober
Task :detect failure of seoondary managers
FOREVER DO

Begin :
~For i=11to n Do

Send (ARE_YOQU_ALIVE to sm(i))
If reply = I_AM_ALIVE Then
Send (sm(i) failed to primary manager)
. Sleep (for a specified time period)
End ‘
n = number of secondary managers.

Figure 3.3. Prober process

31

Once the failure of a secondary manager is detected, the primary
manager has to delete the failed secondary manager’s pid from it’s manager
member list and inform the rest of the operational secondary managers to do
the same in order to maintain a consistent group view. However, before doing
this, the primary manager must finish any incomplete UGSEND message
transmission initiated by the failed secondary manager. The primary manager
requests all the secondary managers to send to it their last UGSEND message
received. If the returned messages as well as the last message received by the
primary manager have the same transaction identifier value, then the failed
secondary manager has ‘either successfully completed it’s last UGSEND message
transmission activity or no member has received it’s last UGSEND message.
Either of these outcomes assures atomicity. However if there is a discrepancy
among the transaction identifier valuesf, then the primary manager takes the
message with the highest transaction identifier and transmits it to the secondary
managers. Those secondary managers that have already received the message
simply discard the duplicates, but others receive the message and deliver it to
their local members. Once this message retransmission activity is completed, the
primary manager deletes the failed secondary manager’s pid from it’s manager
member list and informs the rest of the operational secondary managers about

the failure.
3.3.3 Primary Manager Host Failure

The primary group manager fails when the host in which it is executing
fails. Primary manager failure is more serious than secondary manager failure. If
the primary manager fails, OGSEND activities cannot be carried out and new

members cannot join the group from a host where a secondary manager for this

ol

i The transaction identifier values will differ by at most one.

32

group does not reside. Also, failure of secondary managers cannot be detected
and incomplete message transmission activities initiated by the failed secondary
managers cannot be finished. Even though the operational secondary managers
-may be able to participate in UGSEND message transmission, one cannot
guarantee atomic delivery. Thus, a group cannot exist without a primary
manager and function correctly for any extended length of time. In order to
provide a continuous group communication m'e'chanisrn, secondary managers must
employ a scheme to detect the failure of the primary manager and select a new
primary manager from among themselves. One possible scheme is the death-will
scheme proposed by Ravindran [14]. In this case we assume that the underlying
Kernel supports facilities for a process to create aliases that may reside in
different address spaces (in the same or different machine) to perform functions
reiated to failure detection and notification on behalf of their creator. Another
scheme is that if the prober method is used by the primary manager to detect
secondary manager failures, the lack of probes for extended period of time will
indicate primary manager failure. However .this scheme requires each secondary
manager to create a timer. Another possible scheme is that each secondary
manager may create a vulture process to look for the failure of the primary
manager. Since the underlying system on which the prototype of the proposed

mechanism is built supports such abstraction, this scheme has been implemented.

Every secondary manager is a potential candidate to become the next
primary manager due to the f'act that each of them has the same global view
of the group and each of them has the capability of detécting primary manager’s
failure. The scheme to select a new primary manager must deal with severai
issues which may arise. For example, there may be inconsistencies due to two
or more secondary managers attempting to become the new primary manager.

Failures may even occur during the selection of the new primary manager itself.

33

Therefore the scheme must guarantee that when the selection is over, the group
must be left with only one primary manager and all the secondary managers
must know the identity of the new primary manager. The following section gives
an overview of several possible selection schemes and in Section 3.4.1, a finite
state model of the selection scheme used in the proposed group communication’

mechanism is presented.
3.4 New Primary Manager Selection Scheme : An Overview

Let ué first examine some of the existing selection schemes which include
token passing [3] and election [10). The token passing scheme is suitable in an
environment where the leadership is rotated among the members even when
there are no failures, as in Chang’s [3] reliable broadcast protocol implementation.
The election scheme is suitable when a new leader is selected only if the old
leader has failed. In the election scheme, each potential candidate does not have
any kvnowledge about other candidates and depends on random timeouts before
proclaiming itself as the new leader. Such a scheme is used in electing a leader
in TEMPO, a distributed clock synchronizer running on UNIX 4.3 BSD systems
(10]. To elect a primary manager we propose a scheme called the succession list
scheme which is simpler than the election scheme. In this scheme each potential
candidate has information about the other candidates. Normally this information is
in the form of én ordered list. For example, the list may be ordered in
increasing value of the candidate’s pids or .ordered by the time at which the
candidates were created. All the candidates agree to select the first (or the last)

candidate in the list as the successor when the leader fails.

In our group communication mechanism each secondary manager has it’s
manager member list ordered by the time they joined the group. Therefore the

pid of the first secondary manager to join the group will be first after the

34

primary manager’s pid in the manager member list, and the pid of the last
secondary manager to join will be last in the list. In case of primary manager
failure, the first operational secondary manager in the list will become the next
primary manager. Based on this, one could prbpose a very simple succession list
scheme where the younger secondary managers will wait until the oldest
secondary manager inform them about the new leadership without running an
agreement protocol among themselves. However, this will not work under certain
circumstances. Suppose the oldest secondary manager also fails immediately after
the primary manager has failed, the secondary manager’s failure will not be
notified to any of the operational secondary managers. In this case, if the
younger secondary managers just wait to hear from ' the oldest‘ secondary
manager without probing it, then they may wait forever. Therefore it is
necessary to run an‘ agreement prqt,ocol among all the operational secondary
managers before a new primary manager is selected. In the next section we use

a finite state model to explain the details of our selection scheme.
3.4.1 Succession List Selection Scheme : A Finite State Model

During their lifetime, secondary managers can be in one of a finite
number of states. Transition from one state to another is caused by the arrival
of a message. A state transition may cause a secondary manager to transmit a
message which triggers subsequent transitions in other secondary managers. It is
important to clarify that in explaining this scheme we focus only on the state of
one secondary manager, say sm(i), and not on the state of the entire distributed
program. Figure 3.4 represents the state diagram for a secondary manager sm(i).
Circles represént states, arrows represent transitions. A transiti(;n occurs upon the
arrival of a message or the occurrence of an event. The event which causes the

transition is shown on the upper part- of the label associated with the arrow.

PMGR_ACTIVE
C‘" CCEF
CANDIDAT
allure of pmgr. CANDIDATE_WT

PMGR_ACCEPT -
from all operhtional smgrs
null

INFORM_STA]
CANDIDATE :
tecovery -of ' plete .

S
PMGR_ACTIVE *

CANDIDATE *

DATE_ACCEPT
n_all operational smgrs
recovery of msgs (if any)

Figure 3.4 State fransition diagram of primary manager
selection scheme

35

The lower part of the label shows the message that is sent at the time of the

transition. An asterisk by a message indicates, that it is a broadcast (i.e., the

message is sent to all the secondary managers). A null label indicates that no

message is sent or received.

3.4.1.1 Description of the States

active :

Normally the primary and the secondary managers of a group will be in the

36
active state.

suspended :

This is a transition state which is reached when secondary manager sm(i) learns
ébout the failure of the primary manager. At this state, sm(i) checks to see if
there are secondary managers in front of it in the manager member list. If so,
it sends a probe message INFORM__STATUS to sm(), the first among the
secondary man‘agers in the list aheé.d of sm(i), If the underlying system informs
sm(i) that sm() is not operational, sm(i) probes the next secondary manager

down the list.

However if sm() replies with the message CANDIDATE to the probe
message, then sm() enters the relax state. On the other hand if smf(i) finds out
that it is the first operational secondary manager in the manager member list,
then it broadcasts the message CANDIDATE to all the secondary managers and

enters the candidate state.

relax :

We have already seen how a secondary manager can reach this state from the
suspended state; A secondary manager can also reach this state from the
active state. For example if there is a delay in learning about the primary
manager’s failure, sm(i) will still be in active state. If it now receives the
message CANDIDATE from sm() which is infront of sm(i) in the list, then smf()
will enter the relax state after sending the reply message
ACCEPT_CANDIDATE to sm(). On entering the relax state, sm(i) notes down.
the candidate’s identifier in it’s last candidate field. Also it informs it’s vulture

process to detect the failure of the primary manager candidate.

37

While sm(i) is in the relax state, the primary manager candidate may
fail. When sm(i) learns about this failure from it’s wvulture it returns to the
suspended state. However if there is a delay in learning about this failure, it
‘may either receive the message INFORM__STATUS or CANDIDATE from some
other primary managers. For example, if smf(i) is the next operational secondary
" manager in the list after the failed candidate, other secondary managers will
probe: it with INFORM__STATUS. On the other hand, the CANDIDATE message
may be received from a secondary manager sm(k) which is the first operational
secondary manager in the manager member list. Sm() in the relax state may
also receive the CANDIDATE message in other circumstances. For instance, it
may have entered the relax state from the suspended state because secondary
manager sm(j) ahead of sm() in the manager member list has replied with the
message CANDIDATE to sm(i)’s INFORM__STATUS probe. If this has happened
before sm(j) broadcasts the message CANDIDATE, then sm{i) will receive the

message CANDIDATE from sm() one more time.

If sm() receives the CANDIDATE message while in the relax state, it
will compare the pids of the last candidate and the sender of the message. If
they are different, then a new candidate has initiated the election. ‘Sm(i) instructs
it’s vulture to look for the failure of the new candidate, notes down the new
candidate’s pid in. it’s last_candidate field, and replies to the new candidate with
the ACCEPT_CANDIDATE message. However if the pids are the same, then
sm() is already monitoring the right candidate and therefore it simply replies

with the ACCEPT__CANDIDATE message.

candidate :
This is the state when a secondary manager declares it’s intention to contend

for the primary manager position. As explained in the suspended state, the first

38

operational secondary manager in the manager member list will reach this state
after broadcasting the CANDIDATE message to all the secondary managers.
Secondary Vmanager sm(i) can also reach this state from the active | state. For.
example, if there is a delay in learning about the failure of the primary
manager, sm() will still be in the active state. While in the active state, if
sm(i) receives an INFORM _STATUS message from secondai‘y managér sm(k)
which is behind it in the manager member list, sm(i) will reply to ém(k) with
the CANDIDATE message. It will then broadcast the CANDIDATE message to
all the secondary managers and enter the candidate state. Secondary manager
sm(i) can also enter the candidate state from the relax state as explained

under relax.

If in the candidate state sm(i) receives an INFORM__STATUS message,
it will reply with the message CANDIDATE. After validating that all the
secondary managers have received it’'s CANDIDATE message and have reached
the relax state (i.e., after receiving CANDIDATE ACCEPT message from all the
operational secondary managers), the primary manager candidate will finish any
incomplete OGSEND or group view message transmissions initiated by the failed
primary manager. The new primary manager will then broadcast the message
PMGR__ACTIVE to all the secondary managers. On receiving that message, the
secondary managers reply with the message PMGR__ACCEPT, update the
manager member list, enter the active state and resume normal operations.
After the new primary manager has received the PMGR__ACCEPT message from
all the operational secondary managers, it creates a prober process and entérs

the active state to resume normal operation.

3.5 Network Partition

39

Wheﬂ the network imrtitions, the system divides into two or more
sﬁbgr-oups of hosts; all but one subgroup will be left without a primary manager.
In our scheme, secondary managers v&ithin a subgroup will select a primarj
manager and continue to function. The proposed _mechanism assures that the
communication witﬁin thgse -subgroups v’vil'll be ordered and atoniic. The difficult

problem is what happens when the partitions: merge again.

For example, consider a’ group with fouf secondary managers as shown in
Figure_‘ 3.5(a). The secondary managers and their hosts are identified by the
numbers 2 through 5 with prim;ary xﬁanager M of the group assigned the
number 1. Assume that t;-he multicast address of this groﬁp is X. The group
view maintained by the prjimary "and All' the secondary managers is theﬁ

[multicast address X; primaiy manager 1; manager member list 1,2,3,4,5].

Consider. now a network partition which separates hosts 4 and 5 from the
rest of the group. As a result, there will be two subgroups: subgroup A
consisting of the primary manager‘ and the secondary- managefs 2 and 3,

subgroﬁp B with secondary ménagers 4 and 5. Since the underlying system in

multicast address X
manager member list 1,2,3,4,5

primary manager M-

Figure 3.5(a) Group view before network partition

40

the primary manager’s ihost cannot distinguish between network‘" partitién and host.
failure, it will inform the prober that secondary managers 4 and 5 have failed.
This results in the removal of secondé.ry managers 4 and § from the manager
member list maintained by the primary manager M and secondary maxiagers 2
and 3. ‘Thus, the QrOQp view in subgroup A will be [multicast address X;.,
primary manager 1.; : manager member list, 1,2,-3].“ On the other hand, >sec.o-1-1dary
managers in subgroup B will be notified by ‘their vultures that the primary
manager has ‘failed and secondary managers 4 and 5 will select a primary
manager among ‘themselves. Assume that secondary manager 4 has been selected
as the primary manager M’ of -subgroup B. The group view in subgroup B is
then [multicast address X; primary manager 4; manager member list 4,5]. This
is .illustrated inv Figuré 3.5(). - As long as the .partitionedb network does not
brenlle»rgé, comrﬁunication within thése subgroupé will .'have_ the same t‘eliable
properties dis'c'ussed in Cha_ptér Two.,

Aft.erA ‘some périod of time, the pértitio'néd ‘network may 'fémerge,, If . the
subgrou;ﬁs “do qot rrierge to form. a ‘single group ,Witi;-\ one .. ﬁriméry ‘anager,

reliable communication cannot be guararit;eed. Consider a -UGSEND activity

multicast address X ‘multicast address X
.manager member list 1,2, 3 manager member list - 4, 5

primary manager M -

©
O ©

Figure 3.5(b) Group view after network partition

primary manager M’

41

initiated by secondary manéger 5 in subgroup B after the network has remerged.
First, this secondary managef multicasts the message to the address X. Then ‘it
wﬂl resend the message to those in subgroup B that failed to receive the
message the first time around. This will guarantee that the UGSEND message
will be received by all the members in subgroup ‘B.- However, the UGSEND
message sent to the multicast address X will also be received by the pfimary
and the secondary managers in subgroup A, as they are 'also listening on ' the

same multicast address.

" The other problem after merging is due to the fact that there are
multiple primary managérs listening on the same multicast address thus confusing
those wishing to interact with .the group as illustrated in Figure 3.5(c). It is
: tﬂerefore nécessary that the 51;l.>groups formed during r;etwork partition shouid
~merge to form a single group with one primary inanagér. Also the primary as
well as all the secondar}'?l lmanag’ers of) this singlé grbup should have the same

group view after the mefge.'

multicast address X multicast address X _
manager member list 1,2, 3 manager member list 4,5

primary manager M

: primary ‘manager .M’

Figure 3.5(c) Group view after network remerge

42

In the follwing section we describe how our scheme handles the messages
initiated by the primary or the secondary managers of one subgroup but received
by the managers belonging to another subgroup. Section 3.5.2 describes how to

merge multiple subgroups after the partitioned network has remerged.
3.5.1 Discarding Messages from Different Subgroups

After the network has partitioned, the communication within the subgroups
will have the reliable properties discussed in Chapter Two. After the network has
remerged, these subgroups will be merged together to form a single group.
However, in the mean time, message. transmission initiated from one subgroup
may be received by the managers belonging to a kdifferent subgroup. This kind of
reception should either be avoided or if it cannot be avoided, the received

messages should be detected and discarded.

A simple scheme to attempt to avoid receiving these messages would be
for each subgroup which selects a new primary manager to choose a new
multicast address. When the primary manager is selected, it chooses a new
multicast address and informs it’s secondary managers about it. For example, in
Figure 3.5(b), subgroup B which selects a new primary manager chooses a new
multicast address X’. Thus the group view maintained by the primary managef‘
M’ and it's secondafy manager 5 will be [multicast address X’; primary manager
4; manager member list 4,5]. If the network remerges, then the message
transmission initiated by the primary or the secondary managers in subgroup B
will never be received by the managers in subgroup A as they will be listening
on multicast address X. One disadvantage of this écheme is that a new
multicast address has to be selected whenever a new primary manager is chosen.
This may happen even when the network is not partitioned (i;e., just a primary

manager failure). Also, there is no guarantee that independently chosen multicast

43

addresses on different partitions are distinct. This will cause problems when the

partitions remerge.

In the proposéd mechanism, we use another scheme where the messages
received by the primary or secondary managers of a subgroup will be discarded
if they were not initiated from within their subgroup. In this scheme when a
manager transmits a message, it specifies it’s primary manager’s identifier in the
message header. Whenever a manager receives a OGSEND or' UGSEND meséage,
it compares it's primary manager’s pid against the primary manager’s pid
specified in the message header. If they are different, the message will be
discarded. For example, if secondary manager 5 transmits a message after the
merger of the partitioned network (but before the merger of the subgroups) to
the multicast address X, even if the primary or secondary manager of subgroup
A receives this message, it will be discarded as the primary manager M of
subgroup A will be different from the primary manager M’ specified in the

message headert.
3.5.2 Merging Subgroups

When a partitioned network merges, the subgroups formed due to this
partition - have to be merged. The primary managers of different subgroups
listening on the same multicast address must detect that more than one pfifnary
manager exists for the same group and reach an agreement as to which should

become the leader.

3.5.2.1 Detection of Subgroups

ES

t Here, we are assuming either the hardware address is used as the identifier
or that new primary manager will be chosen only from those secondary
managers that already exist at the time of network partition. This is the most
likely scenario and will guarantee the primary managers in different subgroups
will have different identifiers.

44

In the proposed mechanism, the prober process periodically broadcasts a
RESOLVE message to the group’s multicast address. This message contains the
primary manager’s pid and are discarded by the secondary managers. Only
primary managers respond to the RESOLVE message. To explain this sgherhe,
consider Figure 3.5(a). When the network is not parfitioned, the prober of
primary manager M will be broadcasting the RESOLVE message which will be
discarded by secondary managers 2 through 5. After network partition (Figure
3.5(b)) there are two subgroupd; one with primary manager M and the other
with primary manager M’. The RESOLVE message broadcast by the probers of
primary managers M and M’ will be discarded by the secondary managers 2
and 3 in subgroup A and secondary manager 5 in sdbgroup B. After the
network remerges, the multicast' address of the two subgroups will still be X. '
Thus, the RESOLVE message of primary manager M may be received by
primary manager M’ and vice versa. When a primary manager receives a
RESOLVE message, it knows that the network has been partitioned and

remerged. It also knows the identity of the other primary manager.
3.5.2.2 Resolving the Leadership

Once a primary manager detects that there exists other primary managers
with the same multicast address, all except one of them has to renounce the
leadership. We will make use of the finite state model shown in Figure 3.6 to
explain the scheme used to resolve the leadership. The scheme works with
merging a pair of primary managers at a time. In explaining this scheme we
df'ocus only on the state of a primary' manager, say pm(). In the figure, circles
represent states, arrows represent‘ transitions. A transition occurs updn the arrival
of a message or the occurence of an event. The event which causes the -

transition is shown on the upper part of the label associated with the arrow.

OUNCE (after timeout)

_AM_NOT_PMGR
MERGE (to the new

MERGE (after timeout)

* as 'soon as a primary manager enfers the mefgung state, it initiates procedure to merge
with the chosen primary managerandbeoomesaseoondarymanagerwhenmemergens
oomplete (see Section 3.52.2)) !

Figure 3.6 State transition diagram of primary managers resolving
leadership upon network remergence

45

The lower part of the label shows the message that is sent at the time of the

transition. A null label indicates that no message is sent or received.

Description of the States

active

Normally pm(i) will be in the active state. If it receives a RESOLVE message

46

in this state from another primary manager, say pm(), it sends a RENOUNCE
message to pm(), notes down the pid of pm() in it’s contender pid field and
enters the resolving state. The RENOUNCE messége also includes the number
of secondary managers in the manager member list of pm(i) and indicates the

intention of the sender to contend for leadership.

Sometimes it is possible that pm() in the active state may receive a
RENOUNCE message from pm() before it receives the RESOLVE me‘s‘sage. When
a primary manager receives a RENOUNCE message, whether it gives up it’s
leadership or not depends on the number of secondary managers in it's manager
member list. In the proposed scheme, the primary manager with the most
number of secondary managers will become the leader. If both contenders have
equal number of secondary managers, then the one with the larger pid will
assume the leadership. Thus, if pm() has less number of secondary managers (or
equal number of secondary managers but smaller pid), ‘then pm(i) will reply with
an ACCEPT_RENOUNCE_REQ message and enters the merging state.
However, if pm(i) has more number of secondary managers (or equal number of
secondary managers but larger pid), then it will reply with a

REJECT _RENOUNCE__REQ message and remains in the active state.

While in the active state, pm(i) may receive a MERGE request from
another manager. Pm(i) simply joins the merging manager in it’s group (see

merging state).

resolving :

We have seen under active how a primary manager enters the resolving state
from the active state after sending a RENOUNCE message to pm(). If it
receives an ACCEPT_RENOUNCE_REQ message from pm() in response to it’s

RENOUNCE message, pm(i) will return to the active state. Pm(i) also returns to

47

the active state if pm() fails. On the other hand if pm() receives a

REJECT _RENOUNCE _REQ message from pm(j), it enters the merging state.

Pm(i) which has entered the resolving state after sending a RENOUNCE
message to pm() may receive a RENOUNCE message. This message may be
from the primary manager pm()T or from 'a third primary manager, say pm(k).
Let us first consider the case of receiving this message from pm{). If pm()
determines that pm() is the eligible contender, then it replies with an
ACCEPT_RENOUNCE__REQ message and enters the merging state. Howe\;er, if
pm(i) finds that pm() is not. the eligible contender then it ‘replies with a

REJECT _RENOUNCE_REQ message and returns to the active state.

If the RENOUNCE message was sent by pm(k), pm(i) will detect this by
comparing it’s contender__pid with the pid of the process sgnding the RENOUNCE
message. This may happen if the network partition had divided the group into
more than two subgroups which subsequently remerged. In this case pm() replies
with a TRY_AGAIN message meaning that pm() is busy resolving the
leadership with another contender and therefore pm(k) should wait and try- again

later.

merging :

The primary manager pm(i) enters this state from the active state or from the
resolving state as explained earlier. While in the merging state, pm() sends a
MERGE request to it's new primary managér who will accept pm(@) as a new
secondary manager in it’s group vand exchange with it new group. view
information (same procedure as the case of a new secondary manager joining the

group - see Section 3.1). It is possible that pm(i) may receive a RENOUNCE

+ It may appear as if there will be a communication dead lock, but this can be
overcome as explained in Section 4.6. '

48

message while in the merging state. In such an event, it replies with a
I_AM__NOT__CONTENDER message which includes the pid of the new primary
manager. The sender of the RENOUNCE message will then try to resolve the

leadership with it’'s new contender.

Also, it is possible that pm() may receive a MERGE request while in the
merging state for which it replies with a I_AM_ NOT_PMGR message. This
message includes the pid of the new primary manager so that the merging

manager may request to merge with the new primary manager.

When pm() sends a MERGE request to a primary manager which is in
' the resolving state, the latter replies with a TRY__AGAIN message and pm(i)
will retransmit the MERGE request after some specified time period. When the
new primary manager receives a MERGE request from a manager it accepts the
merging manager as a new secondary manager in it’s group, i.e., it transfers
the group view information to the merging manager, updates it’s manager
member list with the pid of the merging manager and informs all the secondary

managers of the group to update their lists as well.
3.6 Chapter Summary

The group communication mechanism requires some form of coordination to
realize the reliable properties. In the proposed mechanism each group has a
primar}\r manager to coordinate the group management and communication
activities. In order to ensure survivability in case of primary manager | failure,
the primary manager is replicated in all the member sites and a new primary
manager is selected from among these secondary managers. The secondary
managers do not take part in any group management activities, but may take

¢

part in communication activities when ordering is not a requirement. The prober

49

process executing in the primary manager host detects any secondary manager
fai_lure and notifies the primary manager. The primary manager must finish up
any incomplete message transmission initiated by the failed secondary manager. A
vulture process executing in each of the secondary manager hosts detects primary
manager failure and .noti_ﬁes it’s secondary manager. The secondary managers
then select a new primary manager using a succession list selection scheme.
Network partition may result in subgroups of sites with the same multicast
addrgss. The propbsed mechanism ensures that communication within these
subgroups will continue to exibit the reliable properties. When the partitioned
networks remerge, the proposed mechanism detects the different subgroups and

merges them to form a single group.

50

Chapter Four
Implementation Details of the Proposed Group Communication

Mechanism

This Chapter describes the implementation details 6f’ the proposed groﬁp
communication mechanism and it’s performance. One has basically two choices in
bimplementing the proposed mechanism; either to implement it as part of the
- kernel of | a distributed system or to implement it on top of an existing well
tested kernel. Because of time constraint, and since the primary object ié to test
the feasibility of the proposed rﬁechanism rather than it’s performance, wé have
chosen the second approach. The proposed mechanism is built on top of the V
Dist.ributed' System running on a cluster of vx;orkstations in our Distributed

Systemn Research Laboratory.

In implementing the proposed mechanism-, three major issues have to be
dealt with; group management, group communication, and failure detection and
recovery procedures. .Group management addresses such issues as group creation
and processes joining or leaving a group. Group communication deals with the
issue of transferring a message from a source to all the members of the group
with thé reliable properties discussed in Chapter Two. Failure detection and
recovery is essential for the proposed mechanism to provide continuous service

despite host failures and network partitioning.

The proposed mechanism is structured as a set of cooperating processes;
the primary and secondary managers are examples of such processes. In addition
to these management processes, there are worker processes to help the manager
processes to achieve the desired reliable properties. The wvulture and prober are

two examples of the worker processes.

51

This Chapter describeg the implementation details of the above aspects and
is divided into - the following sections. Section 4.1 describes the implementation
details of group management. In order to manage a _group, it’s manager
processes maintain some group management infbrmation. The manager member
list in which the pids of the primary as well as the secondary managers for the
group are maintained is an important part of the group management information.
Section 4.2 describes the organization of the manager member list. In Section
4.3, implementation details of the group send primitives ugsend() and ogsend()
are described. Section 4.4 describes the details of the worker processes. Failure
detection and recovery kprocedures in the event of host failures and network
partitioning are explained in Sectiéns 4.5 and 4.6 respectively. Performance
evaluation of the group send primitives provided by the proposed mechanism is

given in Section 4.7, and Section 4.8 concludes the Chapter.
4.1 Group Management

The proposed group communication mechanism provides facilities to transfer
a message from a source to a set of processes called a group. Thus, in addition
to communication, the mechanism should provide facilites for the application
processes to create, join, and to leave a group. In order to provide these
functionalities, the hosts which support the proposed group communication
mechanism run a process called the group server. Processes which wish to
create or to join a group invoke the group ‘management stub routines which in

turn send appropriate requests to the group server.

The following section describes the creategroup() routine which is invoked
by a process wishing to create a group. Once a group is created, the group
must be associated with a logical name (i.e., group name) so that processes will

be able to interact with the group wusing this Ilogical name. Section 4.1.2

52

describes the detail of registering a group with the name service. Sections 4.1.3
and 4.1.4 describe the joingroup() and leavegroup() routines invoked by

processes wishing to join or leave a group respectively.
4.1.1 Creating a Group

A new group is dynamically created when a process invokes the
creategroup() routine. This is a » stub routine which sends a CREATE__GROUP
request along with the invoker’s (initial member) pid to the group server. The
group server creates a primary manager for the group and sends this request to
it. The primary manager simply adds the initial member’s pid to the local group
member list. The group server then returns the primary manager’s pid to the

invoker of the creategroup routine.
4.1.2 Registering a Group

In order to make the primary manager available to the processes wishing
to interact with the group, it’s pid should be associated with a logical id. Since
the prototype of our mechanism is built on top of the V Kernel, we make use
of the name service facility provided by the underlying system. In the V Kernel,
when a process wants to associate it’s pid with a logical id, it invokes
SetPid(logical id, pid, scope). If the specified scope is LOCAL, then the pid is
registered locally so that orﬂy processes executing in the same host can obtain
the pid from the name service. On the other hand if the specified scope is
ANY, then the pid is registered globally so that processes exe;:uting in any host

in the network will be able to obtain this pid from the name service.

When a process wants to find out the pid associated with the logical id,
it invokes GetPid(logical id, scope) which returns the pid of the process

registered in the name service using the SetPid routine. If the specified scope is

53

LOCAL, then the name service returns a pid of a process locally registered to
the invoker’s host. Ho§vever, if the scope is ANY, then the name service first
looks for a locally registered process. If one is not found, it broadcasts a request
to other hosts in the network fequesting them to send it the pid associated with

the logical id, vif' there is any.

In order to associate the primary manager of the group with a group
name, the creator of .the group invokes registergroup(groupname, pmgr-pid, type).b
If the specified type is LOCAL, then only processes residing on the same host
as the primary manager will be able to obtain the primary manager’s pid from
the name service. However, if the type is GLOBAL, then processes from any
hosts in the network will be able to obtain the primary manager’s pid from the
name service. Registergfoup is a stub routine which sends a
REGISTER_GROUP request to the primary manager whose pid is specified by
pmgr-pid. The primary manager invokes the SetPid routine to register the group
name in the name service. Normally the primary manager will register with
type GLOBAL unless the group is meant to be a local group only. As described
in the next sectio'n,‘ secondary managers also register with the registergroup

routine, but the type is always LOCAL.
4.1.3 Joining a Group

Processes wishing to join a group first find the group id associated with
the group name and then invokes joingroup(group _id). The group_id returned
by the name service may be the pid of the primary or secondary manager for

that group, depending on the location of the joining process as explained below.

Let us consider the case where a member joins the group from a host

where neither the primary manager nor a secondary manager resides. In this

54

case, the group id returned by the name service will be the primary manager’s
pid (assuming that{ the group has been registered as GLOBAL). After obtaining
the group id, the joining member invokés joingroup routine to join the group.
This is a stub routine which sends a JOIN_GROUP request to the groupserver
along with the group_id and the joining process’ pid. The group server creates a
secondary manager for this group in the joining process’ host and informs the
primary manager (group id) about the new seconadry manager. The primary
manager then transfers it’s group management information to the new secondary
manager which includes the manager member list and the group name. The
primary manager then updates it’s manager member list with the new secondary
manager’s pid and informs all _the_ other secondary ménégers of the group to

update their lists as well.

When a secondary manager receives the group management information, it
associates it’s pid with the received group name and registers in the name
service with LOCAL scope. Thus, later on, when a process residing in the
secondary manager’s host requests the name service for thbe pid associated with

the group name, it will obtain the secondary manager’s pid.

After transferring the group management information to the newly created
secondary manager, the primary manager notifies the group server. The group
server then sends a JOIN__MEMBER requést to the secondary manager along
with the joining process’ pid. The new secondary manager simply adds this pid

to it’s local group member list.

When a member joins the group from a host where a secondary manager
for this group already exists, then the group id specified in the joingroup
routine will be the local secondary manager’s pid. Thus, it is not necessary to

create a new secondary manager in -the joining process’ host. The group server

-,

55

simply sends a JOIN_ MEMBER request to the local secondary manager along
with the joining process’ pid. The local secondary manager adds the new member

to it’s local group member list.
4.1.4 Leaving a Group

A process wishing to leave a group invokes the leavegroup(group _id)
routine. This is a stub routine which sends a LEAVE GROUP request to the
process specified by the group id. This groqp_id corresponds to the pid of either
the primary or a secondary manager for the group depending on the location of
the exiting process as explained in Section 4.1.3. When the primary or a
secondary manager receives the LEAVE GROUP. request along with the exitingA
proﬁess’ pid, it simply deletes the member’s pid from it’s local group member
list. If the exiting process is the only member in the secondary manager’s local
group member list, then the secondary manager sends a NO__LOCAL_MEMBERS
message to the primary manager which deletes this secondary manager from it’s
manager member list and informs all other secondary managers of the group to
do the éame. Finally, the primary manager sends a COMMIT _SUICIDE message
to the memberless secondary manager which deletes it’s pid from the name
service and ceases execution. However, if the leaving process is the only member
in ‘the primary manager’s local group member list, it has to make sure that it’s
manager member list is empty before ceasing execution. If the manager member
list is not empty, then the primary manager simply deletes the leaving member’s
pid from it’s local group member list and continues to function. When the

primary manager ceases execution, the group becomes nonexistent.

4.2 Organization of the Manager Member List

56

~ The group management information transferred from the primary manager
to a newly created -sec§ndary manager includes the pids of the primary as well
as all the secondary managers. These pids are maintained in a table called the
manager identifier table. To find a particular manager’s identifier, one can use
that manager’s inana_ger index to index into the manager identifier table. The
manager indices are assigned jby the primary manager. These indices are also
pért of the groﬁp management information transferred to a newly created

secondary manager.

Initially the primary rhanager is assigned manager index 0. The first
secondary manager to join the group will be assigned manager index 1 and the
follo’vﬁng se(;‘orild_ary' manager to join will be assigned maﬁager indgx 2 and so on.
Suppose the secondary mapagér ’vyith - "rﬂanagex_‘ index 1 -faﬂs, the primary
manager makes 'managex; index 1 invalid, and iﬁforms _‘th.e. Qﬁher se'éondary
managers to do the same. Later, manager index 1 may be assigned to 4a new
secondary manager by the primary manager. Manager indices are maintained in

N

a manager index }list' in such a way that the primar& manager’s index will

pido . 1 -+ —» >
invalid 0 3 2 5

d AY
p_l‘ 2 manager index fist
. pid3 . '

invalid
- pidS

U A WN - O

n-1 invalid

invatid

manager identifier table

Figure 4.1 Manager member list

57

always be first in the list and the index of the last 'secondary manager to join
will be at the end of the list. This ordering is essential for the selection scheme
to choose a primary manager in case the old primary manager fails as described
in Section 3.4.1. The manager indentifier table and the manager index list are

together called the manager member list, as illustrated in Figure 4.1,
4.3 Group Communication

This section describes the implementation details of the ogsend and
ugsend primitives used by the applications to transfer a message from a source

to the members of a group.
4.3.1 Ugsend Implementation

Processes send UGSEND type messages by invoking ugsend(msg,
group__id, msgtype) to the members of the group whose group name is
associated with the specified group_id. If the IMMEDIATE REPLY bit is set in
msgtype, then the sender may be unblocked by the group communication
mechanism before the message is delivered to the members of the group.
Otherwise the sender will be unblocked only after the members have received
and acknowledged the message. The specified group id may be either the
~ primary or a secondary manager’s pid depending on the sender’s location.
Ugsend is a stub routine which sends a UGSEND__MSG reQuest embedded with
the message to the specified group_ id. The primary or the secondary manager
which receives this request has two ways to transmit the message to other
managers depending on the underlying network architecture. If it supports only
unicast facility; then the messages are sent on a one-to-one basis to the
individual managers. However, if the underlying network also supports broadcast

facility then the messages can be first multicast to the managers in a datagram

5‘8
fashion and later resent on a one-to-one basis to those who fail to receive the
message the first time around. Since the underlying network aréhite‘cture of our
environment supports the broadeast facility, we use the second scheme. Thus,
when the primary or the secondary manager receives UGSEND __MSG, it first
multicast the message to the rest of the managers. It then waits for a specified
period of time to receive acknowledgements from the recipients. If

acknowledgements are not received from some managers at the expiration of the

time interval, the message is resent to them using one-to-one IPC’s.

On the receiving side, the recipient managers can send acknowledgements
back to the sending manager immediately after receiving the message or only
after delivering the message to their local members depending on whether the
IMMEDIATE__REPLY_BIT is set or not in the (V)pvcode specified in the message

header.
4.3.2 Ogsend Implementation

Messages sent from different sources by invoking the ogsend routine will
be delivered in the same order to all the members of the group. We have seen
in Chapter Two that this ordering can be easily achieved by funneling the
OGSEND messages through a single process. In the proposed mechanism the
primary manager acts as the funnel process. Processes wanting to send OGSEND
messages invoke ogsend(msg, group__id, msgtype). The specified group__id may be
the primary or secondary manager’s pid depending on the sender’s location.
Therefore, the stub routine ogsend has to first find the primary manager’s pid
and then send the message to it for transmission. Thus, it sends a
GET_PMGR__PID requést ‘to the process specified by group__id. Since all the
managers of the group know the pid of the primary manager, this information is

available whatever the specified group_id. Once the primary manager’s pid is

59

obtained, the stub routine sends the OGSEND message to the primary manager
which transmits this message to all the secondary managers in a similar fashion

explained for UGSEND transmission.
4.3.3 Detection of Duplicates

In the UGSEND or OGSEND message transmission, if the the message is
transmitted to the rest of the managers using one-to-one IPC, then the recipients
will not receive duplicate messages. Howevef if the message is multicast first in
datagram fashion and later resent oh a one-to-one basis, then some recipients
may receive duplicate meésages as explained in Section 3.2. This section describes
the implementation details of the duplicate detection scheme; We will describe the
scheme from the UGSEND rﬁessage transmission point of view. Similar technique

is used in OGSEND message transmission.

The primary and ‘the _secondary managers maintain an integer variable
ussno which is the sequence nﬁmber of the next UGSEND message. They also
maintain receive buffers where the last UGSEND message sent by other
managers can be stored. Receive buffers corresponding to a particular manager is
indexed by it’s manager index. Each receive buffer has two flelds: a message
buffer to store the last UGSEND message and an integer variable, ursno, to
keep track of the transaction identifier of the next incoming UGSEND message
sent by the manager whose manager index indexes into this receive buffer as
illustrated in Figure 4.2. When the primary or secondary manager transmits a
UGSEND message, the message header contains the sender’s manager index,
~ussno and the pid of the primary manager for that group. When an UGSEND
message is received by a managef, it first checks the primary manager pid
specified in the message header against it’s primary manager’s pid. If it is

different, then this message must . have been transmitted from a manager

60

0 ursno
msq

1 ursno
msg

n ursno.
msg

OGSEND_INDEX orsno
msg
Figure 4.2 *Receive buffers

belonging to another group .having ‘the same m;xlticast address. This may have
happened _vas' a result of the : underlying . hetﬁvorl;’ paftitioning and rerher'ging._
However, if the ‘message trans_missidn was mltlated within the same gi‘oﬁp; then
‘the receivihg manager compares the ussno specified in the ‘message header. h
ggainst the ursno corresponding to the receive .buffer indexed by the manager
index. If this - is thé expect;edv message frém ‘tthe se‘and,ingv manager' it- will be
accepted else | it will be discarded. Once the primary or secondary manager
apéepts a message, it can reply to the sending manager immédiately if the
IMMI‘EDIATE_.REPLY_BIT" is.. set in the .opcode of’) the message héadef.'

Otherwise it replies only after the message has been delivered to and

acknowledged by it’s local members.

4.4 Worker Processes

61

The primary and éecondary managers are responsible for activities
pertaining to .the group management and the group communication. In order to
improve concurrency whicl'x__." normally improves the performance of a distributed
program,' the manager processes employ some wmjker processes to carry out
some of their tasks. Vultures and probers described in Section 3.3.1 are
e?arr;ples of such pfocesses. In addition - to vthese processes, managers ' employ
c;)uriér processes to carry out the message transmission activities,' aide processes
to- chose a new primary manager in case of primary manager failure, resolver
processes to resolve the leadership - in situations such as when a partitioned
__hetwork remerges. This. section describes the implementation details of these
worker prbcésses. The worker processes share the same address space as their
‘manager_s and thus have read acéess to the group managemenjc ihfdrmation

mainatined by their managers.
4.4.1 Courier

Couriers are responsible for carrying' out the UGSEND and OGSEND
‘message transmission activities on behalf of their rhanagérs. A high level
description of the courier process is illustrated in Figure 4.3. Couriers are created

by the primary and secondary managers when they are initialized. Since the

“ Type . courier _
Task :sending a group message

FOREVER DO
Begin
ReceiveSpecific'(from primary manager)
Send (to all managers) { group send if broad-
cast available}
Reply (to primary manager)
End

Figure 4.3 Courier process

62

primary as well as the secondary managers can take part in the UGSEND
activity, each manager has a UGSEND courier. Also, both primary and
secondary managers have a local courier to help them deliver the messageé to
their local members. In additon to UGSEND activity, the primary manager is
responsible for transmitting OGSEND messages and group management messages.
Thus, the primary manager has an additional OGSEND courier to assist in

transmitting these type of messages.

When the primary or secondary manager receives a message for
transmission, it first checks if the courier appropriate for . handling the
transmission is free. If the courier’s status indicates that it is FREE, then the
message is handed over to it for transmission ‘to ?.ll the managers of the group.
Once the message has been handed over to the courier, it’s status is set to
BUSY. After the message has been delivered to and acknowledged by all the
operational managers for the group, the courier notifies it’'s manager which then
sets the courier’s status to FREE. If the prifnary or secondary manager receives
a message for transmission while the appropriate courier is busy handling the
previous message, then the new message is queued first-in-first-out in the
courier’s message queue. After it completes the message transmission, the courier

picks up the next message from it’s message queue if it is nonempty.
4.4.2 Prober

The prober process is created by the primary manager to probe the
secondary managers of the group to determine if they are still operational. The
prober periodicaily (every 30 seconds in our implementation) sends a probe
messaée ARE_YOU_ALIVE to all the secondary managers in the manager
member list using one-to-one IPC. The operational secondary managers reply with

a I_AM__ALIVE message to this probe. If a secondary manager has failed, then

63

the underlying system will notify the prober that it is trying to send a message
to a nonexistent process. When the prober learns about this failure, it sends a
SMGR__FAILED message to the primary manager along with the failed
secondary manager’s pid.v In addittion to this probing, the ﬁrober is also
responsible for multicasting a RESOLVE message periodically (every two mihutes
in our implementation). This message is necessary to detect whether there are
any other groups listening on the same multicast address which may happen if

the underlying network partitions and remerges as explained in Section 3.5.
4.4.3 Vulture

Each secondary manager for a group employs a vulture to detect the
failure of the primary manager for that group. A high level description of the
vulture process is shown in Figure 3.2. The wvulture process makes use of the
ReceiveSpecific primitive provided by the underlying V Kernel to detect the
failure of the primary manager. Basically the vulture is simply receive blocked
on the primary manager. It will be unblocked only if the primary manager
sends a message to it or if the primary manager fails. In the latter case, the
underlying system informs the vulture that it is trying to receive a message
from a nonexistent process. When the wvulture learns about the primary
manager’s failure, it sends a PMGR__FAILED message to it’s secondary manager
which then takes part in the selection of a new primary manager. After a new
primé.ry manager has been selected, the secondary managers inform their vultures

to look for the failure of the newly selected primary manager.
4.5 Failure Detection and Recovery

This section describes the implementation details of failure detection and

recovery procedures in case of secondary manager failure (4.5.1) and primary

64
manager failure (4.5.2).
4.5.1 Secondary Manager Failure

We have described in Section 4.4.2 how the prober detects the failure of
a secondary manager. If a secondary manager fails in the middle of a UGSEND
rhessage transmiséion, some members may not receive the message. Thus, when
the prober informs the primary manager that a particular secondary manager
has failed, the primary manéger sends a SEND__LAST MSG request to all the
-other operational secondary managers. This message contains the failed secondary
manager’s index. The operational secondary managers which receive this request
send the last UGSEND mess.age received from the faileﬂ secondary manager.
This message is stored in the receive buffer of each operational secondary
manager indexed by the failed secondary’s manager index. If the returned
messages as well as the last UGSEND message received by the primary
manager fro‘m the failed secondary manager have the sé.me ussno, then the
failed secondary manager has either successfully completed it’s last UGSEND
message transmission activity or no member has received it’s last UGSEND
message. Either of these outcomes assures atomicity. However, if there is a
discrepancy among thev ussnos, then the primary manager takes the message
with the highest ussno and retransmits it to the secondary managers. Those
secdndary managers that have already received this message simply discard the
duplicates as. their wursnos will not match the wussno of the retransmitted
message. However, those that have not received the message from the failed

secondary manager receive this message and deliver it to their local members.

After finishing the incomplete UGSEND message transmission, the primary
manager deletes the failed secondary managers’s pid from it’s manager identifier

table and invalidates that secondary’s manager index. This information is also

65
sent to all the operational secondary managers for them to update their lists.
4.5.2 Primary Manager Failure

A group cannot function without a primary manaéer. Thﬁs, when the
primary manager of a group fails, the secondary. managers for that group must
detect this failure and select a new primary manager from among themselves.
We have described in 'Section 4.4.3, how the secondary managers detect the
failure of the primary manager through their vultures, and in Section 3.5 about
the selection scheme used to choose the new primary manager. In order to avoid
possible communication deadlocks, each secondary manager participating in the
election creates an aide process which takes part in the message transmission
activities (pertaining to elction) on behalf of it’s secondary n;xanager. These aide
processes destroy themselves once their task is complete. Once a new primary
manager is chosen, it must finish any incomplete transmission of OGSEND
message or messages initiated by the failed primary manager to inform the
secondary managers of changes in the group view such as a secondary manager

has joined the group or has failed.

When the secondary managers receive these messages, they store them in
a fixed receive buffer indexed by a value called OGSEND_INDEX common to all
managers. OGSEND_INDEX. This index does not change with primary managers.
Thus, when a new primary manager is chosen, it sends the SEND_LAST MSG
request to all the operational secondary managers. This request contains the fixed
OGSEND _INDEX instead of a manager index. The operational secondary
managers then return the last message stored in their receive buffers indexed by
OGSEND__INDEX. If the returned messages as well as the last message
received by the new primary manager have the same ossnos, then this message

has either been successfully delivered to all the secondary managers or to none

66

of them. However, if there is a discrepancy, then the primary manager takes
the message with the highest 0Ssno and resends it to the secondary managers
in é similar fashion explained for secondary manager failure. Once this is
completed, the new primary manager reregisters it’s pid with the name service
with type GLOBAL so that processes executing on other hosts will be able to
obtain it’s pid from the name service. The new primary manager then creates a
prober and an OGSEND c_ourier processes, sets it’s ussno (to be assigned to the
next OGSEND message) to the value of the last ussno plus one, and resumes

normal operation.
4.6 Network Partition

We have seen in Section 3.4 how network partition creates subgroups
with the same multicast address. This causes problems when the partitioned
network remerges. ‘We havé seen in Section 3.5.1 how the primary managers
detect that there are more than one primary manager listening on the same
m‘ulticast address, and in Section 3.5.2 about the leadership resolution scheme
used to resolve the leadership. In order to avoid possible communication
deadlocks, each primary manager participating in the leadership resolution creates
a resolver process which takes ‘part in the message transmission activities

(pertaining to leadership resolution) on behalf of it’s primary manager.

The primary manager which gives up it’s leadership changes it’s type to
SECONDARY and informs the secondary managers in it’s manager member list
about their new primary manager. Each of the secondary managers then change
it’s state to MERGING and send a MERGE request to the new prim:iry
manager. When é primary manager receives a MERGE request from a secondary
manager, it transfers the group view information to _the mérging manager and

adds it’s pid to it’s manager member list. Also, it informs the secondary

67

managers that are already in it’s manager member list to update their lists as
well. Once a secondary manager has merged, it changes it’s state to ACTIVE

and resumes- normal operation.
4.7 Performance of the Group Send Primitives

We have done some preliminary meaeurements on the elapsed time for
the group send primtives ogsend and ugsend. Elapsed time is the length of
time during which a sender remains blocked after invoking an ugsend or ogsend
routine. Elapsed time for these primitives depends on a number of factors,
including the underlying system’s workload, number of secondary managers for
the group, and whether the IMMEDIATE REPLY bit (explained in Section 4.3.1)
is set in msgtype. The elapsed time is also dependent on the speed of the
processor and the type of network interface. For our measurements we used four
16 MHz 68020 based SUN workstations, each connected to a 10Mbs Ethernet

interface with 32 receive buffers.

The measurements were made by performing OGSEND and UGSEND
message transmission N times and dividing the total elapsedb time by N to
obtain a reasonably accurate estimate for a single operation. Table 4.1 gives the
elapsed time for the UGSEND and OGSEND message transmissions as a function
of the size of the remote group members. In this case the process which invokes
the ogsend or ugsend primitives resides in the host where the primary manager

of the group executes.

Table 4.2 is similar to Table 4.1, except that the process which invokes
the primitives resides in a host where a secondary manager for that group
executes. In both cases the receiving managers acknowledge a message only after

the message is delivered to and acknowledged by their local members (i.e.,

68

Table 4.1
No. of members © ugsend - ogsend
8.8 9.5

1

2 19.2 19.9

3 21.2 21.8

4 23.7 24.0
Elapsed time (milli seconds) for ugsend and ogsend.

Sending process in the same host as the primary manager.

Table 4.2: A

No.of members | ugsénd . - ogsend.
. . .
2 19.2° 21.2
3 21.7 224 ,
4 23.2 1 . 251

Elapsed time (milli seconds) for ugsend and ogsend.

Sending process in the same host as a secondary manager.

IMMEDIATE _REPLY bit is off). N is chosen to be 30,000 _,for' both

measurements.

The first observation from these ﬁgﬁres is that the elapsed time for both
primitives doubles when a remote member is added to the group. waever, the
increase in the elapséd time for additional remote members is not very
significant. This behaviour is ﬁnderétandable, because the underlying network is a

broadcast network and the time to transmit a group message to one remote site

69

or multiple remote sites is the same, assuming that the probability of a packet
loss is negligible. This may be a valid assumption since the network interface

has 32 receive buffers which considerably reduces the chances of losing a packet.

The second observation is that the elapsed time for the UGSEND message
transmission is less than that for the OGSEND transmission. However, this
difference is not very significant when the process which invokes these primitives
resides in the same host as the primary manager. The reason is that the
UGSEND message transmission is carried out by either the primary or secondary
'manager for the pgroup executing locally, but the OGSEND message is sent to
the primary manager which may be executing in a host . different from that of

the sending process.
4.8 Chapter Summary

The proposed mechanism is structured into a set of cooperating processes.
bEach host runs a group server process. Processes wishing to create or to join
the group invoke the appropriate group management stub routines which in turn
send appropriate requests to the group server. When a group is created, a
primary manager for that group is created in the initial member’s host. when a
process joins the group from a host where neither .the primary nor secondary
manager for. this group executes, a secondary manager for this group is created
in that host. Both the primary as well as the secondary managers maintain
group management information necessary to coordinate group management and
group communication activities. When a message is sent to a group, the proposed
mechanism makes sure that the message is delivered to all the managers of the
gfoup each of which will then deliver the message to the local members of the
group. In order to improve the concurrency of the manager processes, each of

them employ some worker processes such as couriers, probers -and vultures. Any

70

incomplete message transmission as a result of primary or secondary manager
failure will be detected and completed by the proposed mechanism. Network
partition results in subgroups. Communication within these subgroups will be
ordered and atomic. When the partitioned network remerges, the mechanism
detects this and merges the subgroupé to form a single group. Mesaurements on
the eiapsed time for ogsen& and ugsend indicate that ordered group send has

some overhead compared to unordered group send.

71

Chapter Five

Conclusions

This work describes the design and implementation details of a reliable
éroup communication mechanism. A group communication mechanism is reliable if
it has the two aspects of reliability: full delivery and correctness. In order to
ensure full delivery the sender must know the identities of the members of the
group. If the underlying network supports ‘multicast or broadcast then the
message can be first multicast in a datagram fashion to the recipients and then
retransmitted on a one-to-one basis to those that failed to receive it the first
time around. However, if the underlying network supports only un_icast, then the
message can be sent on a one-to-one basis to the recipients. Issues related to
correctness are atomicity, order and survivability. Atomicity ensures that every
message sent to a group will be delivered to all operational members or to none
of thém. Order guarantees that messages will be delivered in the same sequence
to all the operational members. Survivability assures continuous operation despite

process, host or network failures.

Full delivery does not necessarily guarantee correctness. Partial delivery
may occur if the sender fails in the middle of a transmission. Also, if the group
membership is dynamiec, it is difficult for the sending process to maintain an up
to date membership information. Furthermorve, in a system with multiple senders
and multiple receivers, a message sent from a sender may arrive at a
destination before the arrival of a message from another sender; however this

order may be reversed at another destination. This violates the order prpoerty.

In order to provide the reliable properties transparent to the application
processes, some form of coordination is necessary in the wunderlying group

communication mechanism. If the underlying mechanism provides a process which

72

knows the identities of the group members, the messages from multiple senders
can be funneled through this process thus ensuring full delivery as well as order.
In order to ensure atorﬁicity and survivability in case of the failure of the
funnel process, this process may be replicated at different sites. .In the proposed
mechanism, each group has a primary managér (funnel process) which is
replicated at all member sites (secondary managers). If the primary managef
fails, a new primary manager is selected from among the secondary managers.
The new primary m.;a.nager will finish any incomplete message transmission
initiated by the failed primary manéger. This guarantees atomicity and

survivability. The ordered messgage transmission is called OGSEND.

Both primary and secondary managers maintain fnanager member lists
which contain the pids of all the managers. The manager member list is updated
only by the primary manager. Whenever a secondary manager joins or leaves
the group, the primary manager is notified. The primary manager updates it’s
manager member list and informs the secondary managers to update their lists
as well. Each manager (primary as ;’vell as secondary) also maintains a local
group member list which contains the pids of the members of the group local to
their respective hosts. Each manager is responsible for updating it’s local group
member list. When the primary manager receives a message, it sends the
message to all the secondary managers each of which in turn delivers the
message to their local members. This requires less space, less network traffic
and reduced code complexity than the case of replicating the entire membership

information in the primary and all the secondary managers.

Some applications do not require an ordered delivery but only atomic
delivery. The unordered message transmission is called UGSEND. These messages

need not be funneled through the primary manager. Since all the secondary

73

managers know the picis of all the managers of the group, a UGSEND message
is first sent to a secondary manager for the group residing in the sending
process’ host which then transmits this message to all other managers. If a
secondary manager for the group is not executing in the sending process’ host
then the message is sent to the primary manager which then transmits it to
the rest of the managers. If a secondary manager fails, the primary manager
detects this and finishes any incomplete UGSEND message transmission initiated
by the failed secondary manager. Also, the primary manager deletes this
secondary manager’s pid from it’s manager member list and informs the other

operational secondary managers to update their lists as well.

As mentioned earlier, when the primary manager fails, a new primary
manager is selected from émong the secondary managers. Secondary managers
use a succession list selection scheme to select the new primary manager. In
this scheme the oldest secondary manager forces the younger ones into accepting
it as the new primary manager. This can be easily done in the proposed
mechanism since all the secondary managers have the same manager memberlist

ordered by the time they joined the group.

Network partition creates subgroups with the same multicast address. This
causes problems when the network remerges. However, the proposed mechanism

detects this and merges these subgroups together to form a single group.

Some performance measurements were made on the group send primitives
ogsend and ugsend provided by the proposed group communication mechanism.
From the measurements, one observes that the ordered group send takes more
time to complete than ‘the unordered group send when the sending process does
not reside in the same host as the primary manager. This overhead is due to

the fact that the message has to be funneled through the primary manager

74

residing in a different host, whereas UGSEND messages are sent to the local
secondary manager which then transmits them to the rest of the managers of

the group.

The mechanism has been implemented on the V Kernel running on four
SUN-3/50 workstations interconnected by an Ethernet. The system works as

expected and some performance data have been reported in the thesis.

75

Bibliography

[1].

(21
(3]

(4]

(51.
[6l.
[7].

(8].

[91.

{10].

(11].

K.P.Birman and T.A.Joseph, Reliable Communication in the Presence of
Failufes. ACM Transactions on Computer Systems, Volume 5, Number 1,
February 1987.

J.M.Chang and N.F.Maxemchuk, Reliable Broadcast Protocols. = ACM
Transactions on Computer Systems, Volume 3, Number 1, February 1985.
J.M.Chang and =~ N.F.Maxemchuck, A Broadcast Protocol for Broadcast
Networks. Proceedings of GLOBCOM, Decémber 1983.

S.T.Chanson and K.Ravindran, A Distributed Kernel Model for Reliable Group
Communication. Proceedings of the IEEE-CS Symposium on Realtime
Systems, New Orleans, December 1986.

D.R.Cheriton, The Thoth System: Multi-Process Structuring and Portability.
American Elsevier, NY, 1982.

D.R.Cheriton, The V Kernel: A Software Base for Distributed Systems. IEEE
Software, Volume 1, Number 2, April 1981.

D.R.Cheriton and W.Zwaenepol, Distributed Process Groups in the V Kernel.
ACM Transactions on Corpputer Systems, Volume 3, Number 2, May 1985.
F.Cristian, H.Aghili, R.Strong and D.Dolev, Atomic Broadcast: From Simple
Message Diffusion to Byzantine Agreement. Technical Report RJ 4540(48668),
IBM, October 1984.

A.Frank, L.D.Wittie and' A.J.Bernstein, Group Communication on
Netcomputers. Proceedings of the 4th International Conference on Distributed
Computing Sysﬁems, San Francisco, CA, May 1984,

H.Garcia-Molina, Elections in a Distributed Computing System. IEEE
Transaction on Computers, Volume C-31,. January 1982.

H.Garcia-Molina and A.K.Abbot, Reliable Distributed Database Management.

Technical Report CS-TR-047-86, Department of Computer Science, Princeton

(12].

[13].

[14].

[15].

[16].

76

University, August 1986.

R.Gusella and S.Zatti, An Election Algorithm for a Distributed Clock
Synchronization Program. Proceedings of the 6th IEEE-CS International
Conference on Distributed Computing Systems, Cambridge, MA, May‘1986.
L.Lamport, Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM, Volume 21, Number 7, July 1978.
K.Ravindran and S.T.Chanson, Process Alias_ Based Structuring Techniques for
Distributed Computing Systems. Proceedings of the 6th IEEE-CS Internaﬁonal
Conference on Distributed Computing Systems, Cambridge, MA, May 1986.
F.Schneider, D.Grieé and R.Schlicting, Reliable Broadcast Proto_cols. Science of
Computer Programming, Volume 3, Number 2, March 1984.

D.Skeen, Determining the Last Process to Fail . ACM Transactions on

Computer Systems, Volume 3, Number 1, February 1985.

77

Appendix A
IPC Primitives of V Kernel

This Chapter describes the IPC opéfations provided by the V Kernel which
is used as the underlying system to build the proposed group communicatidn
mechanism _described_ in the thesis. The V Kernel evolved from two previous
| systems - Thoth and Verex [5]. Thé V. Kernel is referred to as. distributed
”because it’s facilities are availablg uniformly anci transpafently across multiple
'machines connected by a loéal network. Thus, it provides ‘the appearence of .a
single kernel interface, for the most part successfully masking the existence of
multiple machines. A connected sét of machines that provides a single V Kernel
program environment and name space is called a V D'omai‘n [6] as depicted in

Figure "A.1..

"The major facilities provided - by b'.the‘ \Y K‘efnel,_ are processes and
communication betwee_h ,procesvses.b In such an} environment, services are offered by
server procésseé while client pfécesses. communicate .with ‘-4‘,S..erVérS USiﬁg the inter
process communication (IPC) ‘primitives to negotiate and receive services. The

sender and receiver of an IPC activity are specified by their process identifiers

-STATION | - STATION 000 -STATION
V Kernel V Kernel vV Kernel |
T I T LOCAL NETWORK
FULE FLE PRINTER
SERVER SERVER SERVER
MACHINE MACHINE |- | MACHINE

Figure A.1 V domain of local network-connected machines.

78

(pids). ‘The most common communication scenario is as follows. A client process
executes a Send operation to transmit a message to a server process and is
suspended. The message eventually causes the serQer’s execution of the Receive
-operation to be completed. The‘ server executes a Reply to send a reply message
to the client. This Send-Receive-Reply activity‘ is referred to as a message
transaction an example of which is shown in Figure A.2. The following section
describes the Send operation in detail. Sections A.2 and A.3 déscribe the Receive
~and Reply operations respectively. While explaining the Send, 'Réceive and Reply ,
- operations, we assume that the processes involved in the communication activities

do not reside on the same host.
"A.1 Send Operation

A process 'wishing to send a rheésage | to another process invokes
Send(msg, pid), where msg is -a pointer to a ‘32 byte message to. be transmitted
to a >pro'<v:¢ss whose id is specified _‘in pid. The précess invoking the Sénd -
primifive is s,uspehd_ed and it resﬁfnes operation .‘when the - reééiver replies or if

the send operation fails.

When the Send primitive is invoked, the sender is suspended. The sender’s

kernel transmits a SEND inter-kernel packet with the message embedded to the.

blocked
CUENT Send '
request reply
msg ' .""59
blocked :
e Recolve Reply
TIME — - —>

“——— message transaction——

Figure A.2 Send - receive - reply message transaction

79

receiver’s kernel. The underlying hardware assures that all the network interfaces
but the one at the desired destination discard the message. When a SEND
packet is received by the receiver’s kernel, it ﬁrst checks for the existence of
the receiver. If the receiver does not exist, the receiver’s kernel replies to the
sender’s kernel with a NON__EXISTENT _PROCESS message. The sender’s kernel
theﬁ unblocks the sender and informs it of the outcome. However, if the receiver
is alive, then the receiver’s kernel queues the message ﬁrst-ih-ﬁrst—out in the

receiver’s message queue.

If the receiver does not reply to the sender within a specified time
period, the sender’s kernel retransmits the SEND packet to the receiver’s kernel.
If the receiver’s kernel finds that there is already an identical SEND packet
queued up in the receiver’s message queue, it discards the incoming packet and
replies with a BREATH__OF LIFE message to the sender’s kernel which resets
it’s retransmission count. If after a number; of retransmissions the sender’s kernel
does not receive any response from the receiver’s kernel, it assumes that the
recéiver’s .site has failed- or the network has partitioned. The sender’s kernel
therefore unblocks the sender and informs it that the Send operation has failed.
Unfortunately the sender’s kernel cannot distinguish between site failure and
network partition unless this information is available in the underlying
communication medium such as in some ring-type networks. Figure A.3 depicts

the Send operation in various scenarios.

By invoking the Send primitive, one can be assured that as long as the
receiver is alive and the network is not partitipned, the message will be
delivered to it’s destination. Also it allows the 'sender to exploit positive
acknowledgement and fetransmission for reliable delivery or determination of

process, host or network failure.

80

. Send invoked

Transmit SEND

Packet . —1 SEND Packet quaved

Timeout, :_

Retransmit Previous SEND Packet already
"SEND Packet in Receiver's queue. Reply with

BREATH_OF LIFE

Reset timer &,: -

rexmit count Recelve invoked

Reply invoked
Time out — Transmit REPLY Pac'ket
Retransmit and save a copy of it

Already replied,

Reply .received — retransmit the

. saved copy
Unblock - Sender L
Discard REPLY E) o .
Packet o , . EF Discard the saved
copy

Figure A.3'.Send operation in. V . .

A.2 Receive Operation

The V XKernel provides two different primitives for receiving messages;
Receive and ReceivéSpeciﬁc. When a process invokes Receive(msg) to obtain a
: 32 byte bm.essage at the l’c)cation'_pointed ;a.t by msg, it may._receive a message
from any prbcess in the domain. The reéeiver’s kernel simply suspends the
receiver until a message arrives .from ‘some sender. On the other ‘hand,
'ReceiveSpeciﬁc(xﬁs_g, pid) is used to obtain a 32 byte message from a process
whose id is specified b& pid. When a process (receiver) invokes ReceiveSpecific to
receive a message from a particular process (sender), the receiver’s kernel

suspends the invoker. It first checks if there is already a SEND packet queued

81

up in the receiver’s message queue from the specified sender. If there is none,
the receiver’s kernel sends a RECEIVE inter-kgrnel packet to the sender’s kernel.
When the RECEIVE packet is received by the sender’s kernel, it checks whether
the sender exists or not. If the sender does not exist, it replies with a
NON__EXISTENT_ _PROCESS message to the receiver’s kernel which in turn
unblocks the receiver and informs it of the outcome. On the other hand if the
sender exists, it’s kernel replies with a BREATH_OF _LIFE message. On
receiving this ‘message, the receiver’s kernel resets it’s retransmission count. If
the receiverfs kernel does not receive a SEND packet from the sender within a
specified time period, it .repeats the ReceiveSpecific procedure again. In case the
sender’s site fails or if the network partitions, the BREATH _OF_LIFE message
from the sender’s kernel will not be received by the receiver’s kernel. Therefore,
after a maximum number of retransmissions the receiver’s kernel unblocks the
receiver and reports that the ReceiveSpecific operation has failed. As in the Send
opefation, the receiver’s kernel cannot distinguish between network partition and

host failures. Figure A.4 illustrates the ReceiveSpecific operation,

By‘ invoking the ReceiveSpecific primitive, a process can detect the failure
of another process or the site on which the process resides. Thus, using the
ReceiveSpecific primitive, the wvulture scheme described in Section 3.3.2 can be

easily implemented.
A.3 Reply Operation

A process may only reply to a process from which it has received a
SEND packet. This is necessary to mainta‘in tight synchronization of the
Send-Receive-Reply activity. When a process (replier) invokes Reply(msg, pid) to
reply with a 32 byte message pointed at by msg to a process specified by pid,

it’s kernel first checks to see whether the replier had already received a SEND

82

- RECEIVER SENDER

RocolvoSpoclflc invoked
 Checks for SEND Packet

Transmit RECEIVE
Packet
RECEIVE Packet received

Recelver Is - alive, reply
with BREATH_OF_LIFE

Reset timer & —
rexmit count

Timeout
Checks for SEND Packet

; —
Retransmit RECEIVE
Packet ,
RECEIVE Packet received
Receiver is afive, reply.
with BREATH OF .LIFE

: Send invoked

Reset timer & ——
. Traosnﬁt SEND Packet

fexmit count
. SEND packet —

received, unblock
Receiver

Figure A.4 ReceiveSpecific operation in V

paéket vfr.omb this proceés. If the re;plier did not receive a‘ SEND packet from the ‘
* specified process, then the Reply operation fails. Othen.vis'e, a REPLY inter-kernel
packet is sent to the spepiﬁed process’ kernel. We have already seen, under the
Send operation, how the sender’s kernel keeps transmitting thev SEND packet
until a REPLY packet is received or timeout, whichever occurs first. After the

REPLY packet has been sent, a copy of it is kept in the replier’s kernel for

83

REPUER SENDER

Reply lnve Retransmit SEND
* Transmit REPLY Packet :
‘Packet and save

a copy of it

..Already replied, Reply received,
retransmit the unblock the Sender
saved copy i

—J Oid discard

Discard the — Roply.

saved copy

Figure A.5 Reply operation in V

sometime. The replier’s kernel retransmits this saved copy in' response to
retransmitted SEND packets; The copy is discarded - after a specified time period.

‘The Reply operation is illustrated in Figure A.5

