
RELIABLE GROUP COMMUNICATION IN DISTRIBUTED SYSTEMS

By

SRIVALLIPURANANDAN NAVARATNAM

B.Eng.(Hons.), The University of Madras, 1983

M.A.Sc, The University of British Columbia, 1986

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

October 1987

© Srivallipuranandan Navaratnam, 1987

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

The University of British Columbia

1956 Main Mall

Vancouver, Canada

V6T 1Y3

Date j C f -

DE-6(3/81)

A b s t r a c t

Th is work describes the design and implementat ion details of a reliable

group communicat ion mechanism. The mechanism guarantees that messages wi l l

be received by a l l the operational members of the group or by none of them

(atomicity). In addit ion, the sequence of messages wi l l be the same at each of

the recipients (order). The message ordering property can be used to s impl i fy

distr ibuted database systems and distr ibuted processing algori thms. The proposed

mechanism continues to operate despite process, host and communicat ion l ink

fai lures (survivabi l i ty). Surv ivab i l i ty is essential i n fault-tolerant applications.

Table of Contents

Abstract ii

List of Tables vi

List of Figures vii

Acknowledgements viii

Chapter One

Introduction l

1.1 Goal of the Thesis 1

1.2 Motivation

1.3 Underlying System Model and Assumptions 3

1.4 General Design Philosophy of the Proposed Group

Communication Mechanism 5

1.5 Related Work 9

1.6 Outline of the Thesis 11

Chapter Two

Properties of a Reliable Group Communication

Mechanism 12

2.1 Full Delivery 12

2.2 Correctness 13

2.2.1 Order 13

2.2.2 Atomicity 15

2.2.3 Survivability 16

2.3 Outline of the Group Send Primitives 16

2.4 Chpater Summary 18

Chapter Three

Design of the Proposed Group Communication

Mechanism 20

3.1 Primary and Secondary Group Managers 21

3.2 Design of the Group Send Primitives 22

3.2.1 Ordered Group Send (OGSEND) Primitive 22

3.2.2 Unordered Group Send (UGSEND) Primitive 25

3.3 Failure Detection and Recovery Procedures 27

3.3.1 Group Member Failure 28

i 1 i

3.3.2 Secondary Manager Host Failure 28

3.3.3 Primary Manager Host Failure 31

3.4 New Primary Manager Selection Scheme : An Overview 33

3.4.1 Succession List Selection Scheme : A Finite State

Model 34

3.4.1.1 Description of the States 35

3.5 Network Partition 38

3.5.1 Discarding Messages From Different Subgroups 42

3.5.2 Merging Subgroups 43

3.5.2.1 Detection of Subgroups 43

3.5.2.2 Resolving the Leadership 44

3.6 Chapter Summary 48

Chapter Four

Implementation Details and Performance of the

Proposed Group Communication Mechanism 50

4.1 Group Management 51

4.1.1 Creating a Group 52

4.1.2 Registering a Group 52

4.1.3 Joining a Group 53

4.1.4 Leaving a Group 55

4.2 Organization of the Manager Member List 55

4.3 Group Communication 57

4.3.1 Ugsend Implementation 57

4.3.2 Ogsend Implementation 58

4.3.3 Detection of Duplicates 59

4.4 Worker Processes 60

4.4.1 Courier 61

4.4.2 Prober 62

4.4.3 Vulture 63

4.5 Failure Detection and Recovery 63

4.5.1 Secondary Manager Failure 64

4.5.2 Primary Manager Failure 65

4.6 Network Partition 66

4.7 Performance of the Group Send Primitives 67

4.8 Chapter Summary 69

Chapter Five

Conclusions 71

i v

Bibliography

Appendix A

List of Tables

Elapsed time (mill! seconds) for ugsend and ogsend.

Sending process ln the same host as the primary manager.

Elapsed time (mllll seconds) for ugsend and ogsend.

Sending process in the same host as a secondary manager.

v i

List of Figures

1.1 Distributed database update using group IPC 3

1.2 Single sender - multiple receivers 7

1.3 Multiple sender - single receiver 7

1.4 Multiple senders - multiple receivers 8

2.1 Happened before relation for ordered delivery 14

3.1 Group manager's message transmission 23

3.2 Vulture process 29

3.3 Prober process 30

3.4 State transition diagram of primary manager selection scheme 35

3.5(a) Group view before the network partition 39

3.5(b) Group view after the network partition 40

3.5(c) Group view after the network remerge 41

3.6 State transition diagram of primary managers resolving

leadership upon network remergence 45

4.1 Manager member list 56

4.2 Receive buffers 60

4.3 Courier process 61

A.I V domain of local network-connected machines 77

A. 2 Send-receice-reply message transaction 78

A. 3 Send operation in V 80

A.4 ReceiveSpecific operation in V 82

A.5 Reply operation in V 83

v i i

Acknowledgements

I would l ike to acknowledge m y appreciation to both m y supervisors D r . Samuel

Chanson and D r . Gera ld Neufe ld , who have given valuable advice and guidance

dur ing the course of this research.

I would also l ike to thank R a v i who aided w i th ideas and cr i t is ism.

Encouragement f rom M e h r n a z and Cindy is grateful ly acknowledged.

vi i i

1

Chapter One

Introduction

1.1 G o a l o f the T h e s i s

This thesis is concerned with the design and implementation of reliable

one-to-many inter process communication (IPC) mechanism for supporting

distributed computations in an environment where certain types of failure could

occur. One-to-many IPC (also known as multicast or group communication) refers

to an activity by which a single message may be transferred from one process

to many other processes which may be in the same or different hosts in the

distributed system. The , mechanism guarantees that the message will be received

by all the operational receivers or by none of them. It also ensures that the

messages sent from the senders will be delivered in the same order to all the

receivers. The following section describes the motivation behind this work by

bringing out examples where a reliable group communication mechanism such as

the one proposed is necessary. Section 1.3 briefly describes the underlying system

model and the assumptions made in the design of the group communication

mechanism. The design philosophy of the proposed group communication

mechanism and a general description of the scheme is given in Section 1.4.

Section 1.5 reviews previous work and highlights their differences from our

proposed mechanism. Section 1.6 concludes this chapter by giving an outline of

the thesis.

1.2 M o t i v a t i o n

One of the promises of distributed computing is a more available

computing system. To achieve this goal it is necessary to replicate computations

2

and databases at different hosts which allows a computation to continue to run

despite the failures of some of the hosts. In this environment a set of

distributed cooperating processes, possibly residing on different hosts, can be

viewed as a single logical entity called a process group. The individual processes

of a group are sometimes called members of the group. Such an architecture

allows certain critical resources to be maintained on more than one host and be

conveniently shared by client processes with enhanced modularity, performance

and reliability [4]. The clients access the members of the group as a single

logical entity using the group's logical name. Hence there is a need to

communicate the same information to all members of a group. Thus, many

applications can benefit from a multiple-destination message transport mechanism

such as broadcast and multicast. Broadcast is the delivery of a message to all

the destination addresses. Multicast is the delivery of a message to some

specified subset of the possible destinations.

Requirement for reliable group communication mechanism arises in

applications that are distributed to achieve parallel processing, resource sharing,

data availability and reliability. For example, consider an application that updates

replicated copies of a distributed database maintained on different hosts as

illustrated in Figure 1.1. In order to perform an update to the database, a

process first requests the database managers (DBMs) on each host to obtain a

lock on the item to be updated. Each DBM will reply with an indication whether

or not the lock is available. Here the set of DBMs can be viewed as a process

group and the request message can be sent to the DBM group. Clearly this

request must be performed reliably in order to assure that all the DBMs will

receive the request message. Once it is confirmed that all the locks are acquired,

a notification containing the update can tlien be sent to the DBM group. This

notification must also be reliably delivered to each DBM.

3

Figure 1.1 Distributed database update using group IPC

In some applications where several processes are interacting w i th the same

group, it is required that the messages sent to the group must not only be

delivered to a l l the members but must also be delivered in the same order.

Requi r ing a l l the members of a group to receive the messages in the same

sequence is stricter (and thus includes higher overhead) than just requir ing them

to obtain al l the messages. However this property is useful in distributed

systems. If the members of a group residing a t different hosts receive messages

in different order, they m a y not arr ive at the same state at a l l , or may require

addit ional communicat ions to synchronize their states. Fur thermore, message

sequencing can be used to s impl i fy the design of concurrency control and crash

recovery procedures in a distr ibuted database system [3].

1.3 Underlying System Model and Assumptions

4

The prototype model of the proposed group commnunication mechanism is

built on top of the V Kernelt, a distributed operating system running on a

number of SUN workstations in our Distributed Systems Research Laboratory.

These workstations are diskless and connected to a 10 Mbps Ethernet which is a

broadcast network. However, the principles of the proposed mechanism is not

dependent on the underlying kernel or the network.

In the context of our work two types of processes run in each host;

processes responsible for implementing the group communication mechanism and

application processes which make use of the group communication mechanism. We

assume that the application processes may fail but the processes responsible for

implementing the group communication mechanism never fail unless the host

machine itself fails. We also assume that when processes or hosts fail they

simply cease execution without making any malicious action (i.e., fail stop) [16].

If the host at which a failed process was executing remains operational, we

assume that this failure is detected by the underlying operating system and that

all the interested parties are notified [14]. On the other hand if the host itself

fails, all the processes executing in it fail and processes at other hosts can

detect this only by timeouts. Furthermore, we assume that the underlying system

provides a reliable one-to-one message transport protocol. In other words, error

detection and correction mechanisms (such as checksum, timeout and

retransmission) exist which guarantee a unicast message to be delivered to it's

destination free of errors.

In the environment where our proposed group communication mechanism is

built, no information survives host failures. Since hosts are diskless there is no

possible recovery from stable storage. Therefore the case of a process in a host

t The semantics of IPC facilities provided by the V Kernel is described in
Appendix A.

5

receiving a message before host failure and one where the host fails before the

message is delivered to it are indistinguishable. Thus, our group communication

mechanism can only guarantee that all operational members of a group will

receive all the messages in the same order.

1.4 General Design Philosophy of the Proposed Group Communication

Mechanism

The design of the group communication mechanism should be general and

not dependent on specific characteristics of the group or functions available from

the underlying network. For example the group may be static or dynamic

depending on whether their membership list may change. The underlying

hardware may or may not support broadcast and multicast facilities. Consider the

case where the underlying hardware supports only a single-destination message

transport mechanism (unicast). In this case, delivery of a message to the group

can be achieved only by maintaining the list of members in the group, and

sending the message to individual members using one-to-one IPCs. However if the

underlying hardware supports broadcast and multicast then the members of a

group can subscribe to a particular multicast address. A message intended for

the group can be sent to this address and only those hosts where one or more

members of this group reside will read the message.

Broadcast networks such as Ethernet gives the impression that they

provide reliable delivery in the hardware; but in reality they do not. Messages

transmitted in these networks are available to all the receivers, but some or all

of the receivers may lose messages. Some examples [15] of how this may

happen are given below:

1. The buffer memory might be full when a message arrives at the interface

unit.

6

2. The interface unit might not be monitoring the network at the time the

message is delivered.

3. In a contention network, an undetected collision that affects only certain

network interface units could cause them to miss a message.

Unlike the reliable transport of the unicast packet where the sender can

retransmit the message packet until the receiver acknowledges, it is hard to

support reliable transport of multicast packets unless the number and identity of

the group members are known. If the membership list is maintained, then the

message can be multicast to the members in a datagram fashion first and

members whose acknowledgements are not received within a fixed time interval

can be sent the message again on a one-to-one basis.

Thus, for reliable delivery of messages to all members of a group, some

coordination mechanisms are needed to maintain the group membership list. For

the static group where the group membership never changes, the coordination

mechanism can be built into the underlying system. However for the dynamic

group where members may join or exit at any time, a group manager is

necessary to maintain the membership list. However, this scheme will be render

ineffective if the host where the group manager is executing fails. One solution

to this problem is to replicate the group manager at all member sites and select

a new group manager among these replicas in case of failures. Thus, a group

will have one primary group manager (or simply primary manager) and zero or

more secondary managers. Mechanisms for selecting the primary manager include

token scheme [3], succession list [10] and election [12].

In addition to reliable delivery of messages to all members of the group,

the group communication mechanism must also ensure that messages are

7

delivered in the same order to all the members. In a system with a single

sender and many receivers, sequencing messages to all of the receivers is trivial.

If the sender initiates the next multicast transmission only after confirming that

the previous multicast message has been received by all the members, then the

messages will be delivered in the same order. This is illustrated in Figure 1.2.

On the other hand, in a system with many senders and a single receiver the

messages will be delivered to the receiver in the order in which they arrive at

the receiver's host. Ordering in this case is a non-problem as illustrated in

Figure 1.3.

msg 1 msg 1 msg 1

Figure 1. 2 Single sender - multiple receivers

Figure 1.3 Multiple senders - single receiver

8

Figure 1.4 Multiple senders - multiple receivers

In general, group communicat ion mechanism must operate between many

senders and many receivers. In such a system, a message sent f rom a sender

m a y arr ive at a destination before the ar r iva l of a message f rom another

sender; however this order m a y be reversed at another dest inat ion. A solution [4]

to order messages in such a sys tem is to make it appear as a combinat ion of

two simple systems, one wi th many senders and a single receiver, the other

w i th a single sender and many receivers. Therefore the senders w i l l send their

messages to a single receiver which then transmits the messages to the rest of

the receivers in an orderly fashion. Thus , the single receiver acts as a funnel

process as shown in Figure 1.4. Th is idea can be incoorporated into our design

without any addit ional cost because the group managers which we use to

guarantee reliable del ivery can be used as the funnel processes as wel l . Thus in

our scheme, the senders wi l l send the messages intended for a par t icu lar group

to it 's pr imary manager which wi l l then reliably and orderly t ransmi t them to

the members of this group.

9

1 .5 Related Work

Although group communication has received considerable attention

[1,3,4,7,8,9], only a few distributed systems have actually implemented such

facilities. We have chosen to look at four such projects which we consider

relevant to our work.

V system [7] defines reliable group communication to mean that at least

one member of the group receives the message and replies to it. Each host has

information only about local members of the groups. This information includes the

identifiers of the local members and their group addresses. So when messages

are sent to a group address, hosts where members of this group are executing

will receive it and deliver it to the members. The underlying kernel will

retransmit the packet until at least one of the members of the group

acknowledges the message. Therefore the V Kernel supports a very basic group

communication mechanism to transport a message to mutiple processes; additional

properties such as reliability and order have to be built on top of it.

Cristian et al. [8] proposed a protocol for the reliable and ordered delivery

of a message to all hosts in a distributed system (i.e., broadcast) whereas our

focus is on the delivery of a message to a set of processes, several (or all) of

which could reside on a single host. Their protocol is based on a simple

information diffusion technique. A sender sends a message on all it's (outgoing)

links and when a new message is received on some (incoming) links by a host,

it forwards that message on all other (outgoing) links. After the reception of the

message at a host, it's delivery is delayed for a period of time determined by

the intersite message delivery latency. The messages are time stamped to enable

order delivery and to detect duplicates. The performance of this protocol is

dependent on the accuracy with which the clocks are synchronized and the

10

operating system's task scheduling mechanism which is responsible for scheduling

the relay task which relays an incoming message to the adjacent hosts.

Chang et al. [2] proposed a protocol which, like Cristian's work, is

responsible for the delivery of a message to all the hosts in the distributed

system. However their philosophy is similar to our's where the messages are

funneled through a coordinator called token host. Senders send their messages to

the token host which then transmits the message to the rest of the hosts. The

protocol places the responsibility on the receiver hosts for reliable delivery. The

token host sequences the messages and transmits them to the rest of the hosts

in a datagram fashion. If a host misses a sequence number then it sends the

token host a negative acknowledgement for the missing message. The token host

is rotated among the operational hosts to provide reliability and resilency.

Birman's ISIS system [1] supports reliable group communication mechanism

similar to our's. However, to ensure the order property, the messages are not

funneled through a coordinator, instead a two-phase protocol is used. The protocol

maintains a set of priority queues for each member, one for each stream of

messages, in which it buffers messages before placing them on the delivery

queue. When a message is received by a member, it temporarily assigns this

message an integer priority value larger than the priority value of any message

that was placed in the priority queue corresponding to the message's stream.

Each member sends back this priority value to the sender. The sender collects

all the replies and computes the maximum value of all the priorities received. It

sends this value back to the recipients which assign this priority to the new

message and place it on the priority queue. The messages are then transferred

from the priority queue to the delivery queue in order of increasing priority.

This guarantees order. However, the sender has to reliably communicate with the

11

members twice before the message is delivered.

All the above works make the same assumptions as outlined in Section

1.3. In addition to these, they also assume that the underlying network never

partitions. We do not make such an assumption. In our scheme if the network

partitions resulting in subgroups of sites, communication within these subgroups

remains possible. When the networks remerge again, the proposed mechanism

merges these subgroups to form a single group.

1.6 O u t l i n e o f t he T h e s i s

The rest of the thesis is organized as follows. Chapter Two examines the

properties of reliable group communication mechanism. Issues related to reliability,

namely, availability, order, atomicity and survivability as applicable to our group

communication mechanism are also discussed. In Chapter Three we describe our

group communication mechanism in detail and discuss how the scheme works in

the presence of failures. Chapter Four describes the implementation details and

the performance of the proposed mechanism. Chapter Five concludes this work.

12

Chapter Two

Properties of a Reliable Group Communication Mechanism

An important property of group communication mechanisms is reliability.

Many researchers use the term reliability to mean full delivery of the message,

i.e., assuming the sender does not fail in the middle of transmission, messages

are delivered to all members of the group [4,7]. However, in this thesis, we

consider a group communication mechanism reliable only if it satisfies the two

aspects of reliability: full delivery and correctness. Issues related to correctness

are order, atomicity and survivability. The order property guarantees that

messages sent from all the senders are delivered in the same order to all

operational members of the group. Atomicity ensures that every message

transmitted by a sender is either delivered to all operational members of the

group or to none of them. Survivability is a measure of how well the

mechanism is able to tolerate and recover from failures. The following section

briefly discusses the concept of full delivery and in Section 2.2, issues related to

the correctness of the group communication mechanism in a distributed system

running on a cluster of diskless workstations are discussed. Section 2.3 outlines

the group send primitives provided by the proposed group communication

mechanism which satisfies the above properties. Section 2.4 concludes this

chapter.

2.1 Full Delivery

Full delivery ensures that a message sent to a group will be delivered to

all operational members provided the sender does not fail in the middle of the

transmission. If the underlying network supports broadcast or multicast facilities

then one way to implement full delivery is for the sender to broadcast the

message to the group first in a datagram fashion and later transmit the

1 3

message individually to the members which did not receive the message the first

time using one-to-one IPC. However, if the underlying network supports only

unicast then the sender may adopt the brute-force method of sending the

message to each member individually using one-to-one IPC. Therefore as long as

the underlying system supports one-to-one IPC which guarantees reliable delivery

of a message to it's destination, the group communication mechanism can ensure

the full delivery property.

2.2 C o r r e c t n e s s

In addition to full delivery, we also attempt to ensure the correctness of

the proposed group communication mechanism. In this section we will discuss the

issues related to the correctness property.

2.2.1 O r d e r

In a distributed system where processes coordinate their actions by sending

messages to one another and do not use a global clock for synchronization,

events can only be partially ordered in terms of the h a p p e n e d be fo re relation

[13]. If we assume that sending or receiving a message is an event in a

process then we can define the h a p p e n e d be fo re relation denoted by -> as

follows.

1. If p and q are events in the same process and if p occurs before q, then

p->q.

2. If event p corresponds to sending a message by one process and event b

corresponds to receiving the same message by another process, then p->q.

3. If p->q and q->r then p->r. Two distinct events p and q are concurrent

if p->q and q->p.

14

Another w a y of v iew ing the definit ion of h a p p e n e d be fo re is to say that p->q

means that it is possible for event p to causal ly affect event q [13]. Consider

an event b corresponding to sending a message B to a group G . Le t b' be an

event of sending a message B ' to the same group G . I f the two events are

init iated by the same process and i f b occurs before b' then b->b \ Therefore al l

the members of the group w i l l receive the messages B and B ' in the same

order: B f i rst and B ' second.

However i f the events b and b' are init iated by two different sources S

and S ' respectively, one cannot causal ly relate the events b and b' in general

unless both sources send their messages to a single receiver R, which then

t ransmits them to the members. Thus us ing the above example, assume that c

is the event corresponding to R t ransmi t t ing the message B to the members of

the group after i t has received it f rom source S . The h a p p e n e d be fo re relation

denoting this action is g iven by b->c. S im i la r l y , i f c' is the event of R sending

the message B ' to the group members after R has received it f rom source S ' ,

then b ' ->c \ Since events c and c ' occur in the same process R, and R can only

Figure 2.1 Happened before relation for ordered delivery

15

send a message at a time, events c and c' cannot occur simultaneously. If c->c'

then b->b' else if c'->c then b'->b. The h a p p e n e d be fo re relation c->c' is

illustrated in Figure 2.1. Thus, by using a single receiver to first receive the

messages from the sources and then transmitting to the members, one can

guarantee that the messages will be delivered to the members in the same

order.

For some applications it is not sufficent that messages from different

senders are received in the same order but it is also necessary that this order

be the same as some predetermined one. Birman [1] gives a following example

of such a condition. Consider a process p which instructs a group of devices

with the message "place wine bottles under taps" and process q that orders the

same group of devices with the message "open taps". Clearly, it is important

that the first message be delivered to all members of the group before the

second one. One way this can be implemented in a distributed system that does

not use a global clock for synchronization is to require the process p to send a

message to process q after the wine bottles have indeed been placed under the

taps. This message causally relates the group message from p to that from q.

Our proposed group communication mechanism does not provide this facility which

is left to the application programs.

2.2.2 A t o m i c i t y

Atomicity ensures that every message sent to a group is either delivered

to all operational members of the group or to none of them. It is important to

distinguish the difference between full delivery and atomicity. Full delivery

ensures the delivery of messages to all members as long as the sender does not

fail during the message transmission. However if the sender fails in the middle

of the message transmission, it is possible that some of the members have not

16

received the message resulting in a partial delivery. Partial delivery is harmful

in many applications. Consider an application using the group communication

mechanism to implement a replicated file service. Here, all the file servers will

belong to a group and updates are sent to this group using the group

communication mechanism. If an update is not delivered to any of the file

servers, the files at the servers will still be consistent with one another.

However, if ah update is delivered only to some file servers then some files will

be updated while others are not, resulting in inconsistencies. Therefore if a

message is delivered to at least one operational member of a group then the

group communication mechanism must make sure that this message will be

delivered to the rest of the operational members as well. Atomicity property

guarantees such an action.

2.2.3 Survivability

Survivability guarantees continuous operation despite failures. In the

proposed group communication mechanism, the failure of the primary manager in

the middle of a message transmission will result in a partial delivery. In order

to survive such failures, the primary manager is replicated in all the member

sites. In case the primary manager fails, a new primary manager is selected

from among these replicas using some selection mechanism. The new primary

manager must finish any incomplete message transmission initiated by the failed

primary manager before resuming normal operation. Failures may occur during

the selection of new primary manager, and the network may partition. The

survivability property must ensure that the group communication mechanism will

survive any such failures and still provide order and atomicity to message

transmission.

2.3 Outline of the Group Send Primitives

17

In this section, we first summarize the properties of the proposed group

communication mechanism and outline the two primitives provided by the

proposed mchanism.

Our reliable group communication mechanism satisfies the following

properties.

1. A message sent to a group must be delivered to all operational members

of the group or to none of them.

2. If message B is sent to a group before message B' by the same sender,

then if B' is received, B is also received.

3. If two messages B and B' are sent by the same sender to the same

group, then the messages are received by the members of the group in the

same order as they were initiated.

4. If two messages B and B' are sent by two different senders to the same

group then the messages are received by all the members of the group in

the same order, either B first and B' or B' first and B.

Although the last property is essential in many applications, some

applications do not require an order to be enforced between two messages as the

outcome of one may not causally affect the other. For example, consider a '

computation which updates copies of two different variables VI and V2

maintained by the members of a group. Assume message B broadcast from a

source in the computation is responsible for updating VI and B' from another

source in the same computation is responsible for updating V2. In such a

scenario it is not necessary that both messages be received by the members of

the group in the same order as updating the variable VI does not have any

effect on V2 and vice versa. The only requirement here is that all members

must receive the updates or none of them should receive the updates.

18

Since the overhead in enforcing the order property is non-trivial, our group

communication mechanism provides two primitives. One guarantees delivery of the

messages in the same order to all members of a group and the other

guarantees only atomicity, but messages may be delivered in some arbitary order.

The former type of message transmission is known as OGSEND (Ordered Group

Send). OGSEND messages will be delivered in the same order to all members of

a group or to none of them. OGSEND message transmission is initiated by

invoking ogsend(msg, gid, msgtype) where msg is a pointer to the message to be

transmitted and gid is the identifier of the group to which the members belong.

The second type of transmission UGSEND (Unordered Group Send) does not

guarantee ordered delivery but ensures atomicity. UGSEND message transmission

is initiated by invoking ugsend(/ns^, gid, msgtype). In both the primitives if the

IMMEDIATE REPLY BIT is not set in msgtype, then the process which invokes

these primitives will be unblocked only after the message is delivered to all the

operational members of the group. Otherwise, the sending process may be

unblocked before the message is indeed delivered to the members of the group as

explained in Section 3.2.

2.4 Chapter Summary

Properties of a reliable group communication mechanism includes full

delivery and correctness. Full delivery ensures that a message sent to a group

will be delivered to all operational members provided the sender does not fail in

the middle of the transmission. Issues related to correctness are order, atomicity

and survivability. In the proposed mechanism ordering is achieved by funneling

the messages through a single process. Atomicity guarantees that if the message

is delivered to at least one operational member of a group, then it will be

delivered to the rest of the operational members as well. Survivability ensures

19

continous operation despite host, process and network failures. The proposed

mechanism provides two group send primitives o g s e n d and u g s e n d with the

above properties.

20

Chapter Three

Design of the Proposed Group Communication Mechanism

This chapter describes the design philosophy of the proposed group

communication mechanism. We have seen in Chapter Two that a reliable group

communication mechanism requires some form of coordination to ensure full

delivery and the correctness properties. Thus, in the proposed group

communication mechanism, each group has a primary manager process which

maintains the membership list of the group and also acts as a funnel process

for the messages transmitted to the members of the group.

In order to ensure survivability in case of primary manager failure, the

primary manager is replicated in all the member sites. We call these replicas

s e c o n d a r y m a n a g e r s . These secondary managers do not take part in any group

management activities which are only carried out by the primary manager.

Secondary managers act as backups, so that in case of primary manager failure,

one of the secondary managers will take over as the new primary manager.

Section 3.1 describes the activities of the primary and the secondary managers

as well as the group state information maintained by them. In Section 3.2, the

design of the group send primitives outlined in Section 2.3 is discussed. Section

3.3 describes the failure detection and recovery procedures for group members,

primary manager and secondary managers. Obviuosly, failure of the primary

manager is more serious than the failure of the secondary managers. A new

primary manager must be selected from among the secondary managers. There

are several schemes proposed in the literature to select a leader in an

environment such as ours. Section 3.4 gives an overview of the selection schemes

and presents a new scheme based on finite state model used in our proposed

group communication mechanism. Section 3.5 deals with a different kind of

21

failure, i.e., failure due to network partition. Section 3.6 concludes this Chapter.

3.1 P r i m a r y a n d S e c o n d a r y G r o u p M a n a g e r s

Each group has a primary manager and zero or more secondary

managers. When a new group is created, a primary manager for this group is

also created in the same host by the underlying group mechanism. When a

member from a different host joins the group, and a secondary manager for this

group does not already exist on the joining member's host, a secondary manager

for this group will also be created on that host. The primary as well as the

secondary managers maintain the process identifiers (pids) of the members of the

group local to their respective hosts in the l o c a l g r o u p m e m b e r l i s t . Also the

primary and secondary managers maintain the pids of all the managers for the

group in their m a n a g e r m e m b e r l i s t s . When a new secondary manager is

created, the primary manager's manager member list is copied into the new

secondary manager's manager member list. The primary manager then updates

it's manager member list with the pid of the new secondary manager and

informs all the secondary managers of the group to update their lists as well.

When a member joins the group from a host where the primary or a

secondary manager for this group already exists, the pid of the new member is

simply added to the local group member list. Although group membership

information is distributed across all the hosts, the primary and secondary

managers maintain information about those members of the group executing

locally (i.e., local members). Thus, when a message is sent to a group, the

group communication mechanism must make sure that the message is delivered

to all the group managers each of which will then deliver the message to it's

local members. This requires less space, less network traffic and reduced code

complexity compared to the case of replicating the entire membership information

22

in the primary manager and in all the secondary managers.

3.2 Design of the Group Send Primitives

This section presents the design details of the group send primitives

ogsend and ugsend (outlined in Section 2.4), which make use of the primary

manager and the secondary managers to provide the reliable properties discussed

in Chapter Two. .

3.2.1 Ordered Group Send (OGSEND) Primitive

Messages sent to a group by invoking the ogsend primitive are delivered

in the same order to all members of the group. OGSEND messages to a group

are first received by the primary manager for that group, which will then

sequence the messages in the order they were received and send them to it's

local members and to the secondary managers of the group. When the secondary

managers receive the message, they deliver it to their local members. After

ensuring that the message is received by all the secondary managers (i.e., after

all the secondary managers acknowledge the receipt of the message), the primary

manager unblocks the sender which has remained blocked after invoking ogsend.

A high level description of the message transmission activity of the primary

manager is given in Figure 3.1. The primary manager will receive a new

message for transmission only after it has completed the delivery of the previous

message. Messages arrived at the primary manager's host while it is not ready

to receive will be queued first-in-first-out (FIFO) in the primary manager's

message queue by the underlying system. When the primary manager is ready

to receive a message, the underlying system will deliver the first message in the

message queue (if any) to it. Since the message queue is FIFO, messages will

be delivered to the primary manager in the order they arrive.

23

Type : group manager

Task : sending a group message

FOREVER DO

Begin

R e c e i v e (from source)

Send (to all members)

Rep l y (to source)

End

Figure 3.1 Group manager's message transmission

The method of transmitting a message from the primary manager to

secondary managers depends on the functionality of the underlying network

architecture. If the network only supports unicast facility, then the primary

manager can send the message to the individual secondary managers using

one-to-one IPC. However, if the network also supports broadcast facility then the

message can be first multicast to the group's secondary managers in a datagram

fashion. The primary manager then waits for a specific time period for

acknowledgements. If acknowledgements are not received from some secondary

managers at the expiration of the time interval, the primary manager resends

the message to these secondary managers using one-to-one IPC. This allows the

primary manager to exploit the positive acknowledgement and retransmission

properties of the one-to-one IPC for reliable delivery and to determine the failures

described in Section 3.3.

Let's assume that it takes an average of T l seconds for a message from

a primary manager to be delivered to the secondary managers, an average of

T2 seconds for this message to be processed by a secondary manager, and an

average of T3 seconds for an acknowledgement from a secondary manager to be

received and processed by the primary manager. Thus, if the group has n

secondary managers, then it will take (Tl + T2 + nT3) seconds for all the

24

secondary managers to acknowledge for primary manager's message (assuming no

resends).

If T2 includes the time required by a secondary manager to deliver the

message to it's local members and to receive their acknowledgements (i.e.,

one-to-one IPC), then T2 is an application dependent quantity. Thus, if some

local members take a long time to process the sender's message, then their

secondary manager cannot send an acknowledgement to the primary manager

immediately which in turn cannot unblock the sender. However, if the sender

wishes that all the members should receive the message before the primary

manager unblocks it, then there is no other alternative than to wait for the

secondary managers to acknowledge after guaranteeing that the message is

received by all of their local members.

On the other hand, it may be acceptable to unblock the sender after the

secondary managers have received the message without waiting for

acknowledgements from all the group members. In this case, the secondary

managers can send acknowledgements to the primary manager without waiting to

deliver the message to their local members. The primary manager then unblocks

the sender. The secondary managers will queue the messages in the delivery

queue for the local members and when the local members are ready to receive,

they can obtain the messages from the delivery queue.

The implementation provides flexibility for the applications to specify which

scheme they prefer using the IMMEDIATE REPLY bit of the msgtype parameter

in ogsend and ugsend primitives.

The mechanism described so far is inadequate to guard against duplicate

messages. For example, acknowledgements for the datagram from some secondary

25

managers may not be received by the primary manager within the specific time

period if the message or the acknowledgement is lost. Thus, when the primary

manager resends a message, the secondary managers which did not receive the

message the first time around will be receiving the right messasge. However,

those secondary managers whose acknowledgements were lost will be receiving a

duplicate message. Therefore, the group communication mechanism should

incorporate some duplicate detecting scheme. In our proposed mechanism, the

primary and secondary managers use t r a n s a c t i o n i den t i f i e r s to detect and

discard duplicate messages. Transaction identifiers are simply integer values. The

primary manager maintains a variable called ogsend-send-seq-no (ossno) which

keeps track of the next OGSEND message's transaction identifier. When a

OGSEND message transmission is initiated, the primary manager assigns the

o s s n o to the message and transmits it to the secondary managers. The o s s n o is

then incremented by one ready to be used with the next OGSEND message. On

the receiving end, the secondary managers maintain a variable called

ogsend-receive-seq-no (orsno) to keep track of the transaction identifier of the

next incoming OGSEND message. When an OGSEND message is received by a

secondary manager, the o s s n o and o r s n o are compared and depending on their

values, the message is either delivered to the local members or discarded.

The OGSEND primitive therefore guarantees the delivery of the messages

to all operational members of the group in the same order. Failure detection and

recovery procedures of OGSEND message transmission in the event of primary

manager failure will be discussed in section 3 . 3 .

3.2.2 U n o r d e r e d G r o u p S e n d (U G S E N D) P r i m i t i v e

Although many applications require that messages be delivered to all the

members of a group in the same order, some applications do not require such

26

strict ordering with it's attendant overhead. For these applications, the proposed

group communication mechanism provides a primitive called u g s e n d . Messages

transmitted by invoking u g s e n d are guaranteed to be delivered to all the

members of the group but in some arbitary order.

Unlike ordered delivery, unordered delivery does not require that the

messages be funneled through a single receiver. Thus, we have multiple senders

and multiple receivers. If each sender maintains a list of all the receivers' pids

then every sender can participate in the message transmission activity. Even

though the messages from senders can be guaranteed to be delivered to all the

members, they may not be delivered in the same order.

In the proposed group communication mechanism, each secondary manager

has information about the primary manager as well as all the secondary

managers (manager member list). Thus, every secondary manager can initiate a

message transmission similar to the primary manager's OGSEND transmission.

For example assume that c is the event corresponding to secondary manager C

transmitting the message M to the members of the group after it has received

it from sender S. Similarly, c' is the event of secondary manager C'

transmitting the message M' to the members of the group after C has received

it from sender S'. Since events c and c' occur at different processes, it is

possible that both events may occur at the same time. Under such

circumstances, message M will be delivered before message M' to some members

of the group and in the reverse order to the rest of the members.

Thus, when applications invoke the u g s e n d primitive to send messages to

a group, the group communication mechanism first checks to see whether there

is a manager for this group available in the sender's host. If there is, the

message will first be sent to it which will then transmit it to the rest of the

27

managers, each of which in turn deliver the message to thier local members.

However if a local manager does not exist, then the message is sent to the

primary manager for the group which then transmits it to it's local members

and to the secondary managers for the group.

Similar to OGSEND transmission, UGSEND transmission needs a

mechanism to detect duplicates. In our scheme, when the primary or a secondary

manager for a group transmits a UGSEND message, a ugsend-send-seq-no

(ussno) is assigned to the message. The recipients will have the corresponding

ugsend-receive-seq-no (u rsno) . When a manager for the group receives a

UGSEND message, the u s s n o and u r s n o are compared and depending on their

values the message will either be delivered to the local members or discarded.

3.3 F a i l u r e D e t e c t i o n a n d R e c o v e r y P r o c e d u r e s

To ensure that the group communication mechanism provides reliable

service, the survivability property must be guaranteed. Survivability is a measure

of how well a system can tolerate and recover from failures. Our discussion in

this section will focus on two aspects of failures: process failures and host

failures. We have assumed that application processes such as group members

may fail, but operating system processes such as primary or secondary managers

which are used to implement the group communication mechanism are well

debugged and do not fail unless the host machine itself fails. When the host

fails all the processes in it fail. Therefore host failures are more serious than

process failures. Suppose the host fails while a primary or a secondary manager

executing in it is in the middle of a message transmission, it is possible that

some of the members will not receive the message resulting in a partial

delivery. The following section briefly describes failures of group members. In

Section 3.3.2, failure detection and completion of any incomplete UGSEND

28

message transmission in the event of secondary manager failure will be discussed.

The case of primary manager failure is described in Section 3.3.3.

3.3.1 G r o u p M e m b e r F a i l u r e

Failure of a group member does not affect group communication activities

in the other operational group members. Our group communication mechanism

guarantees that all the operational group members of the group will receive the

messages sent to them. The failure of a member is detected when a primary or

a secondary manager tries to deliver a message to the failed member using a

one-to-one IPC (refer to Section 3.2.1). On detecting the failure of one of it's

local members, the primary or the secondary manager simply removes the failed

member's pid from it's local group member list. After the removal, if the local

group member list maintained by a secondary manager becomes empty, then this

manager ceases execution. On the other hand if the primary manager's list

becomes empty and it's manager member list is also empty, then the primary

manager ceases execution and the group is considered nonexistent.

3.3.2 S e c o n d a r y M a n a g e r H o s t F a i l u r e

If a secondary manager fails, the primary manager has to detect this and

finish any incomplete UGSEND message transmission initiated by the failed

secondary manager. To detect the failure of secondary managers, the primary

manager has many options. . All these schemes exploit the positive

acknowledgement property of one-to-one IPC to determine process failure.

In one scheme, the primary manager will detect the secondary manager

failure in the next OGSEND or UGSEND message transmission, or a

transmission of a group view update such the creation of a new secondary

manager for the group. When the primary manager tries to send a message to

29

the ind iv idual secondary managers us ing one-to-one I P C , i f a secondary manager

has fai led then the under ly ing sys tem wi l l inform the p r imary manager that i t

is t r y ing to send a message to a nonexistent process (see Appendix A) .

Another scheme is to create a v u l t u r e process to look for the fai lure of

a secondary manager. A vu l ture process is a l ight weight process created by the

p r i m a r y manager at i t 's host. Since the proposed mechanism is bui l t on top of

the V K e r n e l , the vul ture process takes advantage of the R e c e i v e S p e c i f i c I P C

pr imi t ive provided by the under ly ing sys tem to detect secondary manager fai lures.

A h igh level descript ion of the vul ture process to detect the failure of secondary

manager sm(i) is shown in F igure 3.2. The vulture w i l l be received blocked on

secondary manager sm(i) as long as the latter does not send any messages to

it. However , i f sm(i) fa i ls , the under ly ing kernel in the vulture's host wi l l

unblock the vul ture and not i fy it that it is t ry ing to receive a message f rom a

nonexistent process (see Append ix A) . The vulture then : informs the p r imary

manager about the fai lure of secondary manager sm(i). Fo r this scheme to work,

the p r ima ry manager has to create n vultures i f there are n secondary

managers in the group.

Rather than creat ing a vulture process for each secondary manager, the

p r ima ry manager m a y create a single process called a p r o b e r to probe the

l ivel iness of it 's secondary managers. The prober periodically sends probe message

Type : vulture

Task : detect failure of primary manager (pm)

Begin

R e c e i v e S p e c i f i c (from pm)

Send ("pm failed" to secondary manager)

End Figure 3.2 Vulture process

30

A R E Y O U A L I V E to each secondary manager. The probe message uses

one-to-one IPC 's to which the secondary managers w i l l reply w i th I A M A L I V E

messages. If a secondary manager fails then the under ly ing sys tem w i l l in form

the prober that it is t ry ing to send a message to a nonexistent process and the

prober wi l l notify the failure to the p r imary manager. A high level descript ion of

the prober process is given in F igure 3.3.

The first scheme may take longer, before the p r imary manager detects a

secondary manager has failed. Th is is due to the fact that the p r i m a r y manager

depends on it 's next message transmission which m a y not happen for a long

time to detect the fai lure. The second scheme is expensive because each

secondary manager needs a separate vul ture process. The th i rd option is less

expensive than the second scheme since only a single process has to be created

on the pr imary manager 's site to detect the fai lures of a l l the secondary

managers. It is also faster than the f i rst scheme because it does not depend on

the next message t ransmiss ion. Our prototype implementat ion uses the th i rd

scheme.

Type : prober

Task : detect failure of secondary managers

FOREVER DO

Begin

For i «= 1 to n Do

Send (ARE_YOU_ALIVE to sm(i))

If reply !- I_AM_ALIVE Then

Send (sm(i) failed to primary manager)

Sleep (for a specified time period)

End

n = number of secondary managers

Figure 3.3 Prober process

31

Once the failure of a secondary manager is detected, the primary

manager has to delete the failed secondary manager's pid from it's manager

member list and inform the rest of the operational secondary managers to do

the same in order to maintain a consistent group view. However, before doing

this, the primary manager must finish any incomplete UGSEND message

transmission initiated by the failed secondary manager. The primary manager

requests all the secondary managers to send to it their last UGSEND message

received. If the returned messages as well as the last message received by the

primary manager have the same transaction identifier value, then the failed

secondary manager has either successfully completed it's last UGSEND message

transmission activity or no member has received it's last UGSEND message.

Either of these outcomes assures atomicity. However if there is a discrepancy

among the transaction identifier values t, then the primary manager takes the

message with the highest transaction identifier and transmits it to the secondary

managers. Those secondary managers that have already received the message

simply discard the duplicates, but others receive the message and deliver it to

their local members. Once this message retransmission activity is completed, the

primary manager deletes the failed secondary manager's pid from it's manager

member list and informs the rest of the operational secondary managers about

the failure.

3.3.3 P r i m a r y M a n a g e r Host F a i l u r e

The primary group manager fails when the host in which it is executing

fails. Primary manager failure is more serious than secondary manager failure. If

the primary manager fails, OGSEND activities cannot be carried out and new

members cannot join the group from a host where a secondary manager for this

t The transaction identifier values will differ by at most one.

32

group does not reside. Also, failure of secondary managers cannot be detected

and incomplete message transmission activities initiated by the failed secondary

managers cannot be finished. Even though the operational secondary managers

may be able to participate in UGSEND message transmission, one cannot

guarantee atomic delivery. Thus, a group cannot exist without a primary

manager and function correctly for any extended length of time. In order to

provide a continuous group communication mechanism, secondary managers must

employ a scheme to detect the failure of the primary manager and select a new

primary manager from among themselves. One possible scheme is the death-will

scheme proposed by Ravindran [14]. In this case we assume that the underlying

Kernel supports facilities for a process to create aliases that may reside in

different address spaces (in the same or different machine) to perform functions

related to failure detection and notification on behalf of their creator. Another

scheme is that if the prober method is used by the primary manager to detect

secondary manager failures, the lack of probes for extended period of time will

indicate primary manager failure. However this scheme requires each secondary

manager to create a timer. Another possible scheme is that each secondary

manager may create a vulture process to look for the failure of the primary

manager. Since the underlying system on which the prototype of the proposed

mechanism is built supports such abstraction, this scheme has been implemented.

Every secondary manager is a potential candidate to become the next

primary manager due to the fact that each of them has the same global view

of the group and each of them has the capability of detecting primary manager's

failure. The scheme to select a new primary manager must deal with several

issues which may arise. For example, there may be inconsistencies due to two

or more secondary managers attempting to become the new primary manager.

Failures may even occur during the selection of the new primary manager itself.

33

Therefore the scheme must guarantee that when the selection is over, the group

must be left with only one primary manager and all the secondary managers

must know the identity of the new primary manager. The following section gives

an overview of several possible selection schemes and in Section 3.4.1, a finite

state model of the selection scheme used in the proposed group communication

mechanism is presented.

3.4 New Primary Manager Selection Scheme : An Overview

Let us first examine some of the existing selection schemes which include

token passing [3] and election [10]. The token passing scheme is suitable in an

environment where the leadership is rotated among the members even when

there are no failures, as in Chang's [3] reliable broadcast protocol implementation.

The election scheme is suitable when a new leader is selected only if the old

leader has failed. In the election scheme, each potential candidate does not have

any knowledge about other candidates and depends on random timeouts before

proclaiming itself as the new leader. Such a scheme is used in electing a leader

in TEMPO, a distributed clock synchronizer running on UNIX 4.3 BSD systems

[10]. To elect a primary manager we propose a scheme called the succession list

scheme which is simpler than the election scheme. In this scheme each potential

candidate has information about the other candidates. Normally this information is

in the form of an ordered list. For example, the list may be ordered in

increasing value of the candidate's pids or ordered by the time at which the

candidates were created. All the candidates agree to select the first (or the last)

candidate in the list as the successor when the leader fails.

In our group communication mechanism each secondary manager has it's

manager member list ordered by the time they joined the group. Therefore the

pid of the first secondary manager to join the group will be first after the

3 4

primary manager's pid in the manager member list, and the pid of the last

secondary manager to join will be last in the list. In case of primary manager

failure, the first operational secondary manager in the list will become the next

primary manager. Based on this, one could propose a very simple succession list

scheme where the younger secondary managers will wait until the oldest

secondary manager inform them about the new leadership without running an

agreement protocol among themselves. However, this will not work under certain

circumstances. Suppose the oldest secondary manager also fails immediately after

the primary manager has failed, the secondary manager's failure will not be

notified to any of the operational secondary managers. In this case, if the

younger secondary managers just wait to hear from the oldest secondary

manager without probing it, then they may wait forever. Therefore it is

necessary to run an agreement protocol among all the operational secondary

managers before a new primary manager is selected. In the next section we use

a finite state model to explain the details of our selection scheme.

3.4.1 S u c c e s s i o n L i s t S e l e c t i o n S c h e m e : A F i n i t e S ta te M o d e l

During their lifetime, secondary managers can be in one of a finite

number of states. Transition from one state to another is caused by the arrival

of a message. A state transition may cause a secondary manager to transmit a

message which triggers subsequent transitions in other secondary managers. It is

important to clarify that in explaining this scheme we focus only on the state of

one secondary manager, say sm(i), and not on the state of the entire distributed

program. Figure 3 . 4 represents the state diagram for a secondary manager sm(i).

Circles represent states, arrows represent transitions. A transition occurs upon the

arrival of a message or the occurrence of an event. The event which causes the

transition is shown on the upper part of the label associated with the arrow.

35

recovery of msgs (if any)

Figure 3.4 State transition diagram of primary manager

selection scheme

The lower part of the label shows the message that is sent at the time of the

transition. An asterisk by a message indicates, that it is a broadcast (i.e., the

message is sent to all the secondary managers). A null label indicates that no

message is sent or received.

3.4.1.1 D e s c r i p t i o n o f the Sta tes

a c t i v e :

Normally the primary and the secondary managers of a group will be in the

36

active state,

s u s p e n d e d :

This is a transition state which is. reached when secondary manager sm(i) learns

about the failure of the primary manager. At this state, sm(i) checks to see if

there are secondary managers in front of it in the manager member list. If so,

it sends a probe message INFORM_STATUS to sm(j), the first among the

secondary managers in the list ahead of sm(i). If the underlying system informs

sm(i) that sm(j) is not operational, sm(i) probes the next secondary manager

down the list.

However if sm(j) replies with the message CANDIDATE to the probe

message, then sm(i) enters the r e l a x state. On the other hand if sm(i) finds out

that it is the first operational secondary manager in the manager member list,

then it broadcasts the message CANDIDATE to all the secondary managers and

enters the c a n d i d a t e state.

r e l a x :

We have already seen how a secondary manager can reach this state from the

s u s p e n d e d state. A secondary manager can also reach this state from the

ac t i ve state. For example if there is a delay in learning about the primary

manager's failure, sm(i) will still be in a c t i v e state. If it now receives the

message CANDIDATE from sm(j) which is infront of sm(i) in the list, then sm(i)

will enter the r e l a x state after sending the reply message

ACCEPT CANDIDATE to sm(j). On entering the r e l a x state, sm(i) notes down

the candidate's identifier in it's last candidate field. Also it informs it's vulture

process to detect the failure of the primary manager candidate.

37

While sm(i) is in the r e l a x state, the primary manager candidate may

fail. When sm(i) learns about this failure from it's vulture it returns to the

s u s p e n d e d state. However if there is a delay in learning about this failure, it

may either receive the message INFORM STATUS or CANDIDATE from some

other primary managers. For example, if sm(i) is the next operational secondary

manager in the list after the failed candidate, other secondary managers will

probe it with INFORM_STATUS. On the other hand, the CANDIDATE message

may be received from a secondary manager sm(k) which is the first operational

secondary manager in the manager member list. Sm(i) in the r e l a x state may

also receive the CANDIDATE message in other circumstances. For instance, it

may have entered the r e l a x state from the s u s p e n d e d state because secondary

manager sm(j) ahead of sm(i) in the manager member list has replied with the

message CANDIDATE to sm(i)'s INFORM STATUS probe. If this has happened

before sm(j) broadcasts the message CANDIDATE, then sm(i) will receive the

message CANDIDATE from sm(j) one more time.

If sm(i) receives the CANDIDATE message while in the r e l a x state, it

will compare the pids of the last candidate and the sender of the message. If

they are different, then a new candidate has initiated the election. Sm(i) instructs

it's vulture to look for the failure of the new candidate, notes down the new

candidate's pid in it's last candidate field, and replies to the new candidate with

the ACCEPT CANDIDATE message. However if the pids are the same, then

sm(i) is already monitoring the right candidate and therefore it simply replies

with the ACCEPT CANDIDATE message.

c a n d i d a t e :

This is the state when a secondary manager declares it's intention to contend

for the primary manager position. As explained in the s u s p e n d e d state, the first

38

operational secondary manager in the manager member list will reach this state

after broadcasting the CANDIDATE message to all the secondary managers.

Secondary manager sm(i) can also reach this state from the ac t i ve state. For

example, if there is a delay in learning about the failure of the primary

manager, sm(i) will still be in the a c t i v e state. While in the ac t i ve state, if

sm(i) receives an INFORM STATUS message from secondary manager sm(k)

which is behind it in the manager member list, sm(i) will reply to sm(k) with

the CANDIDATE message. It will then broadcast the CANDIDATE message to

all the secondary managers and enter the c a n d i d a t e state. Secondary manager

sm(i) can also enter the c a n d i d a t e state from the r e l a x state as explained

under r e l a x .

If in the c a n d i d a t e state sm(i) receives an INFORM STATUS message,

it will reply with the message CANDIDATE. After validating that all the

secondary managers have received it's CANDIDATE message and have reached

the r e l a x state (i.e., after receiving CANDIDATE_ACCEPT message from all the

operational secondary managers), the primary manager candidate will finish any

incomplete OGSEND or group view message transmissions initiated by the failed

primary manager. The new primary manager will then broadcast the message

PMGR ACTIVE to all the secondary managers. On receiving that message, the

secondary managers reply with the message PMGR ACCEPT, update the

manager member list, enter the a c t i v e state and resume normal operations.

After the new primary manager has received the PMGR ACCEPT message from

all the operational secondary managers, it creates a prober process and enters

the a c t i v e state to resume normal operation.

3.5 N e t w o r k P a r t i t i o n

39

W h e n the network part i t ions, the system divides into two or more

subgroups of hosts; a l l but one subgroup wi l l be left without a p r ima ry manager .

In our scheme, secondary managers wi th in a subgroup wi l l select a p r imary

manager and continue to function. The proposed mechanism assures that the

communicat ion wi th in these subgroups wi l l be ordered and atomic. The diff icult

problem is what happens when the part i t ions merge again.

F o r example, consider a group wi th four secondary managers as shown in

F igure 3.5(a). The secondary managers and their hosts are identif ied by the

numbers 2 through 5 wi th pr imary manager M of the group assigned the

number 1. Assume that the mult icast address of this group is X . The group

v iew maintained by the p r imary and a l l the secondary managers is then

[mult icast address X ; p r imary manager 1; manager member l ist 1,2,3,4,5].

Consider, now a network part i t ion which separates hosts 4 and 5 f rom the

rest of the group. A s a result , there wi l l be two subgroups: subgroup A

consist ing of the p r imary manager and the secondary managers 2 and 3,

subgroup B with secondary managers 4 and 5. Since the under ly ing sys tem in

multicast address X

manager member list 1, 2, 3, 4, 5

primary manager M

Figure 3.5(a) Group view before network partition

40

the p r i m a r y manager 's host cannot dist inguish between network part i t ion and host

fa i lure, i t w i l l in fo rm the prober that secondary managers 4 and 5 have fai led.

Th is resul ts in the remova l of secondary managers 4 and 5 f rom the manager

member l ist mainta ined by the p r imary manager M and secondary managers 2

and 3. Thus , the group v iew in subgroup A wi l l be [mult icast address X ;

p r ima ry manager 1; manager member l ist 1,2*3]. On the other hand, secondary

managers i n subgroup B w i l l be notified by their v u l t u r e s that the p r imary

manager has fai led and secondary managers 4 and 5 wi l l select a p r imary

manager among themselves. A s s u m e that secondary manager 4 has been selected

as the p r imary manager M ' of subgroup B. The group view in subgroup B is

then [mult icast address X ; p r i m a r y manager 4; manager member l ist 4,5]. Th is

is i l lustrated in F igu re 3.5(b). A s long as the partit ioned network does not

remerge, communicat ion w i th in these subgroups wi l l have the same reliable

properties discussed in Chapter Two.

A f te r some period of t ime, the partit ioned network may remerge. I f the

subgroups do not merge to fo rm a single group with one pr imary manager ,

rel iable communicat ion cannot be guaranteed. Consider a U G S E N D act iv i ty

multicast address X multicast address X

manager member list 1 ,2 ,3 \ manager member list 4, 5

primary manager M'

o

O (o
Figure 3.5(b) Group view after network partition

primary manager M

0

41

ini t iated by secondary manager 5 in subgroup B after the network has remerged.

F i r s t , this secondary manager mult icasts the message to the address X . Then i t

wi l l resend the message to those in subgroup B that fai led to receive the

message the f irst t ime around. This wi l l guarantee that the U G S E N D message

wi l l be received by al l the members in subgroup B. However , the U G S E N D

message sent to the mult icast address X wi l l also be received by the p r imary

and the secondary managers in subgroup A , as they are also l is tening on the

same mult icast address.

' The other problem after merging is due to the fact that there are

mult ip le p r imary managers l istening on the same mult icast address thus confusing

those wishing to interact wi th the group as i l lustrated in F igure 3.5(c). It is

therefore necessary that the subgroups formed dur ing network par t i t ion should

merge to form a single group w i th one pr imary manager. A lso the p r i m a r y as

wel l as al l the secondary managers of this single group should have the same

group v iew after the merge.

multicast address X

manager member list 1. 2, 3

multicast address X

manager member list 4, 5

primary manager M

primary manager M*

Figure 3.5(c) Group view after network remerge

42

In the follwing section we describe how our scheme handles the messages

initiated by the primary or the secondary managers of one subgroup but received

by the managers belonging to another subgroup. Section 3.5.2 describes how to

merge multiple subgroups after the partitioned network has remerged.

3.5.1 D i s c a r d i n g M e s s a g e s f r o m D i f f e r e n t S u b g r o u p s

After the network has partitioned, the communication within the subgroups

will have the reliable properties discussed in Chapter Two. After the network has

remerged, these subgroups will be merged together to form a single group.

However, in the mean time, message transmission initiated from one subgroup

may be received by the managers belonging to a different subgroup. This kind of

reception should either be avoided or if it cannot be avoided, the received

messages should be detected and discarded.

A simple scheme to attempt to avoid receiving these messages would be

for each subgroup which selects a new primary manager to choose a new

multicast address. When the primary manager is selected, it chooses a new

multicast address and informs it's secondary managers about it. For example, in

Figure 3.5(b), subgroup B which selects a new primary manager chooses a new

multicast address X'. Thus the group view maintained by the primary manager

M' and it's secondary manager 5 will be [multicast address X'; primary manager

4; manager member list 4,5]. If the network remerges, then the message

transmission initiated by the primary or the secondary managers in subgroup B

will never be received by the managers in subgroup A as they will be listening

on multicast address X. One disadvantage of this scheme is that a new

multicast address has to be selected whenever a new primary manager is chosen.

This may happen even when the network is not partitioned (i.e., just a primary

manager failure). Also, there is no guarantee that independently chosen multicast

43

addresses on different partitions are distinct. This will cause problems when the

partitions remerge.

In the proposed mechanism, we use another scheme where the messages

received by the primary or secondary managers of a subgroup will be discarded

if they were not initiated from within their subgroup. In this scheme when a

manager transmits a message, it specifies it's primary manager's identifier in the

message header. Whenever a manager receives a OGSEND or UGSEND message,

it compares it's primary manager's pid against the primary manager's pid

specified in the message header. If they are different, the message will be

discarded. For example, if secondary manager 5 transmits a message after the

merger of the partitioned network (but before the merger of the subgroups) to

the multicast address X, even if the primary or secondary manager of subgroup

A receives this message, it will be discarded as the primary manager M of

subgroup A will be different from the primary manager M' specified in the

message headert.

3.5.2 M e r g i n g S u b g r o u p s

When a partitioned network merges, the subgroups formed due to this

partition have to be merged. The primary managers of different subgroups

listening on the same multicast address must detect that more than one primary

manager exists for the same group and reach an agreement as to which should

become the leader.

3.5.2 .1 D e t e c t i o n o f S u b g r o u p s

t Here, we are assuming either the hardware address is used as the identifier
or that new primary manager will be chosen only from those secondary
managers that already exist at the time of network partition. This is the most
likely scenario and will guarantee the primary managers in different subgroups
will have different identifiers.

44

In the proposed mechanism, the prober process periodically broadcasts a

RESOLVE message to the group's multicast address. This message contains the

primary manager's pid and are discarded by the secondary managers. Only

primary managers respond to the RESOLVE message. To explain this scheme,

consider Figure 3.5(a). When the network is not partitioned, the prober of

primary manager M will be broadcasting the RESOLVE message which will be

discarded by secondary managers 2 through 5. After network partition (Figure

3.5(b)) there are two subgroups; one with primary manager M and the other

with primary manager M'. The RESOLVE message broadcast by the probers of

primary managers M and M' will be discarded by the secondary managers 2

and 3 in subgroup A and secondary manager 5 in subgroup B. After the

network remerges, the multicast address of the two subgroups will still be X.

Thus, the RESOLVE message of primary manager M may be received by

primary manager M' and vice versa. When a primary manager receives a

RESOLVE message, it knows that the network has been partitioned and

remerged. It also knows the identity of the other primary manager.

3.5.2.2 R e s o l v i n g t he L e a d e r s h i p

Once a primary manager detects that there exists other primary managers

with the same multicast address, all except one of them has to renounce the

leadership. We will make use of the finite state model shown in Figure 3.6 to

explain the scheme used to resolve the leadership. The scheme works with

merging a pair of primary managers at a time. In explaining this scheme we

focus only on the state of a primary manager, say pm(i). In the figure, circles

represent states, arrows represent transitions. A transition occurs upon the arrival

of a message or the occurence of an event. The event which causes the

transition is shown on the upper part of the label associated with the arrow.

45

MERGE (after timeout)

* as soon as a primary manager enters the merging state, it initiates procedure to merge

with the chosen primary manager and becomes a secondary manager when the merge is

complete (see Section 3.5.2.2)

Figure 3.6 State transition diagram of primary managers resolving

leadership upon network remergence

The lower part of the label shows the message that is sent at the time of the

transi t ion. A nul l label indicates that no message is sent or received.

D e s c r i p t i o n o f t he S ta tes

a c t i v e :

No rma l l y pm(i) w i l l be in the a c t i v e state. If i t receives a R E S O L V E message

46

in this state from another primary manager, say pm(j), it sends a RENOUNCE

message to pm(j), notes down the pid of pm(j) in it's contender_pid field and

enters the r e s o l v i n g state. The RENOUNCE message also includes the number

of secondary managers in the manager member list of pm(i) and indicates the

intention of the sender to contend for leadership.

Sometimes it is possible that pm(i) in the ac t i ve state may receive a

RENOUNCE message from pm(j) before it receives the RESOLVE message. When

a primary manager receives a RENOUNCE message, whether it gives up it's

leadership or not depends on the number of secondary managers in it's manager

member list. In the proposed scheme, the primary manager with the most

number of secondary managers will become the leader. If both contenders have

equal number of secondary managers, then the one with the larger pid will

assume the leadership. Thus, if pm(i) has less number of secondary managers (or

equal number of secondary managers but smaller pid), then pm(i) will reply with

an ACCEPT RENOUNCE REQ message and enters the m e r g i n g state.

However, if pm(i) has more number of secondary managers (or equal number of

secondary managers but larger pid), then it will reply with a

REJECT RENOUNCE REQ message and remains in the ac t i ve state.

While in the ac t i ve state, pm(i) may receive a MERGE request from

another manager. Pm(i) simply joins the merging manager in it's group (see

m e r g i n g state).

r e s o l v i n g :

We have seen under ac t i ve how a primary manager enters the r e s o l v i n g state

from the a c t i v e state after sending a RENOUNCE message to pm(j). If it

receives an ACCEPT_RENOUNCE_REQ message from pm(j) in response to it's

RENOUNCE message, pm(i) will return to the ac t i ve state. Pm(i) also returns to

47

the ac t i ve state if pm(j) fails. On the other hand if pm(i) receives a

REJECT_RENOUNCE_REQ message from pm(j), it enters the m e r g i n g state.

Pm(i) which has entered the r e s o l v i n g state after sending a RENOUNCE

message to pm(j) may receive a RENOUNCE message. This message may be

from the primary manager pm(j)t or from a third primary manager, say pm(k).

Let us first consider the case of receiving this message from pm(j). If pm(i)

determines that pm(j) is the eligible contender, then it replies with an

ACCEPT_RENOUNCE_REQ message and enters the m e r g i n g state. However, if

pm(i) finds that pm(j) is not the eligible contender then it replies with a

REJECT RENOUNCE REQ message and returns to the ac t i ve state.

If the RENOUNCE message was sent by pm(k), pm(i) will detect this by

comparing it's contender pid with the pid of the process sending the RENOUNCE

message. This may happen if the network partition had divided the group into

more than two subgroups which subsequently remerged. In this case pm(i) replies

with a TRY AGAIN message meaning that pm(i) is busy resolving the

leadership with another contender and therefore pm(k) should wait and try again

later.

m e r g i n g :

The primary manager pm(i) enters this state from the ac t i ve state or from the

r e s o l v i n g state as explained earlier. While in the m e r g i n g state, pm(i) sends a

MERGE request to it's new primary manager who will accept pm(i) as a new

secondary manager in it's group and exchange with it new group view

information (same procedure as the case of a new secondary manager joining the

group - see Section 3.1). It is possible that pm(i) may receive a RENOUNCE

t It may appear as if there will be a communication dead lock, but this can be
overcome as explained in Section 4.6.

48

message while in the m e r g i n g state. In such an event, it replies with a

I AM NOT CONTENDER message which includes the pid of the new primary

manager. The sender of the RENOUNCE message will then try to resolve the

leadership with it's new contender.

Also, it is possible that pm(i) may receive a MERGE request while in the

m e r g i n g state for which it replies with a I AM NOT PMGR message. This

message includes the pid of the new primary manager so that the merging

manager may request to merge with the new primary manager.

When pm(i) sends a MERGE request to a primary manager which is in

the r e s o l v i n g state, the latter replies with a TRY AGAIN message and pm(i)

will retransmit the MERGE request after some specified time period. When the

new primary manager receives a MERGE request from a manager it accepts the

merging manager as a new secondary manager in it's group, i.e., it transfers

the group view information to the merging manager, updates it's manager

member list with the pid of the merging manager and informs all the secondary

managers of the group to update their lists as well.

3.6 C h a p t e r S u m m a r y

The group communication mechanism requires some form of coordination to

realize the reliable properties. In the proposed mechanism each group has a

primary manager to coordinate the group management and communication

activities. In order to ensure survivability in case of primary manager failure,

the primary manager is replicated in all the member sites and a new primary

manager is selected from among these secondary managers. The secondary

managers do not take part in any group management activities, but may take

part in communication activities when ordering is not a requirement. The prober

49

process executing in the primary manager host detects any secondary manager

failure and notifies the primary manager. The primary manager must finish up

any incomplete message transmission initiated by the failed secondary manager. A

vulture process executing in each of the secondary manager hosts detects primary

manager failure and notifies it's secondary manager. The secondary managers

then select a new primary manager using a succession list selection scheme.

Network partition may result in subgroups of sites with the same multicast

address. The proposed mechanism ensures that communication within these

subgroups will continue to exibit the reliable properties. When the partitioned

networks remerge, the proposed mechanism detects the different subgroups and

merges them to form a single group.

50

Chapter Four

Implementation Details of the Proposed Group Communication

Mechanism

This Chapter describes the implementation details of the proposed group

communication mechanism and it's performance. One has basically two choices in

implementing the proposed mechanism; either to implement it as part of the

kernel of a distributed system or to implement it on top of an existing well

tested kernel. Because of time constraint, and since the primary object is to test

the feasibility of the proposed mechanism rather than it's performance, we have

chosen the second approach. The proposed mechanism is built on top of the V

Distributed System running on a cluster of workstations in our Distributed

System Research Laboratory.

In implementing the proposed mechanism, three major issues have to be

dealt with; group management, group communication, and failure detection and

recovery procedures. Group management addresses such issues as group creation

and processes joining or leaving a group. Group communication deals with the

issue of transferring a message from a source to all the members of the group

with the reliable properties discussed in Chapter Two. Failure detection and

recovery is essential for the proposed mechanism to provide continuous service

despite host failures and network partitioning.

The proposed mechanism is structured as a set of cooperating processes;

the primary and secondary managers are examples of such processes. In addition

to these management processes, there are w o r k e r processes to help the manager

processes to achieve the desired reliable properties. The v u l t u r e and p r o b e r are

two examples of the worker processes.

51

This Chapter describes the implementation details of the above aspects and

is divided into the following sections. Section 4.1 describes the implementation

details of group management. In order to manage a group, it's manager

processes maintain some group management information. The manager member

list in which the pids of the primary as well as the secondary managers for the

group are maintained is an important part of the group management information.

Section 4.2 describes the organization of the manager member list. In Section

4.3, implementation details of the group send primitives ugsend() and ogsend()

are described. Section 4.4 describes the details of the worker processes. Failure

detection and recovery procedures in the event of host failures and network

partitioning are explained in Sections 4.5 and 4.6 respectively. Performance

evaluation of the group send primitives provided by the proposed mechanism is

given in Section 4.7, and Section 4.8 concludes the Chapter.

4.1 Group Management

The proposed group communication mechanism provides facilities to transfer

a message from a source to a set of processes called a group. Thus, in addition

to communication, the mechanism should provide facilites for the application

processes to create, join, and to leave a group. In order to provide these

functionalities, the hosts which support the proposed group communication

mechanism run a process called the g r o u p se rve r . Processes which wish to

create or to join a group invoke the group management stub routines which in

turn send appropriate requests to the group server.

The following section describes the c rea teg roupO routine which is invoked

by a process wishing to create a group. Once a group is created, the group

must be associated with a logical name (i.e., group name) so that processes will

be able to interact with the group using this logical name. Section 4.1.2

52

describes the detail of registering a group with the name service. Sections 4.1.3

and 4.1.4 describe the j o i n g r o u p O and l e a v e g r o u p O routines invoked by

processes wishing to join or leave a group respectively.

4.1.1 C r e a t i n g a G r o u p

A new group is dynamically created when a process invokes the

c rea teg roupO routine. This is a stub routine which sends a CREATE GROUP

request along with the invoker's (initial member) pid to the group server. The

group server creates a primary manager for the group and sends this request to

it. The primary manager simply adds the initial member's pid to the local group

member list. The group server then returns the primary manager's pid to the

invoker of the c r e a t e g r o u p routine.

4.1.2 R e g i s t e r i n g a G r o u p

In order to make the primary manager available to the processes wishing

to interact with the group, it's pid should be associated with a logical id. Since

the prototype of our mechanism is built on top of the V Kernel, we make use

of the name service facility provided by the underlying system. In the V Kernel,

when a process wants to associate it's pid with a logical id, it invokes

SetPidQogical id, pid, scope). If the specified scope is LOCAL, then the pid is

registered locally so that only processes executing in the same host can obtain

the pid from the name service. On the other hand if the specified scope is

ANY, then the pid is registered globally so that processes executing in any host

in the network will be able to obtain this pid from the name service.

When a process wants to find out the pid associated with the logical id,

it invokes GetPid(logical id, scope) which returns the pid of the process

registered in the name service using the S e t P i d routine. If the specified scope is

53

LOCAL, then the name service returns a pid of a process locally registered to

the invoker's host. However, if the scope is ANY, then the name service first

looks for a locally registered process. If one is not found, it broadcasts a request

to other hosts in the network requesting them to send it the pid associated with

the logical id, if there is any.

In order to associate the primary manager of the group with a group

name, the creator of the group invokes registergroup(groupname, pmgr-pid, type).

If the specified type is LOCAL, then only processes residing on the same host

as the primary manager will be able to obtain the primary manager's pid from

the name service. However, if the type is GLOBAL, then processes from any

hosts in the network will be able to obtain the primary manager's pid from the

name service. R e g i s t e r g r o u p is a stub routine which sends a

REGISTER GROUP request to the primary manager whose pid is specified by

pmgr-pid. The primary manager invokes the SetPid routine to register the group

name in the name service. Normally the primary manager will register with

type GLOBAL unless the group is meant to be a local group only. As described

in the next section, secondary managers also register with the r e g i s t e r g r o u p

routine, but the type is always LOCAL.

4.1.3 J o i n i n g a G r o u p

Processes wishing to join a group first find the group id associated with

the group name and then invokes joingroup(group id). The group id returned

by the name service may be the pid of the primary or secondary manager for

that group, depending on the location of the joining process as explained below.

Let us consider the case where a member joins the group from a host

where neither the primary manager nor a secondary manager resides. In this

54

case, the group id returned by the name service will be the primary manager's

pid (assuming that the group has been registered as GLOBAL). After obtaining

the group id, the joining member invokes j o i n g r o u p routine to join the group.

This is a stub routine which sends a JOIN GROUP request to the groupserver

along with the group id and the joining process' pid. The group server creates a

secondary manager for this group in the joining process' host and informs the

primary manager (group id) about the new seconadry manager. The primary

manager then transfers it's group management information to the new secondary

manager which includes the manager member list and the group name. The

primary manager then updates it's manager member list with the new secondary

manager's pid and informs all the other secondary managers of the group to

update their lists as well.

When a secondary manager receives the group management information, it

associates it's pid with the received group name and registers in the name

service with LOCAL scope. Thus, later on, when a process residing in the

secondary manager's host requests the name service for the pid associated with

the group name, it will obtain the secondary manager's pid.

After transferring the group management information to the newly created

secondary manager, the primary manager notifies the group server. The group

server then sends a JOIN MEMBER request to the secondary manager along

with the joining process' pid. The new secondary manager simply adds this pid

to it's local group member list.

When a member joins the group from a host where a secondary manager

for this group already exists, then the group id specified in the j o i n g r o u p

routine will be the local secondary manager's pid. Thus, it is not necessary to

create a new secondary manager in the joining process' host. The group server

55

simply sends a JOIN MEMBER request to the local secondary manager along

with the joining process' pid. The local secondary manager adds the new member

to it's local group member list.

4.1.4 Leaving a Group

A process wishing to leave a group invokes the leavegroup(group id)

routine. This is a stub routine which sends a LEAVE GROUP request to the

process specified by the group id. This group id corresponds to the pid of either

the primary or a secondary manager for the group depending on the location of

the exiting process as explained in Section 4.1.3. When the primary or a

secondary manager receives the LEAVE GROUP request along with the exiting

process' pid, it simply deletes the member's pid from it's local group member

list. If the exiting process is the only member in the secondary manager's local

group member list, then the secondary manager sends a NO LOCAL MEMBERS

message to the primary manager which deletes this secondary manager from it's

manager member list and informs all other secondary managers of the group to

do the same. Finally, the primary manager sends a COMMIT SUICIDE message

to the memberless secondary manager which deletes it's pid from the name

service and ceases execution. However, if the leaving process is the only member

in the primary manager's local group member list, it has to make sure that it's

manager member list is empty before ceasing execution. If the manager member

list is not empty, then the primary manager simply deletes the leaving member's

pid from it's local group member list and continues to function. When the

primary manager ceases execution, the group becomes nonexistent.

4.2 Organization of the Manager Member List

56

The group management information transferred from the primary manager

to a newly created secondary manager includes the pids of the primary as well

as all the secondary managers. These pids are maintained in a table called the

manager identifier table. To find a particular manager's identifier, one can use

that manager's manager index to index into the manager identifier table. The

manager indices are assigned by the primary manager. These indices are also

part of the group management information transferred to a newly created

secondary manager.

Initially the primary manager is assigned manager index 0. The first

secondary manager to join the group will be assigned manager index 1 and the

following secondary manager to join will be assigned manager index 2 and so on.

Suppose the secondary manager with manager index 1 fails, the primary

manager makes manager index 1 invalid, and informs the other secondary

managers to do the same. Later, manager index 1 may be assigned to a new

secondary manager by the primary manager. Manager indices are maintained in

a manager index list in such a way that the primary manager's index will

0

1

2

3

4

5

n-1

n

manager Identifier table

Figure 4.1 Manager member list

pido

Invalid

pld2

pid3

invalid

pld5

Invalid

invalid

manager index list

5 7

always be first in the list and the index of the last secondary manager to join

will be at the end of the list. This ordering is essential for the selection scheme

to choose a primary manager in case the old primary manager fails as described

in Section 3.4.1. The manager indentifier table and the manager index list are

together called the manager member list, as illustrated in Figure 4.1.

4.3 Group Communication

This section describes the implementation details of the ogsend and

ugsend primitives used by the applications to transfer a message from a source

to the members of a group.

4.3.1 Ugsend Implementation

Processes send UGSEND type messages by invoking ugsend(msg,

group id, msgtype) to the members of the group whose group name is

associated with the specified group_id. If the IMMEDIATE REPLY bit is set in

msgtype, then the sender may be unblocked by the group communication

mechanism before the message is delivered to the members of the group.

Otherwise the sender will be unblocked only after the members have received

and acknowledged the message. The specified group id may be either the

primary or a secondary manager's pid depending on the sender's location.

Ugsend is a stub routine which sends a UGSEND MSG request embedded with

the message to the specified group id. The primary or the secondary manager

which receives this request has two ways to transmit the message to other

managers depending on the underlying network architecture. If it supports only

unicast facility, then the messages are sent on a one-to-one basis to the

individual managers. However, if the underlying network also supports broadcast

facility then the messages can be first multicast to the managers in a datagram

58

fashion and later resent on a one-to-one basis to those who fail to receive the

message the first time around. Since the underlying network architecture of our

environment supports the broadcast facility, we use the second scheme. Thus,

when the primary or the secondary manager receives UGSEND MSG, it first

multicast the message to the rest of the managers. It then waits for a specified

period of time to receive acknowledgements from the recipients. If

acknowledgements are not received from some managers at the expiration of the

time interval, the message is resent to them using one-to-one IPC's.

On the receiving side, the recipient managers can send acknowledgements

back to the sending manager immediately after receiving the message or only

after delivering the message to their local members depending on whether the

IMMEDIATE REPLY BIT is set or not in the opcode specified in the message

header.

4.3.2 O g s e n d I m p l e m e n t a t i o n

Messages sent from different sources by invoking the ogsend routine will

be delivered in the same order to all the members of the group. We have seen

in Chapter Two that this ordering can be easily achieved by funneling the

OGSEND messages through a single process. In the proposed mechanism the

primary manager acts as the funnel process. Processes wanting to send OGSEND

messages invoke ogsend(msg, group id, msgtype). The specified group id may be

the primary or secondary manager's pid depending on the sender's location.

Therefore, the stub routine o g s e n d has to first find the primary manager's pid

and then send the message to it for transmission. Thus, it sends a

GET PMGR PID request to the process specified by group id. Since all the

managers of the group know the pid of the primary manager, this information is

available whatever the specified group id. Once the primary manager's pid is

59

obtained, the stub routine sends the OGSEND message to the primary manager

which transmits this message to all the secondary managers in a similar fashion

explained for UGSEND transmission.

4.3.3 D e t e c t i o n o f D u p l i c a t e s

In the UGSEND or OGSEND message transmission, if the the message is

transmitted to the rest of the managers using one-to-one IPC, then the recipients

will not receive duplicate messages. However if the message is multicast first in

datagram fashion and later resent on a one-to-one basis, then some recipients

may receive duplicate messages as explained in Section 3.2. This section describes

the implementation details of the duplicate detection scheme. We will describe the

scheme from the UGSEND message transmission point of view. Similar technique

is used in OGSEND message transmission.

The primary and the secondary managers maintain an integer variable

u s s n o which is the sequence number of the next UGSEND message. They also

maintain r e c e i v e bu f fe rs where the last UGSEND message sent by other

managers can be stored. Receive buffers corresponding to a particular manager is

indexed by it's manager index. Each receive buffer has two fields: a message

buffer to store the last UGSEND message and an integer variable, u r s n o , to

keep track of the transaction identifier of the next incoming UGSEND message

sent by the manager whose manager index indexes into this receive buffer as

illustrated in Figure 4.2. When the primary or secondary manager transmits a

UGSEND message, the message header contains the sender's manager index,

u s s n o and the pid of the primary manager for that group. When an UGSEND

message is received by a manager, it first checks the primary manager pid

specified in the message header against it's primary manager's pid. If it is

different, then this message must have been transmitted from a manager

60

0 ursno

msg

1 ursno

msg

•

n ursno

msg

OGSENDJNDEX orsno

msg

Figure 4.2 Rece ive buffers

belonging to another group hav ing the same mult icast address. This may have

happened as a resul t of the under ly ing network part i t ioning and remerging.

However , i f the message t ransmiss ion was init iated wi th in the same group, then

the receiving manager compares the u s s n o specified in the message header

against the u r s n o corresponding to the receive buffer indexed by the manager

index. If this is the expected message f rom the sending manager it w i l l be

accepted else it w i l l be discarded. Once the p r imary or secondary manager

accepts a message, i t can reply to the sending manager immediately i f the

I M M E D I A T E R E P L Y _ B I T is set in the opcode of the message header.

Otherwise it replies only after the message has been delivered to and

acknowledged by i t 's local members.

4.4 W o r k e r P r o c e s s e s

61

The p r imary and secondary managers are responsible for act iv i t ies

per ta in ing to the group management and the group communicat ion. In order to

improve concurrency which normal ly improves the performance of a distr ibuted

program, the manager processes employ some worker processes to c a r r y out

some of their tasks. V u l t u r e s and p r o b e r s described in Section 3.3.1 are

examples of such processes. In addition to these processes, managers employ

c o u r i e r processes to car ry out the message transmission act iv i t ies, a i d e processes

to chose a new pr imary manager in case of pr imary manager fa i lure, r e s o l v e r

processes to resolve the leadership in situations such as when a part i t ioned

network remerges. This section describes the implementat ion details of these

worker processes. The worker processes share the same address space as their

managers and thus have read access to the group management in format ion

mainat ined by their managers.

4.4.1 C o u r i e r

Couriers are responsible for car ry ing out the U G S E N D and O G S E N D

message transmission activities on behalf of their managers. A h igh level

descript ion of the courier process is i l lustrated in Figure 4.3. Cour iers are created

by the pr imary and secondary managers when they are ini t ia l ized. Since the

Type : courier

Task : sending a group message

FOREVER DO

Begin

ReceiveSpecific (from primary manager)

Send (to ail managers) { group send if broad-

cast available}

Reply (to primary manager)

End

Figure 4.3 Courier process

62

primary as well as the secondary managers can take part in the UGSEND

activity, each manager has a UGSEND courier. Also, both primary and

secondary managers have a local courier to help them deliver the messages to

their local members. In additon to UGSEND activity, the primary manager is

responsible for transmitting OGSEND messages and group management messages.

Thus, the primary manager has an additional OGSEND courier to assist in

transmitting these type of messages.

When the primary or secondary manager receives a message for

transmission, it first checks if the courier appropriate for handling the

transmission is free. If the courier's status indicates that it is FREE, then the

message is handed over to it for transmission to all the managers of the group.

Once the message has been handed over to the courier, it's status is set to

BUSY. After the message has been delivered to and acknowledged by all the

operational managers for the group, the courier notifies it's manager which then

sets the courier's status to FREE. If the primary or secondary manager receives

a message for transmission while the appropriate courier is busy handling the

previous message, then the new message is queued first-in-first-out in the

courier's message queue. After it completes the message transmission, the courier

picks up the next message from it's message queue if it is nonempty.

4.4.2 Prober

The prober process is created by the primary manager to probe the

secondary managers of the group to determine if they are still operational. The

prober periodically (every 30 seconds in our implementation) sends a probe

message ARE YOU ALIVE to all the secondary managers in the manager

member list using one-to-one IPC. The operational secondary managers reply with

a I AM ALIVE message to this probe. If a secondary manager has failed, then

63

the underlying system will notify the prober that it is trying to send a message

to a nonexistent process. When the prober learns about this failure, it sends a

SMGR FAILED message to the primary manager along with the failed

secondary manager's pid. In addittion to this probing, the prober is also

responsible for multicasting a RESOLVE message periodically (every two minutes

in our implementation). This message is necessary to detect whether there are

any other groups listening on the same multicast address which may happen if

the underlying network partitions and remerges as explained in Section 3.5.

4.4.3 V u l t u r e

Each secondary manager for a group employs a vulture to detect the

failure of the primary manager for that group. A high level description of the

vulture process is shown in Figure 3.2. The vulture process makes use of the

R e c e i v e S p e c i f i c primitive provided by the underlying V Kernel to detect the

failure of the primary manager. Basically the vulture is simply receive blocked

on the primary manager. It will be unblocked only if the primary manager

sends a message to it or if the primary manager fails. In the latter case, the

underlying system informs the vulture that it is trying to receive a message

from a nonexistent process. When the vulture learns about the primary

manager's failure, it sends a PMGR FAILED message to it's secondary manager

which then takes part in the selection of a new primary manager. After a new

primary manager has been selected, the secondary managers inform their vultures

to look for the failure of the newly selected primary manager.

4.5 F a i l u r e D e t e c t i o n a n d R e c o v e r y

This section describes the implementation details of failure detection and

recovery procedures in case of secondary manager failure (4.5.1) and primary

64

manager failure (4.5.2).

4.5.1 Secondary Manager Failure

We have described in Section 4.4.2 how the prober detects the failure of

a secondary manager. If a secondary manager fails in the middle of a UGSEND

message transmission, some members may not receive the message. Thus, when

the prober informs the primary manager that a particular secondary manager

has failed, the primary manager sends a SEND LAST MSG request to all the

other operational secondary managers. This message contains the failed secondary

manager's index. The operational secondary managers which receive this request

send the last UGSEND message received from the failed secondary manager.

This message is stored in the receive buffer of each operational secondary

manager indexed by the failed secondary's manager index. If the returned

messages as well as the last UGSEND message received by the primary

manager from the failed secondary manager have the same ussno, then the

failed secondary manager has either successfully completed it's last UGSEND

message transmission activity or no member has received it's last UGSEND

message. Either of these outcomes assures atomicity. However, if there is a

discrepancy among the ussnos, then the primary manager takes the message

with the highest ussno and retransmits it to the secondary managers. Those

secondary managers that have already received this message simply discard the

duplicates as. their ursnos will not match the ussno of the retransmitted

message. However, those that have not received the message from the failed

secondary manager receive this message and deliver it to their local members.

After finishing the incomplete UGSEND message transmission, the primary

manager deletes the failed secondary managers's pid from it's manager identifier

table and invalidates that secondary's manager index. This information is also

65

sent to all the operational secondary managers for them to update their lists.

4.5.2 P r i m a r y M a n a g e r F a i l u r e

A group cannot function without a primary manager. Thus, when the

primary manager of a group fails, the secondary managers for that group must

detect this failure and select a new primary manager from among themselves.

We have described in Section 4.4.3, how the secondary managers detect the

failure of the primary manager through their vultures, and in Section 3.5 about

the selection scheme used to choose the new primary manager. In order to avoid

possible communication deadlocks, each secondary manager participating in the

election creates an a i de process which takes part in the message transmission

activities (pertaining to elction) on behalf of it's secondary manager. These aide

processes destroy themselves once their task is complete. Once a new primary

manager is chosen, it must finish any incomplete transmission of OGSEND

message or messages initiated by the failed primary manager to inform the

secondary managers of changes in the group view such as a secondary manager

has joined the group or has failed.

When the secondary managers receive these messages, they store them in

a fixed receive buffer indexed by a value called OGSEND INDEX common to all

managers. OGSEND INDEX. This index does not change with primary managers.

Thus, when a new primary manager is chosen, it sends the SEND LAST MSG

request to all the operational secondary managers. This request contains the fixed

OGSEND INDEX instead of a manager index. The operational secondary

managers then return the last message stored in their receive buffers indexed by

OGSEND INDEX. If the returned messages as well as the last message

received by the new primary manager have the same o s s n o s , then this message

has either been successfully delivered to all the secondary managers or to none

66

of them. However, if there is a discrepancy, then the primary manager takes

the message with the highest ossno and resends it to the secondary managers

in a similar fashion explained for secondary manager failure. Once this is

completed, the new primary manager reregisters it's pid with the name service

with type GLOBAL so that processes executing on other hosts will be able to

obtain it's pid from the name service. The new primary manager then creates a

prober and an OGSEND courier processes, sets it's u s s n o (to be assigned to the

next OGSEND message) to the value of the last u s s n o plus one, and resumes

normal operation.

4.6 N e t w o r k P a r t i t i o n

We have seen in Section 3.4 how network partition creates subgroups

with the same multicast address. This causes problems when the partitioned

network remerges. We have seen in Section 3.5.1 how the primary managers

detect that there are more than one primary manager listening on the same

multicast address, and in Section 3.5.2 about the leadership resolution scheme

used to resolve the leadership. In order to avoid possible communication

deadlocks, each primary manager participating in the leadership resolution creates

a r e s o l v e r process which takes part in the message transmission activities

(pertaining to leadership resolution) on behalf of it's primary manager.

The primary manager which gives up it's leadership changes it's type to

SECONDARY and informs the secondary managers in it's manager member list

about their new primary manager. Each of the secondary managers then change

it's state to MERGING and send a MERGE request to the new primary

manager. When a primary manager receives a MERGE request from a secondary

manager, it transfers the group view information to the merging manager and

adds it's pid to it's manager member list. Also, it informs the secondary

67

managers that are already in it's manager member list to update their lists as

well. Once a secondary manager has merged, it changes it's state to ACTIVE

and resumes normal operation.

4 . 7 P e r f o r m a n c e o f the G r o u p S e n d P r i m i t i v e s

We have done some preliminary measurements on the elapsed time for

the group send primtives o g s e n d and u g s e n d . Elapsed time is the length of

time during which a sender remains blocked after invoking an u g s e n d or ogsend

routine. Elapsed time for these primitives depends on a number of factors,

including the underlying system's workload, number of secondary managers for

the group, and whether the IMMEDIATE REPLY bit (explained in Section 4.3.1)

is set in msgtype. The elapsed time is also dependent on the speed of the

processor and the type of network interface. For our measurements we used four

16 MHz 68020 based SUN workstations, each connected to a lOMbs Ethernet

interface with 32 receive buffers.

The measurements were made by performing OGSEND and UGSEND

message transmission N times and dividing the total elapsed time by N to

obtain a reasonably accurate estimate for a single operation. Table 4.1 gives the

elapsed time for the UGSEND and OGSEND message transmissions as a function

of the size of the remote group members. In this case the process which invokes

the o g s e n d or u g s e n d primitives resides in the host where the primary manager

of the group executes.

Table 4.2 is similar to Table 4.1, except that the process which invokes

the primitives resides in a host where a secondary manager for that group

executes. In both cases the receiving managers acknowledge a message only after

the message is delivered to and acknowledged by their local members (i.e.,

68

Table 4.1

No. of members ugsend ogsend

1
8.8 9.5

2 19.2 19.9

3 21.2 21.8

4 23.7 24.0

Elapsed time (milli seconds) for ugsend and ogsend.

Sending process in the same host as the primary manager.

Table 4.2

No. of members ugsend ogsend

1
- -

2 19.2 21.2

3 21.7 22.4 s

4 23.2 25.1

Elapsed time (milli seconds) for ugsend and ogsend.

Sending process in the same host as a secondary manager.

I M M E D I A T E R E P L Y bit is off). N is chosen to be 30,000 for both

measurements .

The first observation f rom these figures is that the elapsed time for both

pr imi t ives doubles when a remote member is added to the group. However , the

increase in the elapsed time for additional remote members is not very

s igni f icant. This behaviour is understandable, because the under ly ing network is a

broadcast network and the t ime to t ransmit a group message to one remote site

69

or multiple remote sites is the same, assuming that the probability of a packet

loss is negligible. This may be a valid assumption since the network interface

has 32 receive buffers which considerably reduces the chances of losing a packet.

The second observation is that the elapsed time for the UGSEND message

transmission is less than that for the OGSEND transmission. However, this

difference is not very significant when the process which invokes these primitives

resides in the same host as the primary manager. The reason is that the

UGSEND message transmission is carried out by either the primary or secondary

manager for the group executing locally, but the OGSEND message is sent to

the primary manager which may be executing in a host different from that of

the sending process.

4.8 C h a p t e r S u m m a r y

The proposed mechanism is structured into a set of cooperating processes.

Each host runs a group server process. Processes wishing to create or to join

the group invoke the appropriate group management stub routines which in turn

send appropriate requests to the group server. When a group is created, a

primary manager for that group is created in the initial member's host, when a

process joins the group from a host where neither the primary nor secondary

manager for. this group executes, a secondary manager for this group is created

in that host. Both the primary as well as the secondary managers maintain

group management information necessary to coordinate group management and

group communication activities. When a message is sent to a group, the proposed

mechanism makes sure that the message is delivered to all the managers of the

group each of which will then deliver the message to the local members of the

group. In order to improve the concurrency of the manager processes, each of

them employ some worker processes such as couriers, probers and vultures. Any

70

incomplete message transmission as a result of primary or secondary manager

failure will be detected and completed by the proposed mechanism. Network

partition results in subgroups. Communication within these subgroups will be

ordered and atomic. When the partitioned network remerges, the mechanism

detects this and merges the subgroups to form a single group. Mesaurements on

the elapsed time for ogsend and ugsend indicate that ordered group send has

some overhead compared to unordered group send.

71

Chapter Five

Conclusions

This work describes the design and implementation details of a reliable

group communication mechanism. A group communication mechanism is reliable if

it has the two aspects of reliability: full delivery and correctness. In order to

ensure full delivery the sender must know the identities of the members of the

group. If the underlying network supports multicast or broadcast then the

message can be first multicast in a datagram fashion to the recipients and then

retransmitted on a one-to-one basis to those that failed to receive it the first

time around. However, if the underlying network supports only unicast, then the

message can be sent on a one-to-one basis to the recipients. Issues related to

correctness are atomicity, order and survivability. Atomicity ensures that every

message sent to a group will be delivered to all operational members or to none

of them. Order guarantees that messages will be delivered in the same sequence

to all the operational members. Survivability assures continuous operation despite

process, host or network failures.

Full delivery does not necessarily guarantee correctness. Partial delivery

may occur if the sender fails in the middle of a transmission. Also, if the group

membership is dynamic, it is difficult for the sending process to maintain an up

to date membership information. Furthermore, in a system with multiple senders

and multiple receivers, a message sent from a sender may arrive at a

destination before the arrival of a message from another sender; however this

order may be reversed at another destination. This violates the order prpoerty.

In order to provide the reliable properties transparent to the application

processes, some form of coordination is necessary in the underlying group

communication mechanism. If the underlying mechanism provides a process which

72

knows the identities of the group members, the messages from multiple senders

can be funneled through this process thus ensuring full delivery as well as order.

In order to ensure atomicity and survivability in case of the failure of the

funnel process, this process may be replicated at different sites. In the proposed

mechanism, each group has a primary manager (funnel process) which is

replicated at all member sites (secondary managers). If the primary manager

fails, a new primary manager is selected from among the secondary managers.

The new primary manager will finish any incomplete message transmission

initiated by the failed primary manager. This guarantees atomicity and

survivability. The ordered messgage transmission is called OGSEND.

Both primary and secondary managers maintain manager member lists

which contain the pids of all the managers. The manager member list is updated

only by the primary manager. Whenever a secondary manager joins or leaves

the group, the primary manager is notified. The primary manager updates it's

manager member list and informs the secondary managers to update their lists

as well. Each manager (primary as well as secondary) also maintains a local

group member list which contains the pids of the members of the group local to

their respective hosts. Each manager is responsible for updating it's local group

member list. When the primary manager receives a message, it sends the

message to all the secondary managers each of which in turn delivers the

message to their local members. This requires less space, less network traffic

and reduced code complexity than the case of replicating the entire membership

information in the primary and all the secondary managers.

Some applications do not require an ordered delivery but only atomic

delivery. The unordered message transmission is called UGSEND. These messages

need not be funneled through the primary manager. Since all the secondary

73

managers know the pids of all the managers of the group, a UGSEND message

is first sent to a secondary manager for the group residing in the sending

process' host which then transmits this message to all other managers. If a

secondary manager for the group is not executing in the sending process' host

then the message is sent to the primary manager which then transmits it to

the rest of the managers. If a secondary manager fails, the primary manager

detects this and finishes any incomplete UGSEND message transmission initiated

by the failed secondary manager. Also, the primary manager deletes this

secondary manager's pid from it's manager member list and informs the other

operational secondary managers to update their lists as well.

As mentioned earlier, when the primary manager fails, a new primary

manager is selected from among the secondary managers. Secondary managers

use a succession list selection scheme to select the new primary manager. In

this scheme the oldest secondary manager forces the younger ones into accepting

it as the new primary manager. This can be easily done in the proposed

mechanism since all the secondary managers have the same manager memberlist

ordered by the time they joined the group.

Network partition creates subgroups with the same multicast address. This

causes problems when the network remerges. However, the proposed mechanism

detects this and merges these subgroups together to form a single group.

Some performance measurements were made on the group send primitives

ogsend and ugsend provided by the proposed group communication mechanism.

From the measurements, one observes that the ordered group send takes more

time to complete than the unordered group send when the sending process does

not reside in the same host as the primary manager. This overhead is due to

the fact that the message has to be funneled through the primary manager

74

residing in a different host, whereas UGSEND messages are sent to the local

secondary manager which then transmits them to the rest of the managers of

the group.

The mechanism has been implemented on the V Kernel running on four

SUN-3/50 workstations interconnected by an Ethernet. The system works as

expected and some performance data have been reported in the thesis.

75

Bibliography

[I] . K.P.Birman and T.A.Joseph, Reliable Communication in the Presence of

Failures. ACM Transactions on Computer Systems, Volume 5, Number 1,

February 1987.

[2]. J.M.Chang and N.F.Maxemchuk, Reliable Broadcast Protocols. ACM

Transactions on Computer Systems, Volume 3, Number 1, February 1985.

[3] J.M.Chang and N.F.Maxemchuck, A Broadcast Protocol for Broadcast

Networks. Proceedings of GLOBCOM, December 1983.

[4] S.T.Chanson and K.Ravindran, A Distributed Kernel Model for Reliable Group

Communication. Proceedings of the IEEE-CS Symposium on Realtime

Systems, New Orleans, December 1986.

[5]. D.R.Cheriton, The Thoth System: Multi-Process Structuring and Portability.

American Elsevier, NY, 1982.

[6]. D.R.Cheriton, The V Kernel: A Software Base for Distributed Systems. IEEE

Software, Volume 1, Number 2, April 1981.

[7]. D.R.Cheriton and W.Zwaenepol, Distributed Process Groups in the V Kernel.

ACM Transactions on Computer Systems, Volume 3, Number 2, May 1985.

[8]. F.Cristian, H.Aghili, R.Strong and D.Dolev, Atomic Broadcast: From Simple

Message Diffusion to Byzantine Agreement. Technical Report RJ 4540(48668),

IBM, October 1984.

[9]. A.Frank, L.D.Wittie and A.J.Bernstein, Group Communication on

Netcomputers. Proceedings of the 4th International Conference on Distributed

Computing Systems, San Francisco, CA, May 1984.

[10]. H.Garcia-Molina, Elections in a Distributed Computing System. IEEE

Transaction on Computers, Volume C-31, January 1982.

[II] . H.Garcia-Molina and A.K.Abbot, Reliable Distributed Database Management.

Technical Report CS-TR-047-86, Department of Computer Science, Princeton

76

University, August 1986.

[12]. R.Gusella and S.Zatti, An Election Algorithm for a Distributed Clock

Synchronization Program. Proceedings of the 6th IEEE-CS International

Conference on Distributed Computing Systems, Cambridge, MA, May 1986.

[13]. L.Lamport, Time, Clocks and the Ordering of Events in a Distributed System.

Communications of the ACM, Volume 21, Number 7, July 1978.

[14]. K.Ravindran and S.T.Chanson, Process Alias Based Structuring Techniques for

Distributed Computing Systems. Proceedings of the 6th IEEE-CS International

Conference on Distributed Computing Systems, Cambridge, MA, May 1986.

[15]. F.Schneider, D.Gries and R.Schlicting, Reliable Broadcast Protocols. Science of

Computer Programming, Volume 3, Number 2, March 1984.

[16]. D.Skeen, Determining the Last Process to Fail . ACM Transactions on

Computer Systems, Volume 3, Number 1, February 1985.

77

Appendix A

IPC Primitives of V Kernel

Th is Chapter describes the IPC operations provided by the V Kerne l which

is used as the under ly ing system to build the proposed group communicat ion

mechan ism described in the thesis. The V Kernel evolved f rom two previous

systems - Thoth and Verex [5]. The V . Kerne l is referred to as distr ibuted

because i t 's faci l i t ies are available uniformly and transparent ly across mult iple

machines connected by a local network. Thus, it provides the appearence of a

single kernel interface, for the most part successfully mask ing the existence of

mult ip le machines. A connected set of machines that provides a single V Kerne l

p rogram envi ronment and name space is called a V D o m a i n [6] as depicted in

F igu re A . I .

The major facil i t ies provided by the V Kernel are processes and

communicat ion between processes. In such an environment, services are offered by

server processes whi le client processes communicate wi th servers us ing the inter

process communicat ion (IPC) primit ives to negotiate and receive services. The

sender and receiver of an D?C activi ty are specified by their process identif iers

Ft_E

SERVER

MACHINE

WORK- WORK- - • • • WORK-
STATION STATION STATION

V Kernel V Kernel V Kernel

RLE
SERVER

MACHINE

PRINTER

SERVER

MACHINE

LOCAL NETWORK

Figure A.1 V domain of local network-connected machines.

78

(pids). The most common communicat ion scenario is as fol lows. A cl ient process

executes a S e n d operat ion to t ransmi t a message to a server process and is

suspended. The message eventual ly causes the server 's execution of the R e c e i v e

operation to be completed. The server executes a R e p l y to send a reply message

to the client. Th is S e n d - R e c e i v e - R e p l y act iv i ty is referred to as a message

transact ion an example of which is shown in F igure A . 2. The following section

describes the Send operat ion in detai l . Sections A . 2 and A . 3 describe the Receive

and Reply operations respectively. Whi le expla in ing the Send, Receive and Reply

operations, we assume that the processes involved in the communicat ion activit ies

do not reside on the same host.

A.1 S e n d O p e r a t i o n

A process w ish ing to send a message to another process invokes

Send(msg, pid), where msg is a pointer to a 32 byte message to be transmit ted

to a process whose id is specified i n pid. The process invoking the Send

pr imit ive is suspended and it resumes operation when ihe receiver replies or i f

the send operation fai ls.

When the Send pr imi t ive is invoked, the sender is suspended. The sender's

kernel transmits a S E N D inter-kernel packet wi th the message embedded to the

Mocked

TIME

message transaction

Figure A.2 Send - receive - reply message transaction

79

receiver's kernel. The underlying hardware assures that all the network interfaces

but the one at the desired destination discard the message. When a SEND

packet is received by the receiver's kernel, it first checks for the existence of

the receiver. If the receiver does not exist, the receiver's kernel replies to the

sender's kernel with a NON_EXISTENT_PROCESS message. The sender's kernel

then unblocks the sender and informs it of the outcome. However, if the receiver

is alive, then the receiver's kernel queues the message first-in-first-out in the

receiver's message queue.

If the receiver does not reply to the sender within a specified time

period, the sender's kernel retransmits the SEND packet to the receiver's kernel.

If the receiver's kernel finds that there is already an identical SEND packet

queued up in the receiver's message queue, it discards the incoming packet and

replies with a BREATH OF LIFE message to the sender's kernel which resets

it's retransmission count. If after a number of retransmissions the sender's kernel

does not receive any response from the receiver's kernel, it assumes that the

receiver's site has failed or the network has partitioned. The sender's kernel

therefore unblocks the sender and informs it that the Send operation has failed.

Unfortunately the sender's kernel cannot distinguish between site failure and

network partition unless this information is available in the underlying

communication medium such as in some ring-type networks. Figure A.3 depicts

the Send operation in various scenarios.

By invoking the Send primitive, one can be assured that as long as the

receiver is alive and the network is not partitioned, the message will be

delivered to it's destination. Also it allows the sender to exploit positive

acknowledgement and retransmission for reliable delivery or determination of

process, host or network failure.

80

SENDER RECEIVER

S«nd invoked

Transmit SEND

Packet

Timeout,

Retransmit

SEND Packet

Reset timer &

rexmit count

Time out
Retransmit

Reply received

Unblock Sender

Discard REPLY

Packet

SEND Packet queued

Previous SEND Packet already

in Receiver's queue. Reply with

BREATHjDFUFE

Receive invoked

Reply invoked

Transmit REPLY Packet

and save a copy of it

Already replied,

retransmit the

saved copy

Discard the saved

copy

Figure A.3 Send operation in V

A.2 R e c e i v e O p e r a t i o n

The V Ke rne l provides two different pr imit ives for receiving messages;

R e c e i v e and R e c e i v e S p e c i f i c . When a process invokes Receive(msg) to obtain a

32 byte message at the location pointed at by msg, it may receive a message

f rom any process in the domain. The receiver's kernel s imply suspends the

receiver unt i l a message arr ives f rom some sender. O n the other hand,

ReceiveSpecif ic(msg, pid) is used to obtain a 32 byte message from a process

whose id is specified by pid. When a process (receiver) invokes ReceiveSpecific to

receive a message f rom a part icular process (sender), the receiver's kernel

suspends the invoker. It f i rst checks i f there is already a S E N D packet queued

8 1

up in the receiver's message queue from the specified sender. If there is none,

the receiver's kernel sends a RECEIVE inter-kernel packet to the sender's kernel.

When the RECEIVE packet is received by the sender's kernel, it checks whether

the sender exists or not. If the sender does not exist, it replies with a

NON_EXISTENT_PROCESS message to the receiver's kernel which in turn

unblocks the receiver and informs it of the outcome. On the other hand if the

sender exists, it's kernel replies with a BREATH OF LIFE message. On

receiving this message, the receiver's kernel resets it's retransmission count. If

the receiver's kernel does not receive a SEND packet from the sender within a

specified time period, it repeats the ReceiveSpecific procedure again. In case the

sender's site fails or if the network partitions, the BREATH OF LIFE message

from the sender's kernel will not be received by the receiver's kernel. Therefore,

after a maximum number of retransmissions the receiver's kernel unblocks the

receiver and reports that the ReceiveSpecific operation has failed. As in the Send

operation, the receiver's kernel cannot distinguish between network partition and

host failures. Figure A.4 illustrates the ReceiveSpecific operation.

By invoking the ReceiveSpecific primitive, a process can detect the failure

of another process or the site on which the process resides. Thus, using the

ReceiveSpecific primitive, the v u l t u r e scheme described in Section 3.3.2 can be

easily implemented.

A . 3 R e p l y O p e r a t i o n

A process may only reply to a process from which it has received a

SEND packet. This is necessary to maintain tight synchronization of the

S e n d - R e c e i v e - R e p l y activity. When a process (replier) invokes Reply(msg, pid) to

reply with a 32 byte message pointed at by msg to a process specified by pid,

it's kernel first checks to see whether the replier had already received a SEND

82

RECOVER

ReceiveSpecific invoked
Checks (or SEND Packet

Transmit RECEIVE

Packet

Reset timer & r-

rexmtt count

Timeout

Checks lor SEND Packet

Retransmit RECEIVE

Packet

Reset timer &

rexmit count

SEND packet £

received, unblock

Receiver

SENDER

-j RECEIVE Packet received

-i Receiver is alive, reply
-

1

 with BREATH_OF_LIFE

RECEIVE Packet received

Receiver is alive, reply

with BREATHJOFJJFE

Send invoked

Transmit SEND Packet

Figure A.4 ReceiveSpecific operation in V

packet f rom this process. If the replier did not receive a S E N D packet f rom the

specified process, then the Rep ly operation fai ls. Otherwise, a R E P L Y inter-kernel

packet is sent to the specified process' kernel . We have already seen, under the

Send operation, how the sender's kernel keeps t ransmit t ing the S E N D packet

unt i l a R E P L Y packet is received or t imeout, whichever occurs first. A f te r the

R E P L Y packet has been sent, a copy of it is kept in the replier's kernel for

83

REPUER SENDER

Reply invoked

Transmit REPLY

Packet and save

a copy of H

Retransmit SEND
Packet

Already replied,

retransmit the

saved copy

Reply received,

unblock the Sender

Discard the

saved copy

cz • Old Reply, discard

Figure A.5 Reply operation in V

sometime. The replier's kernel retransmits this saved copy in response to

retransmitted SEND packets. The copy is discarded after a specified time period.

The Reply operation is illustrated in Figure A.5

