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Abstract MapReduce offers an ease-of-use programming

paradigm for processing large data sets, making it an attrac-

tive model for opportunistic compute resources. However,

unlike dedicated resources, where MapReduce has mostly

been deployed, opportunistic resources have significantly

higher rates of node volatility. As a consequence, the data

and task replication scheme adopted by existing MapReduce

implementations is woefully inadequate on such volatile re-

sources.

In this paper, we propose MOON, short for MapReduce

On Opportunistic eNvironments, which is designed to of-

fer reliable MapReduce service for opportunistic comput-

ing. MOON adopts a hybrid resource architecture by supple-

menting opportunistic compute resources with a small set of

dedicated resources, and it extends Hadoop, an open-source

implementation of MapReduce, with adaptive task and data

scheduling algorithms to take advantage of the hybrid re-

source architecture. Our results on an emulated opportunis-

tic computing system running atop a 60-node cluster demon-

strate that MOON can deliver significant performance im-

provements to Hadoop on volatile compute resources and

even finish jobs that are not able to complete in Hadoop.
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1 Introduction

With the advent in high-throughput scientific instruments

as well as Internet-enabled collaboration and data sharing,

rapid data growth has been observed in many domains, sci-

entific and commercial alike. Processing vast amounts of

data requires computational power far beyond the capabil-

ity of an individual personal computer; it requires a more

powerful resource such as a cluster supercomputer. Despite

the success of commodity clusters for supercomputing, such

dedicated high-performance computing (HPC) platforms are

still expensive to acquire and maintain for many institutions,

necessitating more affordable parallel computing.

One approach to provide cost-efficient HPC is to har-

ness the unused compute resources from personal comput-

ers or server farms, such as clusters and compute clouds.

For example, volunteer computing systems [4, 5, 8, 23] al-

low users to run their jobs on idle cycles donated by the

owners of desktop computers. These idle compute cycles

are virtually “free” to institutions’ operational cost. Idle

compute resources can also be available in cluster or cloud

computing environments because of resource scheduling

and provisioning constraints. Recently, Amazon EC2 has

allowed customers to use EC2’s unused compute capabil-

ity with a bid price lower than that of normal on-demand

compute instances [2]. Specifically, EC2 periodically sets a

price (called “Spot Price”) on the unused compute resources.

A customer gains access to these resources (via “Spot In-

stances”) if the bid price is higher than the Spot Price and

loses access to those resources when the Spot Price goes

higher than the bid price.

Since harnessed idle resources can freely come and go,

we refer to the computing environments atop those resources

as opportunistic environments. While efficient computing in

opportunistic environments has been extensively studied in
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Fig. 1 Percentage of unavailable resources measured on a production

volunteer computing system

the past, existing studies mainly focus on CPU-intensive,

embarrassingly parallel workloads. Traditional parallel pro-

gramming models such as MPI, which assume high ma-

chine availability, do not work well on opportunistic envi-

ronments. As such, there lacks standard programming tools

for parallel data processing on these environments.

The emergence and growing popularity of MapRe-

duce [10] may bring a change to the landscape of oppor-

tunistic computing. MapReduce is a popular programming

model for cloud computing, which simplifies large-scale

parallel data processing. Its flexibility in work distribution,

loosely synchronized computation, and tolerance for het-

erogeneity are ideal features for opportunistically available

resources. While this union is conceptually appealing, a vi-

tal issue needs to be addressed—opportunistic computing

systems are significantly more volatile than dedicated com-

puting environments, where MapReduce has mostly been

deployed so far.

For example, while Ask.com per-server unavailability

rate is an astonishingly low 0.0455% [26], availability

traces collected from an enterprise volunteer computing sys-

tem [19] show a very different picture, as shown in Fig. 1.

The figure shows that the unavailability rate of individual

nodes averages around 40% with as many as 90% of the re-

sources simultaneously inaccessible. Unlike dedicated sys-

tems, software/hardware failure is not the major contributor

to resource volatility on volunteer computing systems. Vol-

unteer computing nodes can be shut down at the owners’

will. Also, typical volunteer computing frameworks such as

Condor [23] consider a computer unavailable for external

jobs whenever keyboard or mouse events are detected. In

such a volatile environment, it is unclear how well existing

MapReduce frameworks perform.

In this work, we first evaluate Hadoop, a popular, open-

source MapReduce run-time system [1], on an emulated op-

portunistic environment and observe that the volatility of op-

portunistic resources creates several severe problems.

1. The Hadoop Distributed File System (HDFS) provides

reliable data storage through replication, which on vola-

tile systems can have a prohibitively high replication cost

in order to provide high data availability.

2. Hadoop does not replicate intermediate results, i.e., the

output of Map tasks. When a node becomes inaccessible,

the Reduce tasks processing intermediate results on this

node will stall, resulting in Map task re-execution or even

livelock.

3. Hadoop task scheduling assumes that the majority of the

tasks will run smoothly until completion. However, tasks

can be frequently suspended or interrupted on oppor-

tunistic environments. The default Hadoop task replica-

tion strategy, designed to handle failures, is insufficient

to handle the high resource volatility.

To mitigate these problems in order to realize the comput-

ing potential of MapReduce on opportunistic environments,

we propose a novel system called MOON—MapReduce

On Opportunistic eNvironments. MOON adopts a hybrid

resource architecture by provisioning a small set of dedi-

cated, reliable computers to supplement the volatile com-

pute nodes. Leveraging such a hybrid architecture, MOON

then extends Hadoop’s task and data scheduling to greatly

improve the quality of service (QoS) of MapReduce. To-

gether with detailed descriptions of MOON, we present an

extensive evaluation of its design on emulated opportunis-

tic environments. Our results show that MOON can deliver

as much as a six-fold speedup to Hadoop and can even fin-

ish MapReduce jobs that would not otherwise complete in

highly volatile environments.

2 Background

In this section, we present some background information on

volunteer computing systems and the MapReduce program-

ming model.

2.1 Volunteer computing

Many volunteer computing systems have been developed to

harness idle desktop resources for high-throughput comput-

ing [4, 5, 8, 23]. A common feature shared by these systems

is non-intrusive deployment. While studies have been con-

ducted on aggressively stealing computer cycles [21] and its

corresponding impact [16], most production volunteer com-

puting systems allow users to donate their resources in a

conservative way by not running external tasks when the ma-

chine is actively used. For instance, Condor allows jobs to

execute only after 15 minutes of no console activity and a

CPU utilization level lower than 0.3.
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2.2 MapReduce

MapReduce is a programming model designed to sim-

plify parallel data processing [10]. Google has been us-

ing MapReduce to handle massive amount of web search

data on large-scale commodity clusters. This programming

model has also been found effective in other application ar-

eas including machine learning [7], bioinformatics [20], as-

trophysics and cyber-security [14].

A MapReduce application is implemented through two

user-supplied primitives: Map and Reduce. Map tasks take

input key-value pairs and generate intermediate key-value

pairs through certain user-defined computation. The inter-

mediate results are subsequently converted to output key-

value pairs in the reduce stage with user-defined reduc-

tion processing. Google’s MapReduce production systems

use its proprietary high performance distributed file system,

GFS [13], to store the input, intermediate, and output data.

2.3 Hadoop

Hadoop is an open-source, cluster-based, MapReduce im-

plementation written in Java [1]. It is logically separated

into two subsystems: the Hadoop Distributed File System

(HDFS), and a master-worker MapReduce task execution

framework.

HDFS consists of a NameNode process running on the

master and multiple DataNode processes running on the

workers. To provide scalable data access, the NameNode

only manages system metadata, whereas actual file con-

tents are stored on the DataNodes. Each file in the system

is stored as a collection of equal-sized data blocks. For I/O

operations, an HDFS client queries the NameNode for the

data block locations, with subsequent data transfer occur-

ring directly between the client and the target DataNodes.

Like GFS, HDFS achieves high data availability and relia-

bility through data replication, with the replication degree

specified by a replication factor (3 by default).

To control task execution, a single JobTracker process

running on the master manages job status and performs

task scheduling. On each worker machine, a TaskTracker

process tracks the available execution slots: a worker ma-

chine can execute up to M Map tasks and R Reduce tasks

simultaneously (M and R set to 2 by default). A TaskTracker

contacts the JobTracker for an assignment when it detects an

empty execution slot on the machine. Tasks of different jobs

are scheduled according to job priorities. Within a job, the

JobTracker first tries to schedule a non-running task, giving

high priority to the recently failed tasks, but if all tasks for

this job have been scheduled, the JobTracker speculatively

issues backup tasks for slow running ones. These speculative

tasks help improve job response time.

3 MOON design rationale and architecture overview

As discussed in Sect. 1, compute resources in opportunistic

environments can be highly volatile and thus are not depend-

able enough to offer reliable compute and storage services

needed to support efficient MapReduce computing. Conse-

quently, MOON adopts a hybrid architecture by supplement-

ing volatile compute instances with a set of dedicated com-

pute instances. For cost-effective purpose, MOON assumes

that the number of dedicated instances is much smaller than

that of volatile ones.

The hybrid resource architecture of MOON has multi-

ple advantages. First, placing a replica on dedicated nodes

can significantly enhance data availability without impos-

ing a high replication cost on the volatile nodes, thereby

improving overall resource utilization and reducing job re-

sponse time. For instance, when the machine unavailability

rate is 0.4, eleven replicas are needed to achieve 99.99%

availability for a single data block, assuming that machine

unavailability is independent.1 Handling large-scale corre-

lated resource unavailability requires even more replica-

tion. Suppose the unavailability rate is 0.001 for a ded-

icated computer,2 achieving 99.99% availability requires

only one copy on the dedicated node and three copies on

the volatile nodes.3 Second, long-running tasks with execu-

tion times much longer than the mean time between failures

(including temporary inaccessibility due to the owner’s ac-

tivities) of volunteered machines may be difficult to finish

on purely volatile resources because of frequent interrup-

tions. Scheduling those long-running tasks on dedicated re-

sources can guarantee their completion. Finally, with these

dedicated nodes, the system can function even when a large

percentage of nodes are temporarily unavailable.

There are several major assumptions in the current

MOON design:

– MOON targets institutional intranet environments or clus-

ter environments, where compute nodes are connected

with a local area network with relatively high bandwidth

and low latency.

– As will be discussed in Sect. 4, we assume that collec-

tively, the dedicated nodes have enough aggregate storage

for at least one copy of all active data in the system. We

argue that this assumption is made practical by the de-

creasing price of commodity servers and hard drives with

large capacity.

1The availability of 11 replicas is 1 − 0.411 = 0.99996.

2For example, the well-maintained workstations in our research lab

have had only 10 hours of unscheduled downtime in the past which is

equivalent to a 0.001 unavailability rate.

3The availability of a data block with one dedicated replica and three

volatile replicas is 1 − 0.43 × 0.001 = 0.99994.
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– We assume that security solutions of existing volunteer

computing systems and cloud platforms can be applied

to the MOON system. Consequently, we currently do not

directly address the security issue.

– For general applicability, we conservatively assume that

the node unavailability cannot be known a priori. In the

future, we will study how to leverage node-failure pre-

dictability to enhance scheduling decisions under certain

environments.

It is worth noting that this paper aims at delivering

a proof-of-concept study of the MOON hybrid design as

well as corresponding task scheduling and data manage-

ment techniques. The efficacy of the proposed techniques

is gauged with expansive performance evaluations. Our ini-

tial results shown in this paper demonstrate the merits of the

hybrid design and the complex interaction between system

parameters. This motivates automatic system configuration

based on rigorous performance models, which is part of our

future work. Please also note that MOON is designed to sup-

port general MapReduce applications and does not make as-

sumptions on job characteristics.

3.1 Example usage scenarios

MOON is designed for a broad range of opportunistic com-

puting environments. Here we give some example usage sce-

narios of MOON.

– In desktop computing environments, MOON can be

deployed atop volunteer computing systems such as

Condor [23] and Entropia [8]. Leveraging the cycle-

stealing features of volunteer computing systems, MOON

processes can be suspended and resumed according to the

activities of desktop owners, thus harnessing idle desktop

resources for parallel data processing in a non-intrusive

manner.

– In cluster environments, MOON can be used to im-

prove resource utilization for a mix of interactive and

batched workloads. For instance, the maturity of virtu-

alization technologies has motivated universities to offer

on-demand virtual compute instances (e.g., for a com-

puter science class) for education [6]. User requests are

typically bursty, leaving the underline cluster underuti-

lized from time to time. Harnessing idle resources in these

systems for parallel computing is nontrivial because the

idle resources can be claimed by interactive user requests

at any time. MOON can be used to piggyback batched

parallel workloads on the idle resources.

– In cloud environments, MOON can help users better

leverage the low-cost bid instances, e.g., the Spot In-

stances in Amazon EC2 mentioned in Sect. 1. The hybrid

architecture of MOON can help save compute progress

when Spot Instances become unavailable. MOON can

also be used to unify the programing (i.e., using MapRe-

duce) on both regular and bid instances.

4 MOON data management

In this section, we present our enhancements to Hadoop to

provide a reliable MapReduce service from the data man-

agement perspective. Within a MapReduce system, there are

three types of user data—input, intermediate, and output. In-

put data are processed by Map tasks to produce intermediate

data, which are in turn consumed by Reduce tasks to create

output data. The availability of each type of data has differ-

ent QoS implications.

For input data, temporary inaccessibility will stall com-

putation of corresponding Map tasks, whereas loss of the

input data will cause the entire job to fail. Intermediate and

output data, on the other hand, are more resilient to loss,

as they can be reproduced by re-executing the Map and/or

Reduce tasks involved. However, once a job has completed,

lost output data is irrecoverable if the input data have been

removed from the system. In this case, a user will have to

re-stage the previously removed input data and re-issue the

entire job, acting as if the input data was lost. In any of these

scenarios, the completion of the MapReduce job can be sub-

stantially delayed.

Note that high data durability [9] alone is insufficient to

provide high-quality MapReduce services. For instance, in

a volunteer computing system, when a desktop computer is

reclaimed by its owner, job data stored on that computer still

persists. However, a MapReduce job depending on those

data will fail if the data is unavailable within a certain exe-

cution window of a job. As such, MOON data management

focuses on improving overall data availability.

As mentioned in Sect. 1, we find that existing Hadoop

data management is insufficient to provide high QoS on

volatile environments for two main reasons.

– The replication cost to provide the necessary level of data

availability for input and output data in HDFS on oppor-

tunistic environments is prohibitive when the volatility is

high.

– Non-replicated intermediate data can easily become tem-

porarily unavailable for a long period of time or perma-

nently unavailable due to user activity or software/hard-

ware failures on the worker node where the data is stored,

thereby unnecessarily forcing re-execution of the relevant

Map tasks.

To address these issues, MOON augments Hadoop data

management to leverage the proposed hybrid resource archi-

tecture and offer a cost-effective and robust storage service.

4.1 Multi-dimensional, cost-effective replication

MOON provides a multi-dimensional, dynamic replica-

tion service to handle resource volatility as opposed to

the static data replication in Hadoop. MOON manages
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two types of resources—supplemental dedicated nodes and

volatile volunteer nodes. The number of dedicated nodes

is much smaller than the number of volatile nodes for

cost-effectiveness purposes. To support this hybrid scheme,

MOON extends Hadoop’s data management and defines two

types of workers: dedicated DataNodes and volatile DataN-

odes. Accordingly, the replication factor of a file is defined

by a pair {d, v}, where d and v specify the number of data

replicas on the dedicated and volatile DataNodes, respec-

tively.

Intuitively, since dedicated nodes have a much higher

availability than volatile nodes, placing replicas on dedi-

cated DataNodes can significantly improve data availability

and in turn minimize the replication cost on volatile nodes.

Because of the limited aggregated network and I/O band-

width on dedicated computers, the major challenge is maxi-

mizing the utilization of the dedicated resources to improve

service quality while preventing the dedicated computers

from becoming a system bottleneck. To this end, MOON’s

replication design differentiates between various data types

at the file level and takes into account the load and volatility

levels of the volatile DataNodes.

MOON defines two types of files, i.e., reliable and oppor-

tunistic. Reliable files are used to store data that cannot be

lost under any circumstances. One or more dedicated copies

are always maintained for a reliable file so that it can toler-

ate outage of a large percentage of volatile nodes. MOON

always stores input data and system data required by the job

as reliable files. In contrast, opportunistic files store tran-

sient data that can tolerate a certain level of unavailability

and may or may not have dedicated replicas. Intermediate

data will always be stored as opportunistic files. On the other

hand, output data will first be stored as opportunistic files

while the Reduce tasks are completing, and are converted to

reliable files once the job is completed.

The separation of reliable files from opportunistic files

is critical in controlling the load level of dedicated DataN-

odes. When MOON decides that all dedicated DataNodes

are nearly saturated, an I/O request to replicate an oppor-

tunistic file on a dedicated DataNode will be declined (de-

tails described in Sect. 4.2). Additionally, by allowing output

data to be first stored as opportunistic files enables MOON

to dynamically direct write traffic towards or away from the

dedicated DataNodes as necessary. Furthermore, only after

all data blocks of the output file have reached its replication

factor, will the job be marked as complete and the output file

be made available to users.

Similar to Hadoop, when any file in the system falls be-

low its replication factor, this file will be put into a replica-

tion queue. The NameNode periodically checks this queue

and issues replication requests giving higher priority to re-

liable files. With this replication mechanism, the dedicated

replicas of an opportunistic file will eventually be achieved.

What if the system is constantly overloaded with jobs with

large amounts of output? While not being handled in the

current MOON design, this scenario can be addressed by

having the system stop scheduling new jobs from the queue

after observing that a job is waiting too long for its output to

be converted to reliable files.

4.2 Prioritizing I/O requests

When a large number of volatile nodes are supplemented

with a much smaller number of dedicated nodes, providing

scalable data access is challenging. MOON addresses this by

prioritizing I/O requests on the different resources. Specif-

ically, to alleviate read traffic on dedicated nodes, MOON

factors in the node type in servicing a read request. For files

with replicas on both volatile and dedicated DataNodes, read

requests from clients on volatile DataNodes will always try

to fetch data from volatile replicas first. By doing so, the

read requests from clients on the volatile DataNodes will

only reach dedicated DataNodes when none of the volatile

replicas are available.

When a write request occurs, MOON prioritizes I/O traf-

fic to the dedicated DataNodes according to data vulnera-

bility. A write request from a reliable file will always be

satisfied on dedicated DataNodes. However, a write request

from an opportunistic file will be declined if all dedicated

DataNodes are close to saturation. As such, write requests

for reliable files are fulfilled prior to those of opportunistic

files when the dedicated DataNodes are fully loaded. This

decision process is depicted in Fig. 2.

To determine whether a dedicated DataNode is close to

be saturated, MOON uses a sliding window-based algorithm

as show in Algorithm 1. MOON monitors the I/O bandwidth

consumed at each dedicated DataNode and sends this infor-

mation to the NameNode by piggybacking it on the heart-

beat messages. The throttling algorithm running on the Na-

meNode compares the updated bandwidth with the average

I/O bandwidth during the past window. If the consumed

Fig. 2 Decision process to determine where data should be stored
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Algorithm 1 I/O throttling on dedicated DataNodes

Let W be the throttling window size

Let Tb be the control threshold

Let bwk be the measured bandwidth at timestep k

Input: current I/O bandwidth bwi

Output: setting throttling state of the dedicated node

avg_bw = (
∑i−1

j=i−W bwj )/W

if bwi > avg_bw then

if (state == unthrottled) and (bwi < avg_bw × (1 + Tb)) then

state = throttled

end if

end if

if bwi < avg_bw then

if (state == throttled) and (bwi < avg_bw × (1 − Tb)) then

state = unthrottled

end if

end if

I/O bandwidth on a DataNode is increasing but only by

a small margin determined by a threshold Tb, the DataN-

ode is considered saturated. On the contrary, if the updated

I/O bandwidth is decreasing and falls more than threshold

Tb , the dedicated node is unsaturated. Such a design is to

avoid unnecessary status switching caused by load oscil-

lation. Since there is a delay between when the request is

assigned and when the corresponding I/O-bandwidth incre-

ment is detected, MOON puts a cap (Cr ) on the number of

requests that can be assigned to a dedicated DataNode dur-

ing a throttling window.

4.3 Adaptive replication

To maximize the utilization of dedicated computers, MOON

attempts to have dedicated replicas for opportunistic files

when possible. When dedicated replicas cannot be main-

tained, the availability of the opportunistic file is subject to

the volatility of unreliable nodes, possibly resulting in poor

QoS due to forced re-execution of the related Map or Re-

duce tasks. While this issue can be addressed by using a

high replication degree on volatile DataNodes, such a so-

lution will inevitably incur high network and storage over-

head.

MOON addresses this issue by adaptively changing the

replication requirement to provide the desired QoS level.

Specifically, consider a write request of an opportunistic

file with replication factor {d, v}. If the dedicated replicas

are rejected because the dedicated DataNodes are saturated,

MOON will dynamically adjust v to v′, where v′ is chosen

to guarantee that the file availability meets the user-specified

availability level (e.g., 0.9) pursuant to the node unavail-

ability rate p (i.e., 1 − pv′
> 0.9). If p changes before a

dedicated replica can be stored, v′ will be recalculated ac-

cordingly. Also, no extra replication is needed if an oppor-

tunistic file already has a replication degree higher than v′.

In the current implementation, p is estimated by having the

NameNode monitor the faction of unavailable DataNodes

during the past 1 minute. This can be replaced with more

accurate/detailed predicting methods if availability statistics

are available for the deployment environment.

The rationale for the above adaptive replication design

is that when an opportunistic file has a dedicated copy, the

availability of the file is high, thereby allowing MOON to

decrease the replication degree on volatile DataNodes. Al-

ternatively, MOON increases the volatile replication degree

of a file as necessary to prevent forced task re-execution

caused by unavailability of opportunistic data.

4.4 Handling ephemeral unavailability

Within the original HDFS, fault tolerance is achieved by pe-

riodically monitoring the health of each DataNode and repli-

cating files as needed. If a heartbeat message from a DataN-

ode has not arrived at the NameNode within the NodeEx-

piryInterval, the DataNode will be declared dead and its files

are replicated as needed.

This fault tolerance mechanism is problematic for op-

portunistic environments where transient resource unavail-

ability is common. If the NodeExpiryInterval is shorter than

the mean unavailability interval of the volatile nodes, these

nodes may frequently switch between live and dead states,

causing replication thrashing due to HDFS striving to keep

the correct number of replicas. Such thrashing significantly

wastes network and I/O resources and should be avoided.

On the other hand, if the NodeExpiryInterval is set too long,

the system would incorrectly consider a “dead” DataNode

as “alive”. These DataNodes will continue to be sent I/O

requests until it is properly identified as dead, thereby de-

grading overall I/O performance as the clients experience

timeouts when trying to access the nodes.

To address this issue, MOON introduces a hibernate

state. A DataNode enters the hibernate state if no heartbeat

messages are received for more than a NodeHibernateIn-

terval, which is much shorter than the NodeExpiryInter-

val. A hibernated DataNode will not be supplied any I/O

requests so as to avoid unnecessary access attempts from

clients. Observing that a data block with dedicated repli-

cas already has the necessary availability to tolerate tran-

sient unavailability of volatile nodes, only opportunistic files

without dedicated replicas will be re-replicated. This opti-

mization can greatly save the replication traffic in the system

while preventing task re-executions caused by the compro-

mised availability of opportunistic files.

5 MOON task scheduling

One important mechanism that Hadoop uses to improve

job response time is to speculatively issue backup tasks for
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“stragglers”, i.e. slow running tasks. Hadoop considers a

task as a straggler if the task meets two conditions: (1) it has

been running for more than one minute, and (2) its progress

score lags behind the average progress of all tasks of the

same type by 0.2 or more. The per-task progress score, val-

ued between 0 and 1, is calculated as the fraction of data that

has been processed in this task.

In Hadoop, all stragglers are treated equally regardless

of the relative differences between their progress scores.

The JobTracker (i.e., the master) simply selects stragglers

for speculative execution according to the order in which

they were originally scheduled, except that for Map strag-

glers, priority will be given to the ones with input data local

to the requesting TaskTracker (i.e., the worker). The maxi-

mum number of speculative copies (excluding the original

copy) for each task is user-configurable, but set at 1 by de-

fault.

Hadoop speculative task scheduling assumes that tasks

run smoothly toward completion, except for a small frac-

tion that may be affected by the abnormal nodes. Such an

assumption is easily invalid in opportunistic environments;

a large number of tasks will likely be suspended or inter-

rupted due to temporary or permanent outages of the volatile

nodes. For instance, in Condor, a running external job will

be suspended when the mouse or keyboard events are de-

tected. Consequently, identifying stragglers based solely on

tasks’ progress scores is too optimistic.

– First, when the resource unavailability rate is high, all in-

stances of a task can possibly be suspended simultane-

ously, allowing no progress to be made on that task.

– Second, a fast progressing task may be suddenly slowed

down when a node becomes unavailable. Yet, it may take

a long time for a suspended task with a high progress

score to be eligible for speculative execution.

– Third, the natural computational heterogeneity among

volunteered nodes, plus additional productivity variance

caused by node unavailability, may cause Hadoop to is-

sue a large number of speculative tasks,4 resulting in a

waste of resources and an increase in job execution time.

Therefore, MOON adopts speculative task execution

strategies that are aggressive for individual tasks to prepare

for high node volatility yet overall conservative considering

the collectively unreliable environment. We describe these

techniques in the rest of this section. Below we will de-

scribe our general-purpose scheduling in Sects. 5.1 and 5.2,

and hybrid-architecture-specific augmentations in Sect. 5.3.

4A similar observation is made when running Hadoop on heteroge-

neous environments [25].

5.1 Ensuring sufficient progress under high resource

volatility

In order to guarantee that sufficient progress is made on

all tasks, MOON characterizes stragglers into frozen tasks

(tasks whose all copies are simultaneously suspended) and

slow tasks (tasks that are not frozen but satisfy the Hadoop

criteria for speculative execution). The MOON scheduler

composes two separate lists, containing frozen and slow

tasks respectively, with tasks selected for speculative exe-

cution from the frozen list first. In both lists, tasks are sorted

in the order of their progress scores.

It is worth noting that Hadoop does offer a task fault-

tolerant mechanism to handle node outage. The JobTracker

considers a TaskTracker dead if no heartbeat messages have

been received from the TaskTracker for a TrackerExpiryIn-

terval (10 minutes by default). All task instances on a dead

TaskTracker will be killed and rescheduled. Naively, using

a small TrackerExpiryInterval can help detect and relaunch

inactive tasks faster. However, using a too small value for

the TrackerExpiryInterval will cause many suspended tasks

to be killed prematurely, thus wasting resources.

In contrast, MOON considers a TaskTracker suspended

if no heartbeat messages have been received from the Task-

Tracker for a SuspensionInterval, which can be set to a

value much smaller than TrackerExpiryInterval, so that node

anomaly can be detected early. All task instances running on

a suspended TaskTracker are then flagged inactive, in turn

triggering frozen task handling. Inactive task instances on

such a TaskTracker are not killed right away, in the hope

that the TaskTracker will return to normal shortly.

MOON imposes a cap on the number of speculative

copies for a task similar to Hadoop. However, a speculative

copy will be issued to a frozen task regardless of the number

of its copies, so that progress can always be made for each

task.

5.2 Two-phase task replication

The speculative scheduling approach discussed above only

issues a backup copy for a task after it is detected as frozen

or slow. Such a reactive approach is insufficient to handle

fast progressing tasks that become suddenly inactive. For

instance, consider a task that runs at a normal speed until

99% complete and then is suspended. A speculative copy

will only be issued for this task after the task suspension is

detected by the system, upon which the computation needs

to be started all over again. To make it worse, the specula-

tive copy may also become inactive before its completion. In

the above scenario, the delay in the reactive scheduling ap-

proach can elongate the job response time, especially when

this happens toward the end of the job.

To remedy this, MOON separates the job progress into

two phases, normal and homestretch, where the homestretch
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phase begins once the number of remaining tasks for the job

falls below H% of the currently available execution slots.

The basic idea of this design is to alleviate the impacts of un-

expected task interruptions by proactively replicating tasks

toward the job completion. Specifically, during the home-

stretch phase, MOON attempts to maintain at least R active

copies of any remaining task regardless its progress score. If

the unavailability rate of volunteer PCs is p, the probability

that a task will become frozen decreases to pR .

The motivation of the two-phase scheduling stems from

two observations. First, when the number of concurrent jobs

in the system is small, computational resources become

more underutilized as a job gets closer to completion. Sec-

ond, a suspended task will delay the job more toward the

completion of the job. To constrain the resources used by

task replication, MOON also enforces a limit on the total

concurrent speculative task instances for a job to H% of the

available execution slots. No more speculative tasks will be

issued if the concurrent number of speculative tasks of a job

reaches that threshold. This means that the actual task repli-

cation degree gradually increases as the job approaches its

completion.

While increasing R can reduce the probability of job

freezing, it increases resource consumption. The optimal

configuration of H% and R will depend on how users will

want to trade-off resource consumptions and program per-

formance. We will evaluate various configurations of the two

parameters in Sect. 6.

5.3 Leveraging hybrid resources

MOON attempts to further decrease the impact of volatility

during both normal and homestretch phases by replicating

tasks on the dedicated nodes. When the number of tasks in

the system is smaller than the number of dedicated nodes, a

task will be always be scheduled on dedicated nodes if there

are empty slots available. Doing this allows us to take advan-

tage of the much more reliable CPU resources available on

the dedicated computers (as opposed to using them as pure

data servers).

Intuitively, tasks with a dedicated speculative copy are

given lower priority in receiving additional task replicas, as

these nodes tend to be much more reliable. More specifi-

cally, when selecting a task from the slow task list as de-

scribed in Sect. 5.1, the ones without a dedicated replica

will be considered first. Similarly, tasks that already have

a dedicated copy do not participate the homestretch phase,

thus saving task replication cost. As another consequence,

long running tasks that have difficulty in finishing on vol-

unteer PCs because of frequent interruptions will eventually

be scheduled and guaranteed completion on the dedicated

nodes.

Table 1 Application configurations

Application Input Size # Maps # Reduces

sort 24 GB 384 0.9 × AvailSlots

word count 20 GB 320 20

6 Performance evaluation

On production opportunistic computing systems, resource

availability patterns are commonly non-repeatable, making

it difficult to fairly compare different strategies. Meanwhile,

traces cannot easily be manipulated to create different node

availability levels. As such, in our experiments, we emu-

late an opportunistic computing system with synthetic node

availability traces, where node availability level can be ad-

justed.

Our experiments are executed on System X at Virginia

Tech, comprised of Apple Xserve G5 compute nodes with

dual 2.3 GHz PowerPC 970FX processors, 4 GB of RAM,

80 GByte hard drives. System X uses a 10 Gbs InfiniBand

network and a 1 Gbs Ethernet for interconnection. To closely

resemble volunteer computing systems, we only use the Eth-

ernet network in our experiments. Arguably, such a machine

configuration is similar to those in many student labs today.

Each compute node runs the GNU/Linux operating system

with kernel version 2.6.21.1. The MOON system is devel-

oped based on Hadoop 0.17.2.

Our experiments use two representative MapReduce ap-

plications, i.e., sort and word count, that are distrib-

uted with Hadoop. The configurations of the two applica-

tions are given in Table 1.5 For both applications, the in-

put data is randomly generated using tools distributed with

Hadoop.

6.1 Independent resource unavailability

In this section, we assume that node outage is mutually in-

dependent and generate unavailable intervals using a nor-

mal distribution, with the mean node-outage interval (409

seconds) extracted from the aforementioned Entropia volun-

teer computing node trace [19]. The unavailable intervals are

then inserted into 8-hour traces following a Poisson distrib-

ution such that in each trace, the percentage of unavailable

time is equal to a given node unavailability rate. At run time

of each experiment, a monitoring process on each node reads

in the assigned availability trace, and suspends and resumes

all the Hadoop/MOON processes on the node accordingly.6

5These two applications with similar data input sizes were also used in

other MapReduce studies, e.g., [25].

6In our implementation, the task suspension and resume is achieved by

sending the STOP and CONT signals to the targeting processes.
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Fig. 3 Sort execution profile with Hadoop and MOON scheduling policies

6.1.1 Speculative task scheduling evaluation

We first evaluate the MOON scheduling design using two

important job metrics: (1) job response time and (2) the total

number of duplicated tasks issued. The job response time is

important to user experiences. The second metric is impor-

tant as extra tasks will consume system resources as well as

energy. Ideally, we want to achieve short job response time

with a low number of speculative tasks.

On opportunistic environments both the scheduling algo-

rithm and the data management policy can largely impact the

job response time. To isolate the impact of speculative task

scheduling, we use the sleep application distributed with

Hadoop, which allows us to simulate our two target appli-

cations with faithful Map and Reduce task execution times,

but generating only insignificant amount of intermediate and

output data (two integers per record of intermediate and zero

output data).

We feed the average Map and Reduce execution times

from sort and word count benchmarking runs into

sleep. We also configure MOON to replicate the inter-

mediate data as reliable files with one dedicated and one

volatile copy, so that intermediate data are always avail-

able to Reduce tasks. Since sleep only deals with a small

amount of intermediate data, the impact of data management

is minimal.

The test environment is configured with 60 volatile nodes

and 6 dedicated nodes, resulting in a 10:1 of volatile-to-

dedicated (V-to-D) node ratio (results with higher V-to-D

node ratio will be shown in Sect. 6.1.3). We compare the

original Hadoop task scheduling policy and the MOON

scheduling algorithm described in Sect. 5. For the Hadoop

default scheduling, we control how quickly it reacts to node

outages by using 1, 5, and 10 (default) minutes for Track-

erExpiryInterval. These polices are denoted as Hadoop1M,

Hadoop5M and Hadoop10M, respectively. With even larger

values of TrackerExpiryInterval, the Hadoop performance

gets worse and hence those results are not shown here.

For MOON, We use 1 minute for SuspensionInterval, and

10 minutes for TrackerExpiryInterval for a fair compari-

son. Recall from Sect. 5.2 that there are two parameters

in MOON to control the aggressiveness of the two-phase

scheduling: (1) the homestretch threshold H% and (2) the

number of active copies R. To demonstrate the impacts of

the selection of the two parameters, we vary H from 20 to

40 to 60. For each H value, R is increased from 1 to 3.

Finally, we also test the enhancement with hybrid resource

awareness (as described in Sect. 5.3) for H = 20 and R = 2.

Figure 3(a) shows the execution time for the sort ap-

plication with increasing node unavailability rates. For the

Hadoop scheduling, it is clear that the job execution time

reduces as TrackerExpiryInterval decreases. This is because

with a shorter TrackerExpiryInterval, the JobTracker can de-

tect the node outage sooner and issue speculative copies to

the executing tasks on the unavailable nodes. In Hadoop, a

TaskTracker is considered dead if no heartbeat messages

have been sent from it within the TrackerExpiryInterval,

and in turn, all running tasks on the TaskTracker will be

killed and rescheduled. Consequently, the reducing in ex-

ecution time by decreasing TrackerExpiryInterval will in-

evitably come at a cost of higher numbers of task replicas,

as shown in Fig. 3(b). Thus, the default Hadoop scheduling

is not flexible to simultaneously achieve short job response

time and a low quantity of speculative tasks.

With two-phase scheduling, the job response time is com-

parable among all configurations at 0.1 node unavailability

rate. However, when the node unavailability rate gets higher,

it is clear that increasing R from 1 to 2 can deliver con-

siderable improvements for a same H value, due to the de-

creasing probability of a task being frozen toward the end of

job execution. However, further increasing R to 3 does not

help in most cases because the resource contention caused

by the extra task replicas offsets the benefit of reducing task-

suspension. In fact, the job response time deteriorates when

R increases from 2 to 3 in some cases.

Interestingly, increasing H does not bring in significant

decrease in job response time, suggesting 20% of the avail-

able slots are sufficient to accommodate the task replicas

needed for the test scenarios. In terms of the number of spec-

ulative tasks, as expected, the number of duplicated tasks

generally increases as higher H or R values are used. How-
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Fig. 4 Wordcount execution profile of Hadoop and MOON scheduling policies

ever, the number of duplicated tasks issued at various H val-

ues becomes closer as the node unavailability rate increases.

Recall that speculative tasks will only be issued after all

original tasks have been rescheduled. As a result, the can-

didate tasks for speculative execution are in the last batch of

executing original tasks. As the node unavailability level in-

creases, the number of available slots decreases and so does

the number of candidate tasks for speculative execution. The

fact that the number of duplicated tasks is comparable across

different H levels at 0.5 node unavailability rate suggests

that at this volatile level the number of speculative tasks is-

sued is smaller than 20% of the available slots.

One advantage of the MOON two-phase scheduling al-

gorithm is that it provides the necessary knobs for users to

tune the system for overall better performance under certain

resource constraints, i.e., by allowing aggressive replication

for individual tasks yet retaining control of the overall repli-

cation cost. According to the execution profile of both ex-

ecution time and the number of speculative tasks, without

enabling the hybrid-aware enhancement, H20R2 delivers an

overall better performance with relatively lower replication

cost among various MOON two-phase configurations. Com-

pared to the Hadoop default scheduling, H20R2 outperforms

Hadoop1M in job response time by 10%, 13% and 40%

at 0.1, 0.3 and 0.5 node unavailability rates, respectively.

Meanwhile, H20R2 issues slightly more (11%) duplicated

tasks than Hadoop at 0.1 node unavailability rate, but saves

38% and 57% at 0.3 and 0.5 node availability rates, respec-

tively. Furthermore, H20R2 with the hybrid-aware enhance-

ment brings in additional savings in job execution time and

task replication cost. Particularly, Hybrid-H20R2 runs 23%

faster and issues 19% less speculative tasks than H20R2 at

0.5 node unavailability rate. In summary, when tuned prop-

erly, MOON scheduling can achieve significantly better per-

formance than the Hadoop scheduling with comparable or

lower replication cost.

Figure 4 shows the execution profile of the word

count application. The overall trends of default Hadoop

scheduling are very similar to those in the sort application.

For the MOON two-phase scheduling, while the overall per-

formance trends are still similar, one noticeable difference is

that the performance differences between various configura-

tions are smaller at 0.3 node unavailability rate. One possi-

ble reason is that word count has a much smaller number

of reduce tasks. Interestingly, among MOON configurations

without hybrid-aware enhancement, H20R2 again achieves

an overall better performance and lower replication cost, in-

dicating the possibility of having a common configuration

for a class of applications. Similarly, MOON H20R2 deliv-

ers considerable performance improvements (up to 29%) to

Hadoop1M but with a much lower task replication cost (up

to 58%). Hybrid-H20R2 delivers additional performance

gain and saving at replication cost to H20R2.

Overall, we found that the default Hadoop scheduling

policy may enhance its capability of handling task suspen-

sions in opportunistic environments, but at the cost of short-

ening TrackerExpiryInterval and issuing more speculative

tasks. The two-phase scheduling and hybrid-aware schedul-

ing approaches in MOON provide effective tuning mecha-

nism for users to achieve overall significant improvements

over Hadoop, especially when the node unavailability is

high.

6.1.2 Replication of intermediate data

In a typical Hadoop job, there is a shuffle phase in the

beginning of a Reduce task. The shuffle phase copies the

corresponding intermediate data from all Map tasks. This

phase is time-consuming even in dedicated environments.

On opportunistic environments, achieving efficient shuffle

performance is more challenging, because the intermediate

data could be unavailable due to frequent node outage. In

this section, we evaluate the impact of MOON’s intermedi-

ate data replication policy on shuffle efficiency and conse-

quently, job response time.

We compare a volatile-only (VO) replication approach

that statically replicates intermediate data only on volatile

nodes, and the hybrid-aware (HA) replication approach de-

scribed in Sect. 4.1. For the VO approach, we increase the

number of volatile copies gradually from 1 (VO-V1) to 5

(VO-V5). For the HA approach, we have MOON store one
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Fig. 5 Compare impacts of different replication policies for intermediate data on execution time

Table 2 Execution profile of

different replication policies at

0.5 unavailability rate

sort word count

Policy VO-V1 VO-V3 VO-V5 HA-V1 VO-V1 VO-V3 VO-V5 HA-V1

Avg Map Time (s) 21.25 42 71.5 41.5 100 110.75 113.5 112

Avg Shuffle Time (s) 1150.25 528 563 210.5 752.5 596.25 584 559

Avg Reduce Time (s) 155.25 84.75 116.25 74.5 50.25 28 28.5 31

Avg #Killed Maps 1389 55.75 31.25 18.75 292.25 32.5 30.5 23

Avg #Killed Reduces 59 47.75 55.25 34.25 18.25 18 15.5 12.5

copy on dedicated nodes when possible, and increase the

minimum volatile copies from 1 (HA-V1) to 3 (HA-V3). Re-

call that in the HA approach, if the data block does not yet

have a dedicated copy, then the number of volatile copies of

a data block is dynamically adjusted such that the availabil-

ity of a file reaches 0.9.

These experiments use 60 volatile nodes and 6 dedicated

nodes. To focus solely on intermediate data, we configure

the input/output data to use a fixed replication factor of {1,3}

across all experiments. Also, the task scheduling algorithm

is fixed at Hybrid-H20R2, which was shown to deliver over-

all better performance under various scenarios.

In Hadoop, a Reduce task reports a fetch failure if the

intermediate data of a Map task is inaccessible. The Job-

Tracker will reschedule a new copy of a Map task if more

than 50% of the running Reduce tasks report fetch failures

for the Map task. We observe that with this approach, the re-

action to the lost Map output is too slow, and consequently,

causing hourly long execution time for a job as a reduce task

would have to acquire data from hundreds of Map outputs.

We remedy this by having the JobTracker issue a new copy

of a Map task if (1) three fetch failures have been reported

for the Map task and (2) there is no active replicas of the

Map output.

Figure 5(a) shows the results of sort. As expected, en-

hanced intermediate data availability through the VO repli-

cation clearly reduces the overall execution time. When the

unavailability rate is low, the HA replication does not exhibit

much additional performance gain. However, HA replica-

tion significantly outperforms VO replication when the node

unavailability level is high. While increasing the number

of volatile replicas can help improve data availability on a

highly volatile system, this incurs a high performance cost

caused by the extra I/O. As a result, there is no further exe-

cution time improvement from VO-V3 to VO-V4, and from

VO-V4 to VO-V5, the performance actually degrades. With

HA replication, having at least one copy written to dedicated

nodes substantially improves data availability, with a lower

overall replication cost. More specifically, HA-V1 outper-

forms the best VO configuration, i.e., VO-V3 by 61% at the

0.5 unavailability rate.

With word count, the gap between the best HA con-

figuration and the best VO configuration is smaller. This is

not surprising, as word count generates much smaller in-

termediate/final output and has much fewer Reduce tasks,

thus the cost of fetching intermediate results can be largely

hidden by the execution of Map tasks. Also, increasing

the number of replicas does not incur significant overhead.

Nonetheless, at 0.5 unavailability rate, the HA replication

approach outperforms the best VO replication configuration

by about 32.5%.

To further understand the cause of performance variances

of different policies, Table 2 shows the execution profile col-

lected from the Hadoop job log for tests at 0.5 unavailability

rate. For sort, the average Map execution time increases

rapidly as higher replication degrees are used in the VO

replication approach. In contrast, the Map execution time
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does not change much across different policies for word

count, due to reasons discussed earlier.

The most noticeable factor causing performance differ-

ences is the average shuffle time. For sort, the average

shuffle time of VO-V1 is much higher than other policies

due to the low availability of intermediate data. In fact, the

average shuffle time of VO-V1 is about 5 times longer than

that of HA-V1. For VO replication, increasing the replica-

tion degree from 1 to 3 results in a 54% improvement in

the shuffle time, but no further improvement is observed

beyond this point. This is because the shuffle time is par-

tially affected by the increasing Map execution time, given

that the shuffle time is measured from the start of a re-

duce task till the end of copying all related Map results. For

word count, the shuffle times with different policies are

relatively close except with VO-V1, again because of the

smaller intermediate data size.

Finally, since the fetch failures of Map results will trig-

ger the re-execution of corresponding Map tasks, the aver-

age number of killed Map tasks is a good indication of the

intermediate data availability. While the number of killed

Map tasks decreases as the VO replication degree increases,

the HA replication approach in general results in a lower

number of Map task re-executions.

6.1.3 Overall performance impacts of MOON

To evaluate the impact of MOON on overall MapRe-

duce performance, we establish a baseline by augmenting

Hadoop to replicate the intermediate data and configure

Hadoop to store six replicas for both input and output data,

to attain a 99.5% data availability when the average node un-

availability is 0.4 (selected according to the real node avail-

ability trace shown in Fig. 1). For MOON, we assume the

availability of a dedicated node is at least as high as that of

three volatile nodes together with independent failure prob-

ability. That is, the unavailability of dedicated node is less

than 0.43, which is not hard to achieve for well maintained

workstations. As such, we configure MOON to use a repli-

cation factor of {1,3} for both input and output data.

In testing the native Hadoop system, 60 volatile nodes

and 6 dedicated nodes are used. These nodes, however are all

treated as volatile as Hadoop cannot differentiate between

volatile and dedicated nodes. For each test, we use the VO

replication configuration that can deliver the best perfor-

mance under a given unavailability rate. It is worth noting

that we do not show the performance of the default Hadoop

system (without intermediate data replication), which was

unable to finish the jobs under high node unavailability lev-

els, due to intermediate data losses and high task failure rate.

The MOON tests are executed on 60 volatile nodes with

3, 4 and 6 dedicated nodes, corresponding to a 20:1, 15:1

and 10:1 V-to-D ratios. The intermediate data is replicated

Fig. 6 Overall performance of MOON vs. Hadoop with VO replica-

tion

with the HA approach using {1,1} as the replication factor.

As shown in Fig. 6, MOON clearly outperforms Hadoop-VO

for 0.3 and 0.5 unavailable rates and is competitive at a 0.1

unavailability rate, even for a 20:1 V-to-D ratio. For sort,

MOON outperforms Hadoop-VO by a factor of 1.8, 2.2 and

3 with 3, 4 and 6 dedicated nodes, respectively, when the un-

availability rate is 0.5. For word count, the MOON per-

formance is slightly better than augmented Hadoop, deliv-

ering a speedup factor of 1.5 compared to Hadoop-VO. The

only case where MOON performs worse than Hadoop-VO

is for the sort application at the 0.1 unavailability rate and

the V-to-D node ratio is 20:1. This is due to the fact that the

aggregate I/O bandwidth on dedicated nodes is insufficient

to quickly absorb all of the intermediate and output data; as

described in Sect. 4.1, a reduce task will not be flagged as

complete until its output data reaches the predefined repli-

cation factor (including 1 dedicate copy).

6.2 Correlated resource unavailability

In this experiment, we study the efficacy of the MOON de-

sign in the case of correlated unavailabilities. We synthesize

a set of node availability traces where groups of nodes al-

ternatively become unavailable. Specifically, the model we

used to generate traces takes two parameters: (1) a correlated

level represented by Pu, which is the percentage of nodes

that are simultaneously unavailable and (2) an unavailable



Cluster Comput

Fig. 7 Machine availability trace generation example (Pu = 25%).

The gray box means the group of nodes become off-line for a period

of Iu

Table 3 sort performance with correlated unavailabilities (mea-

sured in seconds)

Pu 10% 30% 50%

Augmented Hadoop 612 2142 >5400 (failed)

MOON 375 504 933

interval Iu. Suppose there are N total nodes, in the traces,

N × Pu nodes form a group, and each group will take turn

to be off-line for a period of Iu. Figure 7 gives an example

of trace generation when Pu is 25%.

We compare the augmented Hadoop (with intermediate

data replication enabled as described in Sect. 6.1.3) and

MOON. We use 60 volatile nodes and 6 dedicated nodes,

i.e., a V-to-D ratio of 10:1. Similar to the experiment in

Sect. 6.1.3, the replication factor is configured as {6} for the

augmented Hadoop and {1,3} for MOON. For intermediate

data, the augmented Hadoop uses the replication factor that

delivers the best performance, and MOON uses a replication

factor of {1,1}. We vary Pu from 10% to 30% to 50%, and

we fix Iu at 409 seconds, which is the mean unavailable time

used in previous experiments.

Table 3 gives the results of the sort application.

Clearly, MOON can significantly outperforms the aug-

mented Hadoop. Specifically, at a correlated level of 30%,

MOON delivers a four-fold speedup over the augmented

Hadoop. Furthermore, at a correlated level of 50%, the aug-

mented Hadoop was not able to finish after 5400 seconds be-

cause the number of task failures reaches the system thresh-

old. In contrast, MOON finishes within 933 seconds at the

same correlated level. The fact that the augmented Hadoop

has difficulty in finishing the job is not surprising, because

when resource unavailability is correlated, it requires higher

replication degree to achieve a same level of data availability

compared to the case of independent machine unavailabili-

ties. A too high replication degree can create too much I/O

contention in the system, leading to significant slowdown

to the program performance. By leveraging the dedicated

nodes, MOON can achieve high data availability with much

lower replication cost.

The results of the word count application is given in

Table 4. While MOON still significantly outperforms the

Table 4 word count performance with correlated unavailabilities

(measured in seconds)

Pu 10% 30% 50%

Augmented Hadoop 664 1206 4807

MOON 429 603 795

augmented Hadoop, the performance difference between the

two is slightly smaller than that in the sort application.

Again, this is because the word count application gener-

ates less amounts of data and has a smaller number of reduce

tasks. Note that at 50% correlated level, MOON delivers a

six-fold speedup over the augmented Hadoop.

7 Analytical analysis

In this section, we discuss the advantages of the MOON hy-

brid design through analytical analysis. Since the major mo-

tivation of hybrid resource provisioning is to improve data

availability with low replication cost, our model assumes no

speculative task execution to avoid overly complicating the

models.

In dedicated cluster environments, MapReduce jobs are

typically executed in waves. The total execution time of a

job with M Map tasks and R Reduce tasks on a cluster of

N nodes can be modeled as MTm

N
+

RTr

N
, where Tm and Tr

are the execution time of a Map and Reduce task, respec-

tively. In opportunistic environments, when a node becomes

unavailable, the Map tasks complete on that node need to be

re-executed to generate the corresponding intermediate data

needed by Reduce tasks. Assuming the unavailability rate

of the intermediate data is α under a certain data replication

policy, on average Mα tasks need to be re-executed at each

wave of Reduce task execution. As such, the overall exe-

cution time of a MapReduce job on a volunteer computing

system with average node unavailability rate λ is:

Ttotal =
MTm

N(1 − λ)
+

R

N(1 − λ)

(

MαT ′
m

N(1 − λ)
+ Tr

)

=
MTm

N(1 − λ)
+

MRαT ′
m

N2(1 − λ)2
+

RTr

N(1 − λ)
(1)

where T ′
m is the execution time of a re-executed Map task

(note that on average only N(1 − λ) nodes are available

for running tasks). The three terms in (1) represent the time

spent on executing the original Map tasks, the re-executed

Map tasks and the Reduce tasks, respectively. The execu-

tion time of an original Map task can be modeled as Tm =

tmi + tmc + tmo, where tmi , tmc and tmo refer to the input,

compute and output time of a Map task. Similarly, the ex-

ecution time of a Reduce task Tr = tri + trc + tro. T ′
m is
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slightly different than Tm in the output time, which will be

explained in details in the following discussions.

Case 1: Replication on Volatile Nodes Only. We first take

a look at the performance impacts of data replication in a

system with volatile nodes only. Let vm be the replication

degree of intermediate data. The output time of a Map task,

i.e, the time spent on writing the intermediate data will in-

crease as vm grows. Assuming that the number of Map tasks

is much larger than the number of available slots in the sys-

tem, there will be N(1 − λ) concurrent Map tasks executing

at each wave. Therefore, the average output time of a Map

task tmo =
SmvmN(1−λ)

BN(1−λ)
=

Smvm

B
, where Sm is the size of the

output of a Map task and B is the I/O bandwidth (the smaller

between the network and disk I/O bandwidth) of a compute

node.

The replication degree of intermediate data also affects

the performance of re-executed Map tasks. With vm repli-

cas, the unavailability rate of a block of intermediate data

α = λvm . Therefore, the number of concurrent re-executed

Map tasks is Mλvm at each wave. The output time of a re-

executed Map task t ′mo =
SmvmMλvm

BN(1−λ)
.

Let vr be the replication degree of the output data. For

jobs with a large number of reduce tasks, at each wave there

are N(1−λ) concurrent Reduce tasks. Similar to the writing

of intermediate data, we have tro =
Srvr

B
, where Sr is the size

of the output data of a Reduce task.

According to (1) and the analysis above, the execution of

a MapReduce task in opportunistic environments with pure

volatile nodes is:

Ttotal(V ) = TOrg_Map + TRe_Map + TReduce (2)

where TOrg_Map , TRe_Map and TReduce refer to the time

spent on executing the original Map tasks, the re-executed

Map tasks and the Reduce tasks, and their definitions are

given in (3), (4) and (5).

TOrg_Map =
M

N(1 − λ)

(

tmi + tmc +
Smvm

B

)

(3)

TRe_Map =
RMλvm

N(1 − λ)

(

tmi + tmc +
SmvmMλvm

BN(1 − λ)

)

(4)

TReduce =
R

N(1 − λ)

(

tri + trc +
Srvr

B

)

(5)

To guarantee certain quality of service, the availability

of the output data needs to meet a minimum requirement A

specified by users, i.e., 1 − λv
r ≥ A. As vm increases, the

execution time of the original Map tasks will increase as

suggested by (3), and the execution time of reexecuted Map

tasks will decrease according to (4) because of the additional

I/O cost. Therefore, an optimal configuration can be found

by comparing the performance of increasing vm values.

Case 2: Replication on Hybrid Resources. On volunteering

system with supplemental dedicated nodes, the replication

degree is specified as a tuple. To avoid overcomplicating the

model, we assume a basic replication strategy where all the

data in the system is stored as reliable data, where a write

operation will always be guaranteed on the dedicated nodes.

Let {dm, v′
m} be the replication degree of the intermediate

data. The unavailability rate of the intermediate data would

be λv′
mλ

dm

d , where λd is the unavailability rate of a dedicated

node. Let Bd is the I/O bandwidth of a dedicated node, and

Nd is the number of dedicated nodes. The output time of an

original Map task is:

t ′mo = max

(

Smv′
m

B
,
SmN(1 − λ)

BdNd

)

(6)

With similar derivation for the output time of re-executed

Map tasks and reduce tasks, we have the execution time of a

MapReduce job on hybrid resources:

Ttotal(H) = T ′
Org_Map + T ′

Re_Map + T ′
Reduce (7)

where

T ′
Org_Map =

M

N(1 − λ)

×

(

tmi + tmc + max

(

Smv′
m

B
,
SmN(1 − λ)

BdNd

))

(8)

T ′
Re_Map =

RMλv′
mλ

dm

d

N(1 − λ)

(

tmi + tmc

+ max

(

Smv′
mMλv′

mλ
dm

d

BN(1 − λ)
,
SmdmMλv′

mλ
dm

d

BdNd

))

(9)

T ′
Reduce =

R

N(1 − λ)

×

(

tri + trc + max

(

Srv
′
r

B
,
SrN(1 − λ)

BdNd

))

(10)

As can be seen in (9), the number of re-executed Map

tasks is RMλv′
mλ

dm

d under the hybrid replication design,

as compared to RMλvm as shown in (4). Since λd is typ-

ically much smaller than λ, replicating data on dedicated

nodes can effectively reduce the number of re-executed Map

tasks compared to relying on volatile nodes alone. One the

other hand, comparing TOrg_Map , TRe_Map , TReduce and

T ′
Org_Map , T ′

Re_Map , T ′
Reduce, when the I/O bandwidth of

the dedicated nodes is not sufficient, there can be an extra

delay in writing data. As such, the hybrid replication will

perform better when the saving in Map tasks re-execution

outweighs the extra writing delay caused by the limited I/O

bandwidth on dedicated nodes. An optimal configuration of

the number of dedicated nodes depends on a myriad of fac-

tors including I/O bandwidth of both types of nodes, the
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compute time of MapReduce tasks, and the node unavail-

ability rates, etc. While automatically configuring such an

optimal number is out of the scope of this paper, this num-

ber can be found via performance tuning in practice. More

specifically, the more I/O intensive is a MapReduce job,

the more dedicated resources are required for the hybrid

architecture to beat the optimal performance achieved with

volatile nodes alone. The sorting benchmark will be a good

candidate for performance tuning as it is one of the most I/O

intensive applications.

8 Related work

Several storage systems have been designed to aggregate

idle disk spaces on desktop computers within local area

network environments [3, 11, 17, 24]. Farsite [3] aims at

building a secure file system service equivalent to central-

ized file systems on top of untrusted PCs. It adopts repli-

cation to ensure high data reliability, and is designed to re-

duce the replication cost by placing data replicas based on

the knowledge of failure correlation between individual ma-

chines. Glacier [17] is a storage system that can deliver high

data availability under large-scale correlated failures. It does

not assume any knowledge of machine failure patterns and

uses erasure code to reduce data replication overhead. Both

Farsite and Glacier are designed for typical I/O activities on

desktop computers and are not sufficient for high perfor-

mance data-intensive computing. Freeloader [24] provides

a high performance storage system. However, it aims at pro-

viding a read-only caching space and is not suitable for stor-

ing mission critical data.

Gharaibeh et al. proposed a low-cost reliable storage sys-

tem built on a combination of scavenged storage of desk-

top computers and a set of low-bandwidth dedicated stor-

age such as Automated Tape Library (ATL) or remote stor-

age system such as Amazon S3 [12]. Their prosed system

focuses sole on storage and mainly supports read-intensive

workloads. Also, the storage scavenging in their system does

not consider the unavailability caused by the owner activi-

ties on a desktop computer. While also adopting a hybrid re-

source provisioning approach, MOON handles both compu-

tation and storage as well as investigates the interactions be-

tween the two within the MapReduce programming model.

There have been studies in executing MapReduce on grid

systems, such as GridGain [15]. There are two major differ-

ences between GridGain and MOON. First, GridGain only

provides computing service and relies on other data grid sys-

tems for its storage solution, whereas MOON provides an in-

tegrated computing and data solution by extending Hadoop.

Second, unlike MOON, GridGain is not designed to provide

high QoS on opportunistic environments where machines

will be frequently unavailable. Sun Microsystems’ Com-

pute Server technology is also capable of executing MapRe-

duce jobs on a grid by creating a master-worker task pool

where workers iteratively grab tasks to execute [22]. How-

ever, based on information gleaned from [22], it appears that

this technology is intended for use on large dedicated re-

sources, similarly to Hadoop.

When executing Hadoop in heterogeneous environments,

Zaharia et al. discovered several limitations of the Hadoop

speculative scheduling algorithm and developed the LATE

(Longest Approximate Time to End) scheduling algo-

rithm [25]. LATE aims at minimizing Hadoop’s job response

time by always issuing a speculative copy for the task that

is expected to finish last. LATE was designed on heteroge-

neous, dedicated resources, assuming the task progress rate

is constant on a node. LATE is not directly applicable to op-

portunistic environments where a high percentage of tasks

can be frequently suspended or interrupted, and in turn the

task progress rate is not constant on a node. Currently, the

MOON design focuses on environments with homogeneous

computers. In the future, we plan to explore the possibility

of combining the MOON scheduling principles with LATE

to support heterogeneous, opportunistic environments.

Finally, Ko et al. discovered that the loss of interme-

diate data may result in considerable performance penalty

for a Hadoop job even under dedicated environments [18].

Their preliminary studies suggested that simple replication

approaches, such as relying on HDFS’s replication service

used in our paper, could incur high replication overhead

and is impractical in dedicated, cluster environments. In our

study, we show that in opportunistic environments, the repli-

cation overhead for intermediate data can be well paid off by

the performance gain resulted from the increased data avail-

ability. Future studies in more efficient intermediate data

replication will well complement the MOON design.

9 Conclusion and future work

In this paper, we propose and evaluate an approach to

provide a MapReduce computing service on opportunistic

resources. Specifically, we find that existing MapReduce

frameworks are designed for dedicated compute resources,

and thus perform poorly on highly volatile resources. To ad-

dress this shortcoming, we then present MOON, a novel

framework designed to efficiently and reliably execute

MapReduce jobs on volatile resources. MOON adopts a hy-

brid resource architecture that uses dedicated and volatile

resources to complement each other, and extends Hadoop

to take advantage of such a hybrid architecture. Extensive

experiments show that MOON can significantly outperform

Hadoop on opportunistic compute environments.

Due to testbed limitations in our experiments, we use ho-

mogeneous configurations across the nodes used. Although
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node unavailability creates natural heterogeneity, it does not

create disparity in hardware speed (such as disk and network

bandwidth speeds). In our future work, we plan to evaluate

and further enhance MOON in heterogeneous environments.

Additionally, we would like to deploy MOON on various

production systems with different degrees of volatility and

evaluate a variety of applications in use on these systems.

Lastly, this paper investigated single-job execution, and it

would be interesting future work to study the scheduling and

QoS issues of concurrent MapReduce jobs on opportunistic

environments.
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