
Reliable Multihop Bulk Transfer Service for Wireless Sensor Networks

Péter Völgyesi, András Nádas, Ákos Lédeczi

Institute for Software Integrated Systems, Vanderbilt University

Nashville, TN, USA

{peter.volgyesi, andras.nadas, akos.ledeczi}@vanderbilt.edu

Károly Molnár

Embedded Information Technology Research Group,

Hungarian Academy of Sciences – Budapest University of Technology and Economics

Budapest, Hungary

kmolnar@mit.bme.hu

Abstract

Multihop message routing is a well studied and widely

documented area of research in wireless sensor networks

(WSN), where the dynamic and lossy nature of the wireless

medium and severe resource constraints pose major chal-

lenges. The vast majority of related research focuses on re-

liable and power-efficient transfer of small amounts of data,

such as low frequency sensor readings or event detections.

However, in a few but notable WSN applications, reliable

transfer of mass data is essential. The paper describes an

efficient multihop bulk transfer service along with a com-

plete sensor network application utilizing it for on-demand

image transfers. The paper focuses on the unique problems

of the service, such as resource allocation, flow control and

mobility throughout the modeling, simulation and imple-

mentation phases. Models of the protocol have been built

and simulated in a probabilistic wireless network simulator.

The prototype implementation targets TinyOS, a well-known

WSN operating system.

1. Introduction

Classic wireless sensor network applications usually in-

volve many-to-one periodic [4] or event-triggered [9] data

collection services. These services focus on the power-

efficient and reliable transfer of relatively small amount of

data through unreliable wireless links and nodes with severe

resource constraints. Duty cycling, smart scheduling and

in-network data aggregation are well known techniques to

improve power efficiency, while redundant links and packet

retransmissions can increase the reliability of such services.

However, there are a few but interesting sensor applica-

tions which depend on a mass data transfer service. No-

table examples are imaging sensors that can easily capture

large amount of data, acoustic beamforming applications,

where raw samples need to be transmitted to a centralized

station. Even in those applications where the sensors can lo-

cally process and can extract features from the captured data

the capability of transferring unprocessed sensor readings is

essential in the development and test phases [9]. There are

several unique problems that need to be addressed in a mass

data transfer service. Because of the limited and shared

communication bandwidth, redundant packets—from the

same node or along alternative paths—are prohibitive in

these scenarios. Instead, the protocol has to provide built-in

mechanisms to increase the probability of successful packet

transmissions. Potential solutions include resource (chan-

nel) arbitration and continuous link status estimation. The

limited storage capabilities of the intermediate nodes allow

to store only a tiny fraction of the data at a time, thus effec-

tive end-to-end and link-by-link flow control mechanisms

must be employed to prevent the accidental loss of data.

As the application context of our bulk transfer service

we consider a sensor network utilizing both imaging and

non-imaging sensors, sensorless router nodes and one or

more base stations as they are shown in Figure 1. Sen-

sors, routers and base stations can be dynamically added,

removed or moved within the network and these changes

should be detected and reported at the base stations with

limited delay (few seconds). Changes in the network topol-

ogy due to node failures or fading communication links

must be transparent to the user. Event detections originat-

ing at non-imaging sensors (PIR sensors, accelerometers,

magnetometers, microphones and pressure sensors) must be

forwarded to every base station in the network. Also, each



individual node should be accessible from each base sta-

tion all the time for modifying operational parameters and

to query the status of the sensor node. The operator at the

base station should be able to request moderately large (10-

30 kbytes) images from any of the imaging sensors and the

multihop network should forward these images to the the

base station with minimum delay and low packet loss. Dur-

ing the image transfer the mobility of the base station can

be constrained, however the station should be able to move

without any restrictions between transfers.

I
2

NI
2

R
1

B
1

I
3

I
1

NI
1

NI
3

R
3

R
5

R
4

R
2

B
2

I

NI

R

B Base Station

Router

Imager

Non-imaging 

Sensor

Reliable Link

Figure 1. Wireless image sensor application.
Images are transferred to one or more base
stations on-demand through an ad-hoc wire-
less network.

The sensor application utilizes TinyOS, a well-known

WSN operating system [3] running on MicaZ nodes [8]

with low power (1 mW) IEEE 802.15.4 compliant radios

operating in the 2.4Ghz ISM frequency band. Imaging

and non-imaging sensor functions are implemented on sen-

sorboard add-ons connected to the MicaZ node through

a UART communication interface. XBow Stargate single

board computers—also equipped with MicaZ nodes—carry

out the base station tasks and connect the MicaZ network to

WiFi-enabled PDAs.

In this paper, we explore the unique problems of a

bulk transfer service throughout the modeling, simulation

and implementation phases. In Section 2 we give a brief

overview of related work. Section 3 presents the mech-

anisms and architecture of the bulk transfer service. We

also investigate an efficient link estimator and neighborhood

management service, which is essential to the bulk transfer

protocol. As a first step towards implementation in Sec-

tion 4 we build and evaluate a simulation model of the ser-

vice using Prowler, a probabilistic wireless network simu-

lator. Section 5 presents our TinyOS-based implementation

and briefly describes the most important network manage-

ment and non-imaging data services. We evaluate the per-

formance and reliability of the service in Section 6.

2. Related Work

There are several well studied and documented routing

schemes and media access protocols exist in wireless sen-

sor networks. One of the most influential results on our

work was published by Woo et al. [13], which aims at an

accurate link estimation method in dynamically changing

ad-hoc topologies. Our connectivity measures build on this

method, however—as it is discussed later in the paper—we

decided to employ active ping messages for neighborhood

monitoring. In their work they also explore different rout-

ing policies (shortest path, minimum transmission, broad-

cast, destination sequenced distance vector) on top of the

link estimator service, but their focus is on a many-to-one,

periodic data collection scenario.

In the TinyOS community [12] is one of the most promi-

nent and early study on media access mechanisms and trans-

mission control. They propose an adaptive rate-control

mechanism for energy efficient media access with fair band-

width allocation. Again, their work aims at relatively sparse

network traffic. In a closely related paper Polastre et al.

[7] describe B-MAC, the prevailing media access scheme

in TinyOS. They argue that a flexible and on-the-fly recon-

figurable media access protocol—providing bidirectional

application interfaces—can result in better overall perfor-

mance. The prototype implementation of our bulk transfer

service was built on top of this infrastructure, where the ad-

vantages of their approach were apparent.

Some alternative MAC protocol offerings have been

based on the RTS-CTS scheme inspired by IEEE 802.11

wireless LANs [2]. S-MAC [14] provides this mechanism

as a general purpose MAC layer, although it is more sen-

sitive to changing network conditions and relies on more

complicated mechanisms (eg.: synchronization, schedul-

ing) then B-MAC.

PSFQ (Pump Slowly,Fetch Quickly) is a reliable trans-

port protocol with hop-by-hop acknowledgements suitable

for sensor network reprogramming. However, in this appli-

cation the packets are originated at the base station and dis-

seminated to all the nodes in the network. Straw (Scalable

Thin and Rapid Amassment Without loss) is a reliable data

collection service developed at UC Berkeley. Straw was

built on Drip and Drain [11] and it draws the complexity to

the receiver (PC), while senders (wireless nodes) are kept

simple and light-weight. Although the service is available

in the TinyOS source tree, the results are not yet published.



3. Bulk Transfer Service

One of the most significant differences between sparse

message routing and bulk transfer is the cost of redundant

messages. These messages can greatly improve the reliabil-

ity of the former one without any significant performance

loss, but can drastically degrade the throughput in the latter

case. On the other hand, administrative and control mes-

sages are superfluous to protect few data packets, but fairly

lightweight for longer packet bursts. For the above reasons

we decided to employ a Request-to-Send (RST) Clear-to-

Send (CTS) control scheme as it is shown in Figure 2. This

is a simplified version of a the approach in 802.11 wireless

LANs [2]. For similar reasons WiFi networks selectively

employ this handshaking mechanism for protecting longer

bursts or larger packets. According to the scheme, large

data files are packetized, then the packets are sent through

the network in bursts, where the size of a burst depends

on the storage capabilities of the nodes. A network node

can either be idling, collecting packets in a burst from an-

other node or from the sensorboard, or transmitting previ-

ously collected packets towards the base station. A node

never accepts packets from more than one bursts at a time,

however, multiple concurrent transfers can pass through the

node on a burst-by-burst basis. Before the node enters the

transmit state, it has to send a request packet (RTS) to the

next node in the routing path and wait for an explicit ac-

knowledgement (CTS). If the CTS packet does not arrive—

for several possible reasons: the original RTS packet was

lost, the receiver was already in collect or transmit states,

or the CTS packet was lost—the sender node tries to re-

transmit its request for a few times with random backoff

delays. Also, if another potential sender node overhears

an RTS or CTS or burst data packet from or to another

sender, it automatically delays its RTS request or discards

a positive CTS acknowledgement. This handshaking proto-

col provides simple but efficient flow-control on a link-by-

link basis, detects asymmetric or weak links and effectively

avoids hidden terminal problems. Also, as it is shown in

Figure 2, if the underlying MAC layer supports it—as it is

the case in the B-MAC implementation in TinyOS[7]—the

initial backoff time can and should be lowered (or elimi-

nated) within the burst. Since we expected very low packet

loss within the handshake protected bursts and did not want

to interfere with the rapid bursts, we decided to employ a

negative acknowledgement-based end-to-end protocol for

requesting missing/lost packets.

We chose a simple spanning tree protocol for building

routing paths, which avoids redundant links and obtains

short routes with low hop counts. To provide a robust rout-

ing service and to support mobility requirements, base sta-

tions build up unique single-use routing trees for each im-

age request. Since the request itself has to be propagated

Sender

Receiver Time

RTS

CTS

Data Data

t
1

t
2

t
2

Figure 2. Request-to-Send/Clear-to-Send
handshake protects longer packet bursts

throughout the network anyway, this does not cause sig-

nificant performance loss. The base station starts the tree

building process by broadcasting a routing beacon with the

hop count set to zero and advertising the base station as

the immediate parent. Any node overhearing this beacon

message stores the new information in its routing table and

retransmits the beacon after increasing the hop count and

designating itself as the new parent. To support multiple

base stations and concurrent transfers, each beacon message

contains a tree identifier generated by the root (base sta-

tion). Later on, incoming packet bursts and the associated

RTS/CTS messages will refer to the same tree identifier. A

simplified routing table is shown in Table 1. This table de-

scribes three routes (identified as 0x56, 0x88 and 0x89). In

the first tree (0x56) the address of the intermediate parent is

13 and the current node is 2 hops away from the base sta-

tion with address 1. The Lock attribute is set if the current

node received or transmitted data packets in the given tree

recently, thereby protecting active trees from being evicted

from the table.

Tree ID Root Parent Hop Count Lock

0x56 1 13 2 0

0x88 2 21 4 0

0x89 2 22 5 1

Table 1. Routing table with spanning tree in-
formation

Although spanning trees provide a simple and efficient

routing infrastructure, one should carefully consider their

weaknesses in low-power wireless environments with inher-

ently lossy and asymmetric communication channels. The

previously described handshake protocol can detect weak

links in an existing tree, but cannot prevent such a tree

from forming. Therefore, we have enhanced the original

tree building protocol to accept a potential parent only if

the link between the current node and the new parent is

”reliable”. This simple addition to the spanning tree pro-



tocol needs a new network service that maintains the neigh-

borhood connectivity information. We decided to collect

link statistics with active ping messages. Every node peri-

odically transmits a short broadcast message and waits for

replies. The initial frequency of these messages—in the first

minute after power on or reset—is relatively high to pro-

vide fast startup. Also, the intervals between the ping mes-

sages are randomized to avoid unfair schedules. Each node

maintains a neighborhood statistics table (see Table 2) and

increases the Reply Count attribute upon receiving a reply

from one of its neighbors (new neighbors are added to the

table on-demand).

Neighbor Reply Count Score

13 9 80

21 7 74

22 8 95

12 2 15

Table 2. Link reliability database

After several (N) rounds the node updates the link relia-

bility scores by incorporating and resetting the Reply Count

values in the previous score using and exponentially aver-

aging low-pass filter:

score[k] = α∗score[k−1]+(1−α)∗
100 ∗ reply count

N
(1)

In this manner the link monitor service assigns a reliabil-

ity score (0-100) to all of the neighbors, which can further

be used to decide if a potential parent should be accepted

in the spanning tree—eg. if its score is above an arbitrar-

ily chosen minimum score threshold. Note, that our metric

is solely based on the count of successful packet transmis-

sions, since techniques based on signal strength measure-

ments may result in inferior link quality indicators [1].

Our link estimator can detect asymmetric (because it

builds statistics from reply messages) and weak links. Al-

though active ping messages cause additional network traf-

fic, they can identify and discard overloaded nodes as par-

ents (because of dropped packets in the radio stack) even if

the physical radio link is reliable towards them. Passive link

monitors cannot provide such features.

4. Protocol Modeling and Simulation

Before implementing the protocol and related services in

nesC on the motes, we evaluated them in simulation utiliz-

ing realistic radio models. The probabilistic wireless net-

work simulator (Prowler) [10] is an event-driven tool that

simulates the nondeterministic nature of the communica-

tion channel and the low-level communication protocol of

the wireless sensor nodes. To produce replicable results

while testing the application, Prowler can be set to oper-

ate in deterministic mode also. It can incorporate arbitrary

number of nodes on arbitrary and even dynamic topology.

Prowler models all the important aspects of the communica-

tion channel and the application. The tool is implemented in

MATLAB, thus it provides a fast and easy way to prototype

applications, and has nice visualization capabilities.

The nondeterministic nature of the radio propagation is

characterized by a probabilistic radio channel model. A

simplified, but accurate model is used to describe the op-

eration of the Medium Access Control (MAC) layer. The

applications interact with the MAC layer through a set of

events and commands just like in actual TinyOS applica-

tions.

The radio propagation model determines the RF signal

strength at a particular point in the space for all transmitters

in the system. Based on this information the signal recep-

tion conditions at the receivers can be evaluated and colli-

sions can be detected. The signal strength from the trans-

mitter to a receiver is determined by a deterministic propa-

gation function (modeling the decay of signal strength with

distance), and by random disturbances (modeling the fad-

ing effect, the time-varying nature of the signal strength,

and other miscellaneous transmission effects.)

The MAC layer communication is modeled by a simpli-

fied event channel. When the application initiates a packet

transmission, the MAC layer checks if the channel is idle

after a random time interval. If not, it continues the idle

checking until the channel becomes idle. Before each check

it waits for random backoff time. When the channel is found

idle, the transmission begins and after a constant time pe-

riod simulating the transmission time, the application re-

ceives an event indicating that the packet has been sent. Af-

ter the reception of a packet on the receivers side, the appli-

cation receives another event signaling packet reception or

collision depending on the success of the transmission.

Similarly to the real TinyOS framework, Prowler appli-

cations are event-based. The simulator signals important

events for the application code, such as initialization com-

pleted, packet sent, packet received, packet collided and

clock ticked. The application in turn can initiate actions

such as set clock and send packet. These can cause further

events. Several debugging/visualization tools are also avail-

able, including switching mote LEDs on/off, drawing lines

and arrows, and printing text messages.

Since Prowler was originally targeted at Berkeley Mica

and Mica2 motes, we had to extend the radio propagation

and MAC layer behavioral models with the characteristics

of the the Chipcon CC2420 radio chip employed by Mi-

caZs. We conducted several real-world measurements in

different environments (indoor, outdoor, unobstructed and

multipath) to infer reasonable values for the fading para-



meters. The signal strength (Prx) from the transmitter to a

receiver is modeled by the following random function:

Prx(i, j) =
Ptx(i, j)

1 + dγ
∗ [1 + α(d)] ∗ [1 + β(t)] (2)

where Ptx is the transmit power and d is the distance. Dis-

turbances in distance (eg. multipath effects) and time are

modeled by random variables α and β with standard distri-

bution. We consider the packet transmission successful, if

the Signal to Interference and Noise ratio (SINR) is above

a minimum threshold:

SINR =
Prx(i, j)

σ2 +
∑

k 6=j Prx(i, k)
(3)

where σ is an arbitrary noise variance parameter. Table 3

contains the empirically chosen values for the parameters

in this radio model. MicaZ specific MAC parameter values

(bit time, backoff intervals, etc.) were also added to the

model.

Parameter Value Parameter Value

α (fading) 0.3 β (multipath) 0.02

σ (rx noise) 0.05 SINRmin 2.0

γ (decay) 2.0

Table 3. Radio propagation parameters in
Prowler for MicaZ radios

After preparing Prowler for simulating MicaZ-based net-

works, we created a prototype implementation of the image

transfer application in MATLAB, focusing primarily on the

bulk transfer and closely related services. One of the most

important lessons that we have learnt here was the impor-

tance of redundant (automatically repeated) spanning tree

beacons for increasing the reliability of the spanning tree

formation process.

5. Implementation

According to the application requirements, we had to

address the reliable routing problem of non-imaging data

as well. Furthermore, these packets might need to be for-

warded to multiple base stations at the same time and the

routing service should rapidly adapt to changes in the net-

work topology. For the above reasons we decided to uti-

lize a broadcast-based flooding protocol for non-imaging

data. Although it may generate unnecessary traffic in cer-

tain areas of the network, it promptly adapts to the chang-

ing topology—since no routing information is maintained

by the nodes. Since these tradeoffs cannot be completely

evaluated and compared in the design and early implemen-

tation phases, we were prepared for possible policy changes

in this routing logic. Our previous work, the Directed Flood

Routing Framework (DFRF) [5] enabled us to develop in-

terchangeable policy alternatives without modifying other

parts of the application.

The general architecture of the routing framework is

shown in Figure 3. At the heart of the framework is the rout-

ing engine—responsible for message buffer maintenance

and automatic packet aggregation, for communicating with

the radio stack and the applications and for driving the

policy plug-ins. Policies are state machines that describe

which packets need to be rebroadcasted by the node and

when. We managed to reuse two existing policy plug-ins,

the broadcast policy for sparse non-imaging packets and

a gradient convergecast policy—where intermediate nodes

rebroadcast a data packet zero, one or more times until it

is received from a node ”closer” to the root—for network

management functions.

Policy Application

Flood Routing Engine

g
e

tR
a

n
k

a
cc

e
p

t

se
n

t

re
ce

iv
e

d

a
g

e
d

re
g

is
te

r

u
n

re
g

is
te

r

se
n

d

re
ce

iv
e

OS / Radio Stack

Figure 3. Flood-routing framework compo-
nents

It seemed to be an obvious choice to implement the bulk

transfer protocol as a policy plug-in for DFRF and indeed

the first incarnation of the service was implemented this

way. After the first rudimentary tests we realized that the

unique requirements and non-flooding behavior of the bulk

transfer service necessitates modifications to the DFRF in-

terfaces and to some of the internal buffer management al-

gorithms (most of these changes were needed to expose

the flow-control mechanism to the application level and

for conducting burst transmissions more efficiently). Since

many of these changes were not harmonious with the orig-

inal concepts of the flood routing framework, we finally

implemented the service as a standalone set of TinyOS

components (see Figure 4. The first of these components,

LinkMonitor collects, maintains and provides neighborhood

connectivity statistics. It maintains a table of up to 16 neigh-

bors and broadcasts ping messages in 20 second intervals

with up to 1 second randomization (in the initial rapid dis-



covery phase ping messages are sent in 250ms-500ms in-

tervals). After 10 ping messages it updates the neighbor-

hood scores according to Eq. 1. The RoutingTable compo-

nent is responsible for building and maintaining spanning

tree information. It can store up to 16 spanning tree en-

tries on each network node. Since reliable spanning tree

formation is vital for the bulk transfer service, each node

repeats the beacon message twice (with a random delay of

up to 125ms). A potential parent is accepted if its score—

provided by the LinkMonitor service—is above 75, an em-

pirically obtained threshold. The locking interval is set

to 2 seconds. The RTS/CTS handshake protocol was im-

plemented in FlowControl, a separate TinyOS component.

Overheard RTS, CTS or burst packets cause a random back-

off between 8ms − 24ms before entering into the trans-

mit state. If the channel is considered clear the compo-

nent sends an RTS packet and waits for an explicit CTS

acknowledgement with a 60ms timeout. The component

gives up on the request and signals failure after more then

5 backoff or 3 timeout events, whichever comes first. Fi-

nally, the BulkRouting component integrates the previous

modules, provides the application interface and maintains

the burst buffers. The current MicaZ-specific implementa-

tion handles data packets with the maximum length of 45

bytes while a single burst contains up to 18 packets.

OS / Radio Stack

BulkRouting

Application

LinkMonitor

FlowControl

RoutingTable

Figure 4. Component architecture of the Bulk
Transfer Service

Rich network management facilities proved to be es-

sential not only in the protocol development and test cy-

cles, but in the final application deployment as well. We

decided to implement these features early in the develop-

ment cycle—even before the managed services were ready.

We successfully utilized several of our existing TinyOS and

Java based utilities—which are part of the standard TinyOS

distribution—for network management. RemoteControl is

a generic service for sending simple commands and/or pa-

rameter values to other services or applications running on

the nodes. We integrated this tool into the bulk transfer ser-

vice components to provide access to key parameters and

data structures (eg. parent and root addresses in the span-

ning tree, backoff delays and timeout values). The DFRF

framework was also utilized with the convergecast Gradi-

ent Policy for downloading complete routing tables or link

statistic databases to the management station. Its perfor-

mance characteristics and complexity place this policy be-

tween the broadcast-based flooding and the spanning tree

based bulk transfer protocol, which makes it perfectly suit-

able for transferring moderately sized tables (3-4 network

packets each). Optimal timing parameters are the corner-

stones of the bulk transfer service. Therefore, these values

were inferred in real-world test scenarios. For these we used

an accurate and mature time synchronization and message

time stamping service [6]. The above services and tools are

integrated and coherently presented on the network man-

agement PC within the MessageCenter Java-based frame-

work.

RTS RECEIVE

IDLE

RADIO COLLECT

SOURCE COLLECT

RTS SEND

CTS WAIT

DATA SEND

BACKOFF

app packet / store

app packet / store

app send or buffer is full

activity detected

timeout (16ms)no activity / send RTStimeout (60ms)

to
o

 m
a

n
y 

(5
) r

et
ir

es

received CTS / lock tree
buffer is not empty /

send data packets

buffer is empty

packet received / store

timeout (30ms) or 

buffer is full

buffer empty / send CTS

RTS received and

no activity detected

Figure 5. State machine of the Bulk Transfer
Protocol



Although in the final application different types of real

sensors and PDA gateways were deployed, we had to create

an environment with simulated sensor and gateway func-

tions to start the software development before the hardware

devices were built and tested. These sensor and gateway

simulators were also implemented as MessageCenter plug-

ins and were running on PCs connected to one or more Mi-

caZ nodes through UART communication links. Because

in low hop-count networks the serial interface turned out to

be the real bottleneck, these simulators enabled us to real-

ize the importance of a solid flow-control mechanism very

early in the development and to notify the hardware devel-

opers in time to incorporate the flow-control mechanism in

the real sensors as well.

6. Conclusions

We have evaluated the performance of the bulk transfer

service in different deployments and traffic loads. The re-

sults in a particularly congested and severe multipath sce-

nario are shown in Figure 6. In this setup the nodes were

deployed on the ground with 5-10 meter spacing and mul-

tihop routing was assured by a small modification to the

RoutingTable component. Two different physical topolo-

gies were used: first the sensors were deployed on a sin-

gle line, next they were (almost) randomly scattered in a

larger room. Note, that software enforced spanning trees

may degrade the overall performance of the service, since

they result in denser topologies, then were actually needed

to route between the end points. We used the Java-based

imaging sensor and gateway simulators to transfer 10KB

jpeg image files (286 radio packets with 35 byte effective

payload) through multiple hops and did not employ any

packet aknowledgement/retransimission scheme for calcu-

lating the successful packet reception ratio. Within the first

three hops the protocol seemed to be extremely reliable and

it remained very usable to five hops. Above this hope count,

potential applications need to employ more sophisticated

retransmission protocols. The transmission time degraded

gracefully (each hop added 1-2 seconds delay) as we in-

creased the number of hops, especially if we consider that

the majority of the nodes were in the same collision domain.

The main lesson we learned from our experiences in

building a reliable bulk transfer service for wireless sensor

networks is that the simple collision avoidance provided by

the MAC layer is not enough. With the RTS/CTS handshak-

ing we effectively ”reserve” the channel for the duration of

a burst. On the other hand, this has significantly less over-

head and it is much more flexible than something like circuit

switching.

To be able to handle the unreliable and dynamic nature of

the wireless medium as well as to support mobility, the con-

tinuous link quality monitoring service and the on-demand

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8

Hop Count

T
im

e
 (

s
e
c
)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

Hop Count

R
e
c
e
iv

e
d

 p
a
c
k
e
ts

 (
%

)

Figure 6. Successful packet transmission
ratio and transfer time with different hop
counts in a multipath and congested sce-
nario

rapid spanning tree formation are essential in minimizing

packet-loss. The final key component in achieving close to

100 % reliability is the NACK-based end-to-end flow con-

trol scheme. The protocol can adapt to dynamically chang-

ing ad-hoc topologies extremely well between transfer ses-

sions (spanning trees are built on-demand before each trans-

fer), however—in its current form—it cannot tolerate ex-

treme changes within the sessions. This poses an important

constraint on the maximum practical size of the bulk data.

As part of an experiment we ported the bulk transfer ser-

vice to Berkeley mica2 radios. Even though this needed the

replacement of the entire radio stack below the service, we

only had to modify the timing parameters, but the rest of

the source code remained exactly the same. We believe that

the service can be easily implemented on other platforms

and can provide an often neglected functionality in sensor

networks.

References

[1] D. S. J. De Couto, D. Aguayo, B. A. Chambers, and R. Mor-

ris. Performance of multihop wireless networks: Shortest

path is not enough. In Proceedings of the First Workshop on

Hot Topics in Networks (HotNets-I), Princeton, New Jersey,

October 2002. ACM SIGCOMM.



[2] M. Gast. 802.11 Wireless Networks: The Definitive Guide.

O’Reilly, 2005.

[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and

K. Pister. System architecture directions for networked sen-

sors. SIGOPS Oper. Syst. Rev., 34(5):93–104, 2000.

[4] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and

J. Anderson. Wireless sensor networks for habitat moni-

toring. In ACM International Workshop on Wireless Sensor

Networks and Applications (WSNA’02), Atlanta, GA, Sept.

2002.

[5] M. Maroti. Directed flood-routing framework for wire-

less sensor networks. In Proceedings of the 5th

ACM/IFIP/USENIX international conference on Middle-

ware, pages 99–114, New York, NY, USA, 2004. Springer-

Verlag New York, Inc.

[6] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding

time synchronization protocol. In SenSys ’04: Proceedings

of the 2nd international conference on Embedded networked

sensor systems, pages 39–49, New York, NY, USA, 2004.

ACM Press.

[7] J. Polastre, J. Hill, and D. Culler. Versatile low power media

access for wireless sensor networks. In SenSys ’04: Pro-

ceedings of the 2nd international conference on Embedded

networked sensor systems, pages 95–107, New York, NY,

USA, 2004. ACM Press.

[8] J. Polastre, R. Szewczyk, C. Sharp, and D. Culler. The mote

revolution: Low power wireless sensor network devices. In

Hot Chips 16: A Symposium on High Performance Chips,

Stanford, California, USA, Aug. 2004.

[9] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy,

A. Nadas, G. Pap, J. Sallai, and K. Frampton. Sensor

network-based countersniper system. In SenSys ’04: Pro-

ceedings of the 2nd international conference on Embed-

ded networked sensor systems, pages 1–12, New York, NY,

USA, 2004. ACM Press.

[10] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi.

Simulation-based optimization of communication protocols

for large-scale wireless sensor networks. In IEEE Aerospace

Conference (CDROM), 2003.

[11] G. Tolle and D. Culler. Design of an application-cooperative

management system for wireless sensor networks. In EWSN

’05: Proceedings of the 2nd European Workshop on Wire-

less Sensor Networks, 2005.

[12] A. Woo and D. E. Culler. A transmission control scheme

for media access in sensor networks. In MobiCom ’01: Pro-

ceedings of the 7th annual international conference on Mo-

bile computing and networking, pages 221–235, New York,

NY, USA, 2001. ACM Press.

[13] A. Woo, T. Tong, and D. Culler. Taming the underlying

challenges of reliable multihop routing in sensor networks.

In SenSys ’03: Proceedings of the 1st international confer-

ence on Embedded networked sensor systems, pages 14–27,

New York, NY, USA, 2003. ACM Press.

[14] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac

protocol for wireless sensor networks. In Proceedings of

the IEEE Infocom, pages 1567–1576, New York, NY, USA,

June 2002. USC/Information Sciences Institute, IEEE.


