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Abstract—This paper deals with the problem of guiding mobile
sensors (or robots) to a phenomenon across a region covered by
static sensors. We present a distributed, reliable and energy-
efficient algorithm to construct a smoothed moving trajectory
for a mobile robot. The reliable trajectory is realized by first
constructing among static sensors a distributed hop count based
artificial potential field (DH-APF) with only one local minimum
near the phenomenon, and then navigating the robot to that
minimum by an attractive force following the reversed gradient
of the constructed field. Besides the attractive force towards
the phenomenon, our algorithm adopts an additional repulsive
force to push the robot away from obstacles, exploiting the fast
sensing devices carried by the robot. Compared with previous
navigation algorithms that guide the robot along a planned path,
our algorithm can (1) tolerate the potential deviation from a
planned path, since the DH-APF covers the entire deployment
region; (2) mitigate the trajectory oscillation problem; (3) avoid
the potential collision with obstacles; (4) save the precious
energy of static sensors by configuring a large moving step
size, which is not possible for algorithms neglecting the issue
of navigation reliability. Our theoretical analysis of the above
features considers practical sensor network issues including radio
irregularity, packet loss and radio conflict. We implement the
proposed algorithm over TinyOS and test its performance on
the simulation platform with a high fidelity provided by TOSSIM
and Tython. Simulation results verify the reliability and energy
efficiency of the proposed mobile sensor navigation algorithm.

Index Terms—Hybrid Sensor Networks, Mobile Sensors Nav-
igation, Location Free, Angle of Arrival, Navigation Reliability.

I. INTRODUCTION

Hybrid sensor networks comprising of mobile sensors and

cheap static sensors open new frontiers in a variety of military

and civilian applications. In hybrid sensor networks, a large

quantity of networked static sensors monitor the environment,

while a few mobile sensors provide the actuation with lo-

comotion modules equipped. Typical usages of these mobile

nodes include energy recharge for static sensors, collection

of a large volume of data in Delay Tolerant Networks, coun-

terattack against intruders. As a summary, the emergence of

hybrid sensor networks converts the static sensor networks for

environmental monitoring into a reactive or active system [1].

One fundamental problem for the hybrid sensor networks is

how to guide a mobile sensor to a phenomenon across the re-

gion covered by static sensors while evading the obstacles [1].

This problem is different from the past robot path planning

problem based on centrally stored map, since the mobile

sensors (or robots) utilize distributed sensing ability of static

sensors to detect dangers (or obstacles) and their distributed

computations plus wireless connections to plan the moving

trajectories collaboratively. These distributed sensing and path

planning abilities can enhance the robots’ ability to function

in unfamiliar environments, where the hybrid sensor networks

has two advantages: easy-to-deploy (e.g., by a flying vehicles)

and more accurate sensing ability. For example, within a forest,

their distributed sensing abilities can penetrate through the

thick vegetation to detect wild fire early, and in a battle

field, they can not be easily deceived by enemies’ disguise,

if compared with the remote sensing based on satellites.

For the problem of mobile sensor navigation assisted by

static sensors, one constraint is that an effective localization

service for static sensors is not always available, especially in

complex concave regions [2], [3]. Moreover, localization ser-

vices may require additional ranging hardware that increases

WSNs deployment cost, and running localization services may

elongate the network deployment time, consumes the precious

energy of static sensors. Considering these facts, we have this

location-free assumption, which may invalidate some previous

mobile sensor navigation schemes. For example, the Berkeley

solution [4] of the pursuer-evader game depends on the static

sensors with location knowledge to track the evader and guide

the pursuer to the reported position by an installed map, which

however may be unavailable in unfamiliar environments.

Several recent works [1], [5] can remove these location and

map assumptions by running a location-free routing protocol

within the network and by navigating the robots following the

routing path to the sensor detecting the phenomenon. To make

the routing path more tangible for robots, a navigation band

is explicitly built by [5] along the path and the robot knows

its relative position to the band by wireless communications.

However, there are two inadequacies for these previous works.

First, the robots are only guided by networks and the readings

from sensors carried by the robots are forgotten, which can

provide fast response to unexpected obstacles. Second, the

guiding from networks depends on wireless communications,

which are by nature unreliable (e.g., radio irregularity, lossy

channels and radio conflicts). It’s not yet clear how this com-

munication unreliability affects the robots’ navigation quality.

This paper mainly provides two contributions for this prob-
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lem of location-free robot navigation. First, through both

analysis and simulation studies, we demonstrate that, for the

navigation based on unreliable talks with the static sensor

networks, the robots frequently make wrong decisions about

their next step moving directions. The robots therefore may

collide with obstacles, deviate from an planned path or move

out of sensor deployment fields, which reduces the navigation

qualities and consumes their energies. Moreover, the robots

may suffer from path oscillation, caused by the narrowness

of the navigation band. Second, we present a reliable robot

navigation algorithm which can handle the unreliability in

wireless communications, construct a smoothed robot moving

trajectory and improve the reliability of robot navigation. Our

algorithm is based on the artificial potential field (APF) [6]

and adopts a two layer architecture [7] - a global path planning

module over a local obstacle avoidance layer. The global

planing is conducted by an event dissemination initiated by

the static sensor detection an phenomenon. This dissemination

constructs a distributed hop count based APF (DH-APF),

which has only one local minimum near the phenomenon.

Afterwards, the reversed gradients of this DH-APF can provide

to the robots attractive forces leading them to the phenomenon.

In practice, we propose to implement these attractive forces by

an elegant integration of the robot navigation protocol and the

tree based routing protocol with the pull rule. Additionally, the

agile repulsive forces can be provided by the fast readings from

the robots’ sensors to steer the robots away from unexpected

obstacles (called reactive local obstacle avoidance).

Our algorithm is different from the previous works [1], [8]–

[10] that also deal with navigation qualities for the following

reasons. (1) Their major quality metric is the exposure to

danger problem, since they models the navigating robots either

as malicious entities trying to avoid the tracking by static

sensor networks or as cautious entities trying to keep the

safest distance to obstacles. In contrast, our work regards that

the duty of sensor networks is only to provide optimized

navigation guidance to the goals and without the collision

with obstacles, and that the obstacle avoidance should be the

duty of robots themselves by their self-carried sensors. In

this way, the static sensors can save the energy for dissem-

inating the knowledge about obstacles and robots make their

own decisions on avoiding obstacles (perhaps fast moving

unexpected ones), since no matter how fast the wireless

communications are in spreading out obstacles’ knowledge,

they can not compete with the speed of robots’ self-carried

sensors. (2) Their navigation quality evaluation is conducted

assuming ideal sensor communication model. Although [1]

also presents the imperfect radio channel problem, it does

not present systematical analysis on how error-prone nature

of sensor networks affects robots’ navigation quality, which

is one of the major focuses of this paper. (3) Previous works

fails to consider the trajectory smoothness, which is one of the

advantages of our algorithms, since we recommend to smooth

the attractive forces of all upstream nodes rather than to follow

the direction of only one upstream node on the planned path.

To verify the designed features of our navigation algorithm,

we implement the behavior of static sensors over TinyOS [11]

and the functions of mobile sensors by Tython [12]. Then

we evaluate the performance of our algorithm in a controlled

environment provided by TOSSIM [13], which can simulate

irregular radio propagation, radio conflict and lossy network

behavior at a high fidelity by its empirical probability bit

error model. Based on this prototype system and simulation

platform, we evaluate the path quality, which shows the

effectiveness of our algorithm in producing smoothed path, in

tolerating collision with obstacles and in reducing the chances

of out-of-field and path oscillation.

The rest of the paper is organized as follows. In section

II, we highlight the related work and introduce a two layer

architecture for path planning. In section III, we formulate

the location-free robot navigation problem and explain an

inspiring scenario used throughout the paper. Section IV and

V separately present the planning part and the navigation part

of our two layer algorithm. Section VI shows the simulation

results and section VII concludes our work.

II. RELATED WORK

Path planning is an extensively studied topic in the field of

robot motion planning. Proposed algorithms can be broadly

grouped into two categories [14]: local and global approaches.

Local planning considers only local information about the

surrounding, obtained from the sensors carried by robots

(e.g., APF [6], VFH+). Global planning is based on the

global knowledge of the workspace (e.g., Wavefront [15],

A*, roadmap). Generally speaking, local approaches support

real time response to obstacles, but are impossible to achieve

optimal trajectories and suspectable to trap in local minima.

The global approaches can produce optimal and smoothed

trajectory, but with slow response to environmental changes.

In the field of traditional robot motion planning, the two-

level robot navigation structure (Fig. 1) is a widely-accepted

architecture [14]: a global trajectory is calculated in the global

planning phase, while in the local obstacle avoidance phase the

robot reads its own sensory data and adjusts the local trajectory

in a reactive way, which gives the robot the ability to cope with

unexpected obstacles. This division into two layers is primarily

due to the high computation and communication cost required

in most global planning techniques.

Feedback

Task

Global Path or
Navigational Field

Local Path

Two Layer Robot Navigation Architecture

Maps or Net-
worked Sensors

Path Planning

Self-carried
Sensors

Local Obstacle Avoidance

Robot & Environment Motor Control

Fig. 1. A two-layer robots navigation system.
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The traditional two level architecture needs to be adjusted in

the background of hybrid sensor networks, since it is the static

sensor network, rather than a map, who gives robots the global

knowledge about the whole region and plans the global path

accordingly. Compared with the dead maps, the networked

static sensors can sketch a real-time picture of the unfamiliar

environments. This navigation scheme by sensor networks has

been adopted by a recent work [5], which however forget about

the self carried sensors in the Local Obstacle Avoidance layer.

Another adaptation to the traditional architecture in Fig. 1

is to change the data coupling between the two layers. The

traditional coupling by Global Path may be unsuitable in hy-

brid sensor networks, since whenever the old path invalidates

(e.g., robots deviate from the old path), a new path should

be reconstructed, which is more feasible on a centralized map

than within a distributed sensor network due to different cost

of path reconstruction. A more appropriate coupling is by

a Navigational Field covering the entire sensor deployment

region, for the following reasons. First, the frequency for the

routing path to be invalid can be high in sensor networks,

because (1) the routing path is by nature zigzag and may

intersects with obstacles, and (2) it can be difficult to control

the robots to navigate strictly along the routing path, since this

control is implemented via irregular and error-prone wireless

communications. Second, a navigational field covering the

entire deployment region can give the local obstacle avoidance

layer more freedom to steer the robots and avoid unexpected

obstacles without the inhibitive cost of recomputing the global

path. This freedom is important, since the reliability of navi-

gation assisted by sensor networks can be much lower due to

the unreliability of wireless channels.

III. PROBLEM FORMULATION

A hybrid sensor network comprises of numerous static sen-

sors and a few mobile sensors, with three major assumptions.

(1) Different from the static sensors, the mobile sensors can

change their geometric locations autonomously. For the sake

of simplicity, their mobility platforms are assumed to be free-

flying, which explains why the robots can be treated as points.

This assumption in future can be relaxed to be holonomic or

nonholonomic mobility platform. (2) Although the nodes have

different mobilities, their wireless communication components

are homogeneous, i.e. the same MAC protocol over the same

type of radio antennas configured to the same power level. In

our experiments, the adopted wireless module is the TinyOS

active message layer [11] over a CC2420 RF transceiver.

(3) Robots are assumed to be able to detect the Angle-

of-Arrival (AoA) of incoming radio signals, by amplitude

anisotropy or phase interferometry. Radio AoA devices are

recognized to be too expensive to deploy on the massive

static sensors, but they’re affordable to equip on a few robots.

Fig. 2(a) illustrates such a hybrid sensor network with a grid

arrangement of a ten feet spacing (the simulation section

presents other network configurations, like random sensor

distribution and sparse networks). The exemplified network

has only one mobile sensor located at the left bottom corner.

Mobile

sensor

Fire

Impassable region 

• •with high temperature 

• •Event 

•owner

Ideal Path

(a) The mission and the ideal path

Planned Path

Moving Trajectory

(b) Our trajectory and routing path.

Fig. 2. A rescue mission carried by a hybrid network in an on-fire building.

For a mobile sensor, its free moving space is not the

entire region covered by the network, due to the existence of

obstacles. The static sensors know the presence of obstacles

in their own vicinities, by checking their ADC readings. In

our scenario, the obstacles are regions with high temperature,

which may paralyze the function of a mobile sensor. A static

sensor can measure the temperature and tell whether it’s

safe for robots by comparing its reading with a predefined

threshold. Fig. 2(a) has only one obstacle colored by red,

where the temperatures are above a threshold of 100◦C.

When an event of interest occurs within the network, static

sensors can detect its occurrence and forward this message

to robots by some protocol. Mobile sensors then navigate to

the phenomenon region to provide actuation, which is the

basic motivation of hybrid sensor networks. This complex con-

ceptual process includes event detection, event identification,

event notification and robot navigation. Event detection and

identification are application specific issues and beyond the

scope of this paper. For simplicity, we assume only one static

sensor is the owner of an event, whom is probably chosen by

a small scale leader election held in the phenomenon region.

The objective of this paper is to design effective algorithms

(1) for the static sensors to collaboratively conduct path plan-

ning during the event notification phase initiated by the event

owner, and afterwards (2) for the mobile sensor to develop a

sense of direction and navigate accordingly, until it establishes

a direct radio link with the event owner. The constraints for this

path planning and robot navigation problem include: (1) final

navigation path for the robot should be collision-free for its

safety; (2) static sensors do not know their geometric locations;

(3) the radio model for sensors, both static and mobile, is not

unit disk based but follows the empirical probabilistic bit error

model in TOSSIM, which permits irregular radio propagation,

packet loss and radio conflicts. Although the above problem

definition includes only one event owner and one robot, it can

be easily extended to multiple owners and multiple robots, by

incorporating the semantics of Anycast.

The following two sections present a reliable solution for

this navigation problem in wireless sensor networks, compris-

ing of two consecutive phases: a path planning phase followed

by a robot navigation phase. The planning phase corresponds

to the Path Planning layer in Fig. 1 and is discussed in

Section IV. The navigation phase relates to the Local Obstacle
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Avoidance layer and is explained in Section V.

IV. PATH PLANNING PHASE

The path planning phase is a process initiated by the

event owner to search for a path to the robot and notify

the robot about the occurrence of a certain event. But when

this phase completes, not a single path but a distributed hop

count based artificial potential field (DH-APF) is established,

which is essentially a distributed scalar field with only one

global minimum at the event owner. The gradients of DH-

APF thus, in the subsequent navigation phase, can help the

robot develop a sense of direction and navigate to the event

owner. This section firstly presents a distributed DH-APF

construction algorithm called distributed wavefront and later

identifies several innate inadequacies of this DH-APF, which

inspire us to design a reliable robot navigation algorithm in

Section V.

A. Distributed Wavefront Algorithm

The design space for the path planning phase is extremely

narrowed by two constraints: distributed computing and lo-

cation free. The decentralization requirement inhibits the use

of centralized search algorithms (e.g., A*), since their coordi-

nation among different search branches can incur unbearably

high communication cost. The absence of location knowledge

bans the use of heuristic search algorithms inspired by the

geometric location (e.g., various geometric routing algorithms,

GHT, double ruling). The wavefront algorithm [15] however

can satisfy these two requirements, which is essentially a

breadth first path search algorithm resembling the well-known

flooding in the field of network routing. A wave is initiated by

an event owner and gets propagated among networked static

sensors, by which we are able to construct a DH-APF with

only one local minimum.

We present a rule-based description of a distributed wave-

front algorithm in TABLE I, which is deployed on all static

sensors. A typical execution of the rule-based code is as

follows. The event occurrence triggers the execution of Initiate

rule on the sensor who is the event owner. The owner then

sends to itself a loop-back message with hopcount −1, which

activates the Push rule on the owner. The Push rule updates

the hopcount of the owner as 0 and propagates that number

to its neighborhood by rule Propagate. Upon the receiving

of hopcount 0 from the owner, the neighbors of the owner

schedule the execution of their Push rules. The process repeats

and it terminates when the hopcounts of all static sensors

are configured to their proper values (see the Ignore rule).

However, the sensors in impassable regions is excluded from

the above DH-APF construction process, since sensors there

by applying the Impassable rule disable all their activities.

But we do not assume that our static sensors in impassable

regions with high temperature in the scenario can endure the

heat there, because (1) sensors that are destroyed by the heat

can not involve in the DH-APF construction, and (2) sensors

still alive voluntarily exclude themselves from the process and

pretend to be destroyed.

TABLE I
DISTRIBUTED WAVEFRONT ALGORITHM FOR STATIC SENSORS

# state definitions for a static sensor

integer hopcount := INFINITY. # my hopcount

# ‘defrule’ marks the beginning of a definition, while ’.’ tells the end.

# ‘:’ separates definition name and body.

# ‘⇒’ is a mapping from condition to a sequence of actions.

# ‘;’ indicates a sequential execution between two actions.

# bold letters emphasize events or actions that can signal events.

# rule definitions for a static sensor

defrule Impassable : # if impassable, it shields all rules that follows

my vicinity is not suitable for passage ⇒ do nothing.

defrule Initiate :

become an event owner ⇒ send −1 hopcount to myself.

defrule Ignore :

receive a hopcount no more than one hop different from mine

⇒ do nothing.

defrule Push :

receive a hopcount at least two hops smaller than mine ⇒

update my hopcount as the received hopcount plus one;

activate rule Propagate.

defrule Propagate :

choose a backoff (half of window plus jitter);

send my hopcount to vicinity;

choose a backoff (half of window plus jitter);

resend my hopcount to vicinity. # increase comm reliability

B. Algorithm Evaluation and Enhancement

The distributed wavefront algorithm establishes a DH-APF

covering the obstacle-free region and with a global minimum

at the event owner. One such field is shown by Fig. 3(a),

in which the three LEDs of each sensor display the lowest

three bits of that sensor’s hopcount and each gray arrow

outgoing from a sensor indicates from which neighbor that

sensor updates its hopcount to the current value. However,

the DH-APF established by networked static sensors is far

from the ideal APF constructed from map, according to our

experiments. We identify several problems of DH-APF: (1)

Zigzag Planned Path; (2) Link �= Safe - the possibility that

radio links intersect with obstacles; (3) Backward Link; (4)

Coverage problem - flooding fails to cover all sensors and

the robot may fail to hear about the flooded event. Although

these problems are largely inevitable due to the unreliability

of wireless links and the sparse distribution of static sensors,

we recommend an enhancement by the Pull rule to mitigate

problem (3)&(4) at the end of this subsection.

The Zigzag Planned Path problem is due to the much lower

resolution of sensor distribution than grids in a map and the

much longer connectivity range of sensors than the distance

between neighboring map grids. Traditionally, the strength

of globally planned path based on maps is its promise to

(1) generate optimized global pathes, (2) avoid trap in local

minima and (3) construct smoothed pathes. When the planning

is changed to be conducted by sensor networks, the advantages
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Fail to receive flooding

Backward link

Zigzag path

(a) Distributed wavefront.

Zigzag path

Link = Safe?

(b) Distributed wavefront with pull.

Fig. 3. The enhancement to the generation of DH-APF by the pull rule.

(1) and (2) are partially retained but the third one is sacrificed

that will lead to a Zigzag planned path. This low quality zigzag

path is one of the reasons that we are reluctant to restrict the

robots to navigate along the path planned by sensor networks.

The Link �= Safe problem may mislead the robots to collide

with obstacles, if they follows those dangerous links. It is a

fundamental assumption beneath grid based motion planning

algorithms [14], that the link connecting two neighboring grids

lies in free space if the two grids are in free space. This

assumption however may not hold for the sensor networks

if we simply regard static sensors as grids. This link �=
Safe problem is one of the proofs that navigation guided by

static sensors may not be collision-free and reliable obstacle

avoidance assisted by robot sensor readings is necessary.

The Backward Link is a well-known problem of the span-

ning tree built from flooding, which can potentially mislead

a robot to move to a wrong direction. We recommend an

additional Pull rule (see TABLE II) to reduce the possibility

of backward links. When the end node of a backward link

propagate its own hopcount by Push rule, some neighbor

may detect the existence of the backward link, by finding

the propagated hopcount is at least two hop larger than the

one owned by itself. The detector then correct the backward

link by propagating its hopcount and making the end node

of the backward link point to itself. The effectiveness of the

Pull rule to reduce backward links is illustrated in Fig. 3(b).

Another use of the Pull rule is in Section V for the robot

to query its neighbors for their hopcount. When the robot

broadcasts a hopcount with value INFINITY, the Pull rule

of its neighboring sensors will be activated to schedule a

propagation of their own hopcounts in near future.

The Coverage problem, similar to the Backward Link prob-

lem, is caused by fault-prone radio links. This problem of how

to disseminate events reliably to robots has already been solved

by adopting the eventual consistency semantics in Trickle

[16], which in fact also adopts the Pull rule. As a summary,

the Pull rule is a MUST for three reasons: reliable event

dissemination, backward links mitigation and neighborhood

querying by robots. The additional energy consumption by

adopting the Pull rule is inevitable.

TABLE II
ADDING THE PULL RULE

defrule Pull : # increase the chance of propagation of smaller hopcount

receive a hopcount at least two hops larger than mine ⇒

activate rule Propagate.

V. ROBOT NAVIGATION PHASE

For the robot navigation phase, we present an algorithm to

give the robots a sense of direction based on the reversed

gradients of DH-APF, which are calculated by only local

communications between an robot and its immediate neigh-

bors. Here, we assume the presence of radio AoA devices on

robots to eliminate the need for location knowledge of the

neighbors. However, we argue that robot navigation purely by

reversed gradients is unsafe and it should be combined with

the agile sensing ability of the robot’s sensors. Additionally,

we compare the performance of navigation field with that of

navigation band [5] and show the effectiveness of navigational

fields in tolerating deviation and mitigating oscillations.

A. Robot Navigation guided by Reversed Field Gradients

The purpose of this navigation phase is to generate a

collision-free moving trajectory starting from the robot’s initial

position and ending at a point within the one hop range of the

event owner. Fig. 2(b) illustrates one such trajectory in our

exemplified scenario where the planned path may pass through

a dangerous area but the final moving trajectory of the robot

remains to be safe. This navigation is a step-by-step process

with each step as a line segment. At the beginning of each

step, the robot should determines this step’s moving direction

by querying neighboring static sensors about their hop counts.

The step size is an adjustable system parameter.

In TABLE III, we restate the above process without ambi-

guity by a rule-based language. The activation of rule Start-

Mission is a symbol of phase transition from Path Planning

to Robot Navigation. The rule MissionDone is to terminate

this Robot Navigation phase. The rule MoveAStep, which

recursively activates itself at the end, carries out the step-by-

step navigation process. The third line of the MoveAStep rule

is a request to collect all hopcounts around the robot neigh-

borhood by propagating an INFINITY hopcount to vicinity.

The neighbors later respond with their hopcount applying the

Pull rule in TABLE II. The CollectGuide rule listens to and

record critical information of these replies, based on which

we estimate the reversed DH-APF gradient. In this algorithm

description, the robot moves to its next position only following

the direction of the estimated reversed DH-APF gradient. This

navigation based on reversed gradient can cause trouble, which

we shall explain in the next subsection.

Here we describe the algorithm to calculate the reversed

gradient −�∇f of the artificial potential field f(p) at the point

p0 = [x0, y0]
T where robot locates. If f(p) is a continuous

and differentiable scalar field, the required gradient can

easily be calculated by −�∇f |p0
= −∂f

∂p
|p0

. However, the

DH-APF constructed by static sensors is a discrete scalar
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TABLE III
DISTRIBUTED WAVEFRONT ALGORITHM ON A ROBOT

# state definitions

import state hopcount defined for a static sensor.

bool onmission := FALSE.

list guides of struct <integer nbr, integer hopcount, double aoa >.

struct force < double dx, double dy >.

# rule definitions for a mobile sensor; here ’∧’ represents logical and

defrule StartMission :

onmission = FALSE ∧ my hopcount is updated ⇒

onmission := TRUE;

wait still until flooding converges; # guides collection period

calculate the reversed DH-APF gradient �g from collected guides;

force := �g/|�g| · step size.

activate rule MoveAStep.

defrule MoveAStep :

move a step driven by the force;

stop the motor engine; clear the guides list;

hopcount := INFINITY; activate rule Propagate;

stay still for a period; # guides collection period

calculate the reversed DH-APF gradient �g from collected guides;

force := �g/|�g| · step size;

if onmission, then activate rule MoveAStep.

defrule MissionDone :

onmission = TRUE ∧ my hopcount is updated to one ⇒

onmission := FALSE; stop the motor engine;

clear the guides list; hopcount := INFINITY.

defrule CollectGuide : # guides collection period

receive a hopcount from the neighor nbr with angle aoa ⇒

if received hopcount is at least two hop smaller than mine,

then update my hopcount as the received hopcount plus one;

append <nbr, hopcount, aoa> to guides list.

import rule Propagate defined for a static sensor.

field and the knowledge collected by the robot includes only
f(p0) : potential value at p0 or hopcount of the robot

f(pi) : potential value at pi or hopcount of neighbor i
−−→p0pi : unit vector from p0 to pi or the angle-of-arrival

of radio from neighbor i to the robot.
Here the p0, pi,

−−→p0pi are all defined in the robot’s local

coordinate frame, which do not need any translation into the

global coordinate frame. The following is the equation to

estimate the reversed gradient in the discrete scalar field built

by static sensors.

− �∇f |p0
=

∑
f(pi)<f(p0)

−−→p0pi +
∑

f(pi)>f(p0)
−−→pip0 (1)

The mathematical meaning of Eq. (1) is the vector of left

derivative plus that of right derivative. Its physical meaning

is that the upstream nodes (neighbors with hopcount smaller

than that of the robot) exert attractive forces on the robot, while

the downstream nodes (with larger hopcount) exert repulsive

forces. The direction of the resultant force is treated as the

reversed gradient direction. In Fig. 4, the reversed gradient

direction is calculated by combining the attractive force from

mote 33 with hopcount 1 and the repulsive forces from motes

36 and 38 with hopcount 3. Although these forces direction

are known from the robot radio AOA ability, robots do not

need to know their magnitude (all unified to one) with the

absence of range information.

Forces exerted 

on the robot by 

sensors with 

different hop 

counts

Resultant force 

for each step

Temperature readings 

Mote id

Mobile

Robot
2hopsThis step

Previous step

Fig. 4. Deciding the moving direction by the reversed gradients of DH-APF.

B. Algorithm Evaluation and Enhancement

This subsection evaluates the performance of robot naviga-

tion based on reversed gradients by both theoretical analysis

and experiments. There are three potential problems in our al-

gorithm (also existed in previous navigation algorithms guided

by static sensors): (1) possible deviation from planned pathes;

(2) possible collision with obstacles; (3) oscillation in narrow

passages. After presenting these problems, we also recommend

corresponding solutions.

1) Error in reversed gradient estimation and its sources:

It’s inevitable that an estimated reversed gradient deviates

from the real gradient, caused by many factors. For example,

even in Fig. 5 where DH-APF is ideal, an obvious deviation

can happen between the real gradient �G and the estimated

reversed gradient �C. The �C is calculated by combining the

attractive force �A from centroid of lower hopcount region

and the repulsive force �B from centroid of higher hopcount

region. It’s the deviation of �A and �B from �G that causes the

deviation of �C from �G. The deviation of �A and �B from �G

is due to the radio irregularity [17] of the robot. Therefore,

the radio irregularity of robot is one of the reasons for error

in reversed gradient estimation. Other factors include the

irregular DH-APF, instability in DH-APF (topology changes),

nonuniform sensor distribution in robot’s neighborhood and

message loss when the robot talks with its neighbors. With so

many interfering factors, it’s difficult to predict and quantify

the error in the reversed gradient estimation.

Robot

Event

Owner
A

G

C
B

Fig. 5. Error in reversed gradient estimation with isotropic DH-APF.

An unexpected observation about the reversed gradient

estimation is that it’s more appropriate to revise Eq (1) by

Eq (2) adopting only the attractive forces from upstream nodes,

which are more robust against network topology change and
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more accurate when the robots are turning around corners.

− �∇f |p0
=

∑
f(pi)<f(p0)

−−→p0pi (2)

2) Collision problem, deviation problem and their solu-

tions: Caused by the error in the reversed gradient estimation,

frequently the robot collides with obstacles and occasionally

the robot deviates from the planned path, as demonstrated

by our experiments. The collision, or intrusion into the high

temperature region in Fig. 6(a), may paralyze the function

of robots and endanger the overall task completion. The

deviation, like in Fig. 6(b), not just wastes robot’s energy

but also may lead the robot out of the deployment region,

where it’s impossible for the robot to seek guidance from static

sensors. The possibility of moving out of navigation field is

much higher for the navigation band based algorithm, in which

only sensors along the planned path can provide guidance. We

name this problem as the “out-of-field” problem. However, it is

difficult to qualify the possibilities of the two exceptional cases

- collision and out-of-field, mainly because of the difficulty in

quantifying the error in the reversed gradient estimation.

Escape from 

the fire

Intrusion into 

impassble region

(a) Detect a collision then escape.

Stray away

Return back

Normal

Course

(b) Stray away then return back.

Fig. 6. Enhance the robustness of navigation to collision and straying away.

We solve the collision problem by exploiting the agile

readings from the robot self-carried sensors, which belongs

to the Local Obstacle Avoidance layer in Fig. 1. This solution

needs two devices on a robot: a temperature sensor and a heat

source detector with only coarse precision. As indicated by

the Escape rule in TABLE IV, the robot detects the collision

by comparing current temperature reading with a predefined

alert threshold. If it’s higher than the alert threshold, the

Escape rule constructs a repulsive force to avoid the collision.

The direction of the repulsive force escaping from the fire is

retrieved from the heat source detector and its magnitude is

the adjustable escaping step size. The Fig. 6(a) illustrates the

working of the Escape rule with alert threshold is set to 100

degree and escaping step configured to 10. The robot detects

the collision happened by finding its temperature reading is

above 100 degree. Then it moves out of the impassable region

following the direction away from the fire and with step size

10. After the evacuation, the robot reissues the request for

guidance within its neighborhood and continues its mission.

Although in Fig. 6(a) the collision actually happens, potential

collision can be avoided by changing the behavior pattern

from collide-then-escape to predict-collision-then-escape. The

TABLE IV
ADDING THE ESCAPE RULE

defrule Escape :

sensed temperature is above the alert threshold ⇒

construct a vector �e escaping from the fire detected by a coarse

heat source detector;

force := �e/|�e| · escaping step size.

collision prediction can be implemented in our scenario by

configuring an alert threshold lower than the temperature

threshold of impassable region, like 80 degree. The assumed

availableness of temperature reading and heat source informa-

tion to robots can be abstracted as the robots’ local obstacle

avoidance abilities. The assumption of this ability is also valid

in other scenarios, e.g. the wall is the obstacle and the robot

has the ultrasound based obstacle sensing ability.

We mitigate the out-of-field problem by expanding the

narrow navigation band along planned path to the broad DH-

APF based navigation field covering the entire deployment

region. Therefore, in Fig. 6(b), even when the robot strays

away to the right bottom corner, far away from the the planned

route. Still, it can retrieve the reversed field gradient from

surrounding and get back to normal course later. We admit that

with our solution it is still possible for the occurrence of out-

of-field event, e.g. the robot again makes wrong decision about

next step moving direction at the right bottom corner. Actually,

we doubt the existence of an ultimate solution that robots

never get lost. At least, our solution gives the sensor network

deployer a method to reduce the out-of-field possibility by

throwing more sensors and broaden the deployment region.

3) Motion oscillation problem and its solutions: Another

advantage of replacing the navigation bands by our DH-APF

based navigation fields is to mitigate the oscillation problem

in narrow passages. We observe that when the robot moves

in narrow corridors, it often encounters a path oscillation

problem, as illustrated by Fig. 7. When the robot locates near

the center of the corridor, it tends to move by a smoothed

trajectory, represented by a blue line in graph. However, when

there is a disturbance that the robot locates near the boundary

of the corridor, its moving path oscillates along the blue

smoothed path. In fact, [5] naturally creates such a corridor

by building a navigation band along the planned path and the

oscillation in robots’ motion can be anticipated. The existence

of oscillation problem get verified by our experiment in

Fig. 8(a). Here, the initial disturbance required by oscillations

is introduced by making the robot to turn around a corner.

Event

Point

Robot

Robot

Oscillated Path

Smoothed Path
Roughly Equal Areas

Ideal Navigational 

Band Built from 

Concentric Rings

Fig. 7. Model of oscillations in a narrow passage or a navigational band.

The oscillation problem in fact is inevitable for artificial

potential field based methods as argued by [6]. We however
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can mitigate it here by throwing more sensors and expanding

the corridors. In Fig. 8(b), with the two layers at the top

which provides additional attractive forces, the motion of the

robot no longer oscillates. It turns around the corner smoothly,

which shortens the time to arrive at the target. Another cheaper

mitigation than the corridor expansion is reducing the step size

when detecting a dramatic change in the sequence of reversed

gradient estimates. When there is only slight changes in the

gradient estimates sequence, we can enlarge the step size to

reduce the interactions between robots and static sensors, thus

save the precious energies of static sensors and increase the

robots’ moving speed. A thorough investigation into the energy

features of this dynamic step size scheme is our future works.

Robot begins to oscillate at this point

(a) Unstable motions in narrow cor-
ridors.

The robot would turn downwards at 

this point, if without the two upper 

layers of sensors. Then it would 

suffer from oscillations.

(b) Stable motions in broad re-
gions.

Fig. 8. Oscillation in narrow passages and a possible mitigation.

4) Conclusion: The robot navigation guided by networked

static sensors is unreliable, which requires careful engineering

efforts. This unreliability mainly originates from the irreg-

ular, fault-prone nature of wireless communication and can

be worsen by sparse and nonuniform sensor distributions.

Our proposed solutions here are to increase robot navigation

reliability by exploiting robot self-carried sensors to grantee

the collision-free property, and by throwing more sensors to

cover a broader region to mitigate the out-of-field problem

and the path oscillation problem, especially when the robot

turns around the corners. With these efforts on navigation

reliability, it’s possible for our algorithm to configure a large

step size, which reduces the interactions with static sensors,

saves sensors’ energies and increases the speed of robots.

This large step size is impossible for other robot navigation

algorithms, since the large step size increases the possibility of

out-of-band, oscillation and collision, which can not be well

handled by them.

VI. SIMULATIONS

A. Experiment Setup

We setup our simulation platform as described below. The

path planning algorithm in TABLE I&II is developed by

nesC over TinyOS [11]. The robot navigation algorithm in

TABLE III&IV is implemented by a mixture of nesC and

Tython scripts [12]. We simulate the unreliable radio links

by TOSSIM’s empirical bit error model [13]. The sensors are

placed either in regular grids or in disturbed grids. Although

the grid spacing is fixed throughout our experiments, we still

have control over the network density or the average node

degree by adjusting the radio transmission range. Obstacles in

the sensor deployment region can be simulated by one of the

two ways: (1) turn off motes in the obstacle regions; (2) create

a Tython SimObject with a high temperature attribute.

We use the follow notations for our experiments:
D : sensor distribution density 100

100·100ft2
= 0.01sensor/ft2

R : average symmetric communication range ≈ 20ft

k : range scaling factor

r : average symmetric communication range R
k

d : average node degree in the symmetric topology πr2D

B. Experiment on Trajectory Smoothness

Let lt be the length of robot trajectory generated by our

reliable robot navigation algorithm and lr be the length of a

reversed routing path. Our experiments, by comparing lt with

lr, are to demonstrate our algorithm can produce smoother

trajectories than the shortest routing path and it’s safer to

function in twisted corridors environments. The reason why we

choose the shortest routing path for comparison is that many

algorithms are proposed to steer the robot along it, though they

may not actually achieve the same efficiency with routing path.

In Fig. 9∼12, robot trajectories are represented by red

polylines, while shortest routing paths are represented by blue

dotted polylines. The red robot trajectories do not need to

end precisely at the event owner, since the robot stop its

engine once it arrives within the one hop range of the event

owner. Our algorithm has been tested in various network con-

figurations. The primary network parameter we varied is the

radio range r by adjusting the scaling factor k. The functional

relation between r and k can be found in Subsection VI-A.

Other factors include the sensor distribution pattern (regular

grid topology or disturbed grid topology) and deployment

region (with or without obstacles). In experiments, the function

adopted to estimate the reversed field gradients is Eq. (2).

(a) k = 1, d = 12.56. (b) k = 1.15, d = 10.9. (c) k = 1.3, d = 7.44.

Fig. 9. A comparison in rectangular fields with disturbed grid placement.

(a) k=1, d=12.56. (b) k=1.15, d=10.9. (c) k=1.3, d=7.44.

Fig. 10. A comparison in rectangular fields with disturbed grid placement.
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In Fig. 9, the length of multihop routing paths in a regular

grid topology is sensitive to the change in sensor density.

However, no obvious variations can be witnessed for the length

of red trajectories generated by our algorithm. Compared

with the shortest routing paths, our trajectories are constantly

shorter and more smoothed. This advantage originates from

Eq. (2), because in the routing path, only one node is chosen

from a pack of upstream sensors as the next hop node,

and however, in our robot trajectory, the next step moving

direction is determined by “averaging” the attractive forces by

all upstream sensors. This advantage can also be witnessed

in disturbed grid topologies in Fig. 10, i.e., although the

routing paths become smoother in disturbed grid topologies

than in regular grid topologies, our trajectories still exhibit

better quality. Another observation from Fig. 9&10 is that our

trajectories is not sensitive to the change in network densities.

This is probably due to the small amount of data exchanges

required by our algorithm. Therefore, a denser network with

symmetric node degree 12.56 does not necessarily mean much

heavier message loss (due to radio conflicts), and a sparse

network with symmetric node degree 7.44 is sufficient for the

robot to make a good decision about the next step moving

directions.

Fig. 11&12 make similar comparisons in twisted corridors.

The shortest routing paths have very short moving distance,

which are confined by the corridors and are prone to stick

to the corners when turning around them. As a comparison,

robots applying our algorithm tend to keep a descent distance

away from the obstacles, since the lower-hop-count upstream

nodes that do not stick to obstacles also exert their attractive

forces over the robot. Therefore, though our trajectories are a

little longer than the routing paths in twisted corridors, they

provide higher safety.

(a) k=1, d=12.56. (b) k=1.15, d=10.9. (c) k=1.3, d=7.44.

Fig. 11. A comparison in twisted corridors with regular grid placement.

(a) k=1, d=12.56. (b) k=1.15, d=10.9. (c) k=1.3, d=7.44.

Fig. 12. A comparison in twisted corridors with disturbed grid placement.

VII. CONCLUSION

The algorithm presented in this paper provides a solution

to guide a mobile sensor to the region of phenomenon in a

reliable way. This reliability is achieved by (1) avoiding the

local trap by exploiting a global DH-APF; (2) solving the

problem of deviation from a planned global path; (3) avoiding

collision with obstacles; (4) mitigating the motion oscillation

problem. Though the proposed algorithm cannot ensure perfect

toleration of navigation path deviation and oscillation, it gives

insight as how to use the DH-APF to reduce the possibility

of out-of-field problem and improve the navigation trajectory

efficiency. Besides the reliability features, this algorithm is also

energy-efficient in the sense of (1) saving the energy of static

sensors by reducing the interaction between robot and them;

(2) saving the energy of robot by constructing a smoothed

trajectory shorter than or at least comparable to the shortest

routing path. The analysis and experiments in the paper are of

a high fidelity, which consider practical issues of error-prone

wireless commutations with implementations on TinyOS.
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