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ABSTRACT 

This paper deals with Reliable Network Design Problem (RNDP) in which the main 

sources of uncertainty are variable demand and route choice. The objective is to maximize the 

network total travel time reliability (TTR) which is defined as the probability of the network 

total travel time to be less than a threshold. The paper presents a framework of stochastic 

network model with Poisson distributed demand and uncertain route choice. The travelers are 

assumed to choose their routes to minimize their perceived expected travel cost following 

Probit Stochastic Users� Equilibrium (SUE) condition. The paper presents an analytical 

method for approximating the first and second moments of the total travel time. These 

moments are then fitted with a log-normal distribution. The paper then tackles the design 

problem in which the analytical derivative of the TTR is derived using the sensitivity analysis 

of the equilibrated path choice probability. This derivative is then supplied to a 

gradient-based optimization algorithm to solve the RNDP. The algorithm is tested with a 

small network example.  

 

Key words: Network Reliability, Network Design Problem, Stochastic Network, Sensitivity 

Analysis, Reliable Network Design 



INTRODUCTION  

Recently, the issue of network reliability has been a major focus in transport research. 

This is mainly due to the recognition of the importance of reliability of transport system. 

Early development in the area of network reliability has been on the evaluation of network 

reliability (with a broad definition), see for example (1), (2), (3), (4). Several measures for 

evaluating the network reliability have been proposed including the concept of travel time 

reliability (5), flow decrement reliability (6), vulnerability (7), capacity reliability (8) and 

connectivity reliability (9).  

The source of uncertainty within the transport network can be classified into two 

main categories i) variations in the travel demand and ii) variations in the supply (10). The 

latter includes connectivity of nodes or links, variations of capacity or free-flow travel time, 

and others. The variations in the demand are mainly caused by travel demand variation from 

day-to-day and uncertainties from the traveler�s behavior (e.g. route choice).  

In the past, a common approach adopted for representing uncertainty within a 

network is the method of Monte Carlo simulation which is used to simulate different 

combinations of supply and demand states. This is rather a direct application of an existing 

model for evaluating network reliability. However, it is more complicated to deal with the 

variations in the demand side endogenously (for travel demand variation and travelers� 

behaviors uncertainty).  

Some researchers have introduced the stochastic route choice model, which is one 

source of demand variation, with or without the demand uncertainty into network equilibrium 

models (11)- (15). Inouye (16) adapted an original Probit stochastic equilibrium model for 

evaluating travel time reliability by interpreting the error terms associated with the travel cost 

as the source of variation. Clark & Watling (17) proposed a stochastic network model 

assuming stochastic demand as well as stochastic route choice and defined an approach to 

approximate the probability density function (pdf) of the total travel time. The pdf of the total 

travel time within the network is then used to calculate the total travel time reliability which 

is defined as a probability of the total travel time to be less than a specified value.  

Following the recent development of the stochastic network model with endogenous 

uncertainty, the natural progress is then to use the model to design or determine an optimal 

modification of the network. The original instance of this problem (without uncertainty) is the 

so called Network Design Problem (NDP). Several researchers have attempted to tackle the 

NDP under uncertainty. Yin & Ieda (18) analyzed the NDP with uncertain travel time. Waller 

& Ziliaskopoulos (19) studied the problem of a dynamic NDP dealing with demand 

uncertainty. Chen et al (20) introduced a mean-variance model for the determination of the 

optimal toll under the build-operate-transfer scheme under demand uncertainty. 

The aim of this paper is to offer an alternative framework for the reliable network 

design problem (RNDP). The paper aims to develop a method for solving RNDP. The main 



uncertainty dealt with in this paper is the variability of travel demand and route choice. The 

problem formulation proposed allows the probability of travellers� route choice to change in 

response to the change of the network following the concept of Probit Stochastic User 

Equilibrium (SUE). The objective function of this RNDP is to maximize the probability of 

total travel time to be under a specified threshold, that is, total travel time reliability (17).  

The paper is structured into four further sections. The next section explains the 

formulation, assumptions, and notation of the stochastic network model. Then, section 3 

presents the formulation of RNDP and the solution algorithm including a method for 

calculating the total travel time reliability and its derivative with respect to the design 

parameters. The numerical results of a test with a small network are then discussed in section 

4. Finally, the last section concludes the paper and discusses future research issues.  

 

FRAMEWORK OF STOCHASTIC NETWORK MODEL  

This section describes the framework of stochastic network model taking into 

account the demand and route choice uncertainties. The framework follows closely those 

proposed in (17) with an exception of the assumption that travelers choose their routes to 

minimize their perceived �expected travel time� rather than �travel time at expected 

demand�.  

 

Notation and assumptions 

Define: 

va      flow on link ),...,2,1( Aaa = , v the vector of flows across all links 

wq     mean demand on O-D movement w  ),...,2,1( Ww =  

q      W-vector of mean demands 

Rw      index set of acyclic paths serving O-D movement w 

įar     indicator variable, equal to 1 if path r contains link a, 0 otherwise 

ta(va)  travel time on link a as a function of av  ),...,2,1( Aa =  

t(v)  vector of functions ),...,2,1()( Aavt aa = . 

The key statistical model assumptions are then: 

• The actual O-D demand on any day is independently distributed across inter-zonal 

movements, and for each movement w is distributed as a stationary Poisson random 

variable with constant mean 0>wq . 

• Conditional on the O-D movement w demand realised on any one day, drivers are 

assumed to choose independently between the alternative routes wRr∈  with 

constant probabilities rp  )( wRr∈  for each Ww ,...,2,1= .  

Both assumptions together imply that for each Ww ,...,2,1= , the route flows rF  )( wRr∈  

are random samples of a Poisson process with mean wq  and sampling rate rp . It follows 



that the route flows )( wr RrF ∈  are independent Poisson random variables with the mean 

value of wrqp  )( wRr∈ , for each Ww ,....,2,1= .  

Now, since the link flow random variables are related to the route flow random 

variables via the identities: 
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We then make the additional assumption: �the variation in link flows across the 

network may be approximated by a multivariate Normal distribution (with means and 

covariances as given above)�. The assumption of approximate multivariate Normal link 

flows is partially supported by the assumption of Poisson demands for movements with 

�large� mean wq , since the path flows rF  )( wRr∈  are (as noted above) also independent 

Poisson random variables with means wrqp  )( wRr∈ . Then, for the (dominant) paths with 

large mean wrqp  (say, greater than 10), independent Normal approximations are supported 

for their flows, which clearly mix into multivariate Normal link flows. See (21) for a more 

detailed discussion of the validity of this assumption. 

The formulation above establishes the analytical relationship between the random 

demand flows and the random link flows for a given vector of path choice probability (p). To 

complete the formulation of the stochastic model, we require knowledge of the route choice 

probabilities rp  ),...,2,1;( WwRr w =∈ . In fact any rule for route choice assignment can be 

invoked to provide rp  (e.g. Wardrop�s equilibrium or Stochastic equilibrium). In this paper 

we assume that the travellers choose their routes so as to minimise the perceived expected 

travel costs following the Probit Stochastic Users� Equilibrium (SUE).  

Let w

rC  be a random route cost for route r and [ ]w

rCE  denotes its means. Following 

the random utility theory, the perceived expected travel cost for route r can be defined as 

[ ] w

r
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r CEc ε+=~  where w

rε  is an error term associated with each path. Following the SUE 

condition (22), the probability of path r to be chosen can be defined as: 
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, where Pr(.) denotes probability. 

 From (4), the path cost distributions and hence their expected values are functions of 

path choice probabilities according to the assumptions made earlier. Thus, the condition 

shown in (4) defines the fixed point condition of the SUE. When w

rε  is assumed to follow a 



normal distribution, (4) becomes the Probit SUE condition. However, in our stochastic model 

the fixed point condition is only applied to the path choice probability not to the path flow as 

the path flows are random variable. In the conventional SUE, rp  is used to assign a 

proportion of OD demand onto a certain route. On the other hand, in our stochastic model 

rp  is rather seen as a probability of route r being chosen at random.  

Although the condition expressed in (4) is different from its original formulation, it is 

still possible to apply any method for solving the Probit SUE, see (23) and (25) for example, 

to (4). The reason being is that E[ta(Va)] = Σj bja E[Va
j
] (see the polynomial travel cost 

function adopted in this paper in (8) below) can be calculated using moment generating 

functions, see (15). Based on a property of the moment generating function, the mean link 

travel time is given as: 
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, which is simply a function of expected link flows (hence a function of expected route flow). 

By using the reformulation of travel cost function as shown in (5) we can apply an algorithm 

for solving to Probit SUE to (4) directly using the expected value of the OD demands as the 

deterministic demand levels (just to obtain pr). In summary, the system of equations 

comprising of (1)-(6) defines the equilibrium condition for the stochastic network model.  

 

FORMULATION AND SOLUTION ALGORITHM OF RELIABLE NETWORK 

DESIGN PROBLEM  

 

Formulation of RNDP 

In deciding upon the optimal allocation of the budget for the network improvement, 

the network planner needs to take into account possible responses of road users to the change 

in the network. This users� response to the changes is the condition defined in (1)-(6) in the 

previous section. Let s be a vector of design parameters which are associated with the link 

travel time function, i.e. ( )aaa sVt , . Associated with the design parameter, let ȕa denotes the 

cost per unit of change of sa. ΣaSaȕa is thus the total improvement cost. The objective 

function of the reliable network design problem (RNDP) considered in this paper is the total 



travel time reliability (TTR) which is defined as the probability of the total travel time, T = Σa 

ta (Va,sa)Va, to not exceed a pre-specified criterion (Į). This can be expressed as Pr(T ≤ Į). 

This objective function is mainly developed from the planner�s perspective. Several other 

possible objective functions can also be used (e.g. capacity reliability or expected net welfare 

gain). In addition to the objective function, a budget constraint is also included which is 

defined as ΣaSaȕa ≤ Ȍ. Thus, the RNDP with stochastic network equilibrium condition can be 

defined as follows: 
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, where [ ]( )Σ,MVN~ VV E  means that the random vector of link flows (V) follows a 

multivariate normal distribution (MVN) with a mean vector of E[V] and variance-covariance 

matrix of Σ. 

In order to develop a gradient-based optimization algorithm for solving (7), it is 

necessary to calculate (i) the approximated probability density function (pdf) of the total 

travel time (for the calculation of the objective function) and (ii) the derivative of the TTR 

with respect to the design variables. The next section discusses the main result from Clark & 

Watling (17) on an approach for estimating the pdf of the total travel time. Then, we will 

discuss the sensitivity analysis method which is used to define the derivative of the objective 

function with respect to the design variables.  

 

Approximating probability density function of the total travel time  

The link travel time function adopted in this paper can be written in a polynomial 

form as: 

∑
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Note that the power-law forms of the commonly used Bureau of Public Roads functions are a 

special case of (8). Based on (8), the random variable for the total travel time on link a is 

defined as: 

 ∑
=

+==
m
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ajaaaaa VbVtVW
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1
)(                                           (9) 

where aV  is a random variable representing the flow on link a, and aW  is the total travel 

time on link a (throughout the paper the convention is used that a random variable is denoted 

by a capital letter). Our interest will be in the total travel time random variable T given by 
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In a general case, one can attempt to compute the first four moments of T about the 

mean of total travel time and then fit them to a flexible family of probability densities known 

as �Johnson curves� (25) according to the techniques described in (26). This family consists 

of distributions obtained by monotonic transformations of a MVN, with additional parameters 

incorporated to permit a flexible fit to observed data. In our case, we will fit T with the 

lognormal system (SL) in which )ln( ξδγ −+ X  ~ Nor(0,1)  (for )ξ>X  where Nor (0,1) 

denotes a Normal distribution with mean 0 and variance 1. Thus, SL is a three-parameter 

system. We further assume that ξ  which represents the minimum total travel time is zero. 

Thus, δ  and γ  can be estimated by using the following expressions: 

1

2 2
1

ln 1 ;     ln
2

σδ γ δ µ
µ δ

−
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       (11) 

, where µ and ı are the mean and standard deviation of the total travel time (T). Thus, in 

fitting T with the lognormal system we only need to obtain the mean (µT) and the second 

moment about the mean of T, which is the variance ( ı2
 = E[T - µT]

2
). We can derive that: 
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, and then by Binomial expansion we obtain: 
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Thus, from (12) and (13) in order to calculate the mean and variance of the total travel 

time we need to define E[Wa] and E[WaWb] which can be defined as follows, see (17) for the 

detail of the derivation: 
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From (14), T may be written as a sum of multivariate moments of V. In order to compute the 

moments of V, results due to (27) are applied, which allow the computation of appropriate 

bivariate Normal moments for any powers. 

 Let qab(i,j) = E[(Va - µa)
i
(Vb - µb)

j
]. This is simply the problem of finding the 

bivariate normal moments. When i+j is an odd number, qab(i,j) is equal to zero (27). For the 

case of even number of i+j, either both i and j must be odd or even numbers. Pearson and 

Young (27) provided general formulas for computing qab(i,j) for these two cases: 
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, where ( ) 22/,cov babaab VVr σσ= , and 2

aσ is the variance of Va.  

The expression of covariance and variance of variable link flows is provided in (2) and (3). 

Note that E[(Va - µa)
k
] can be considered as a special case of E[(Va - µa)

i
(Vb - µb)

j
] for the case 

of k > 2 by setting i = 2 and j = k-2  which is associated with qaa(2, k-2). 

In summary, the process of approximating the pdf of total travel time (T) is to 

calculate (15)-(11) (in that order).  

 

Analytical derivative of the total travel time reliability 

 As discussed earlier, the second information we need to devise an optimization 

algorithm is the derivative of the objective function with respect to the design parameter. In 

(7), one of the complications is the presence of the fixed-point condition representing the 

SUE condition. In this paper, the strategy is to reformulate (7) to an implicit programming 

problem in which the path choice probability will be defined as an equilibrium path choice 

probability (p*r). This equilibrated path choice probability will be a function of the design 

parameters (s) capturing the fixed point condition, p* r (s).  

 Recall that the total travel time distribution is approximated by the log-normal 

system with the first and second moments of the distribution as defined in the previous 

section. The TTR (given the criteria of Į) can then be defined solely as a function of s as 



follows: 
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, where ĳ(y) defines the pdf of Nor(0,1).  

 Define x = Ȗ(s) + į(s)lnĮ; the derivative of ȥ with respect to s can then be defined 

using the chain rule: 
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The sensitivity analysis of the equilibrated path choice probability with respect to the design 

parameter (∂p*r/∂s) can be derived using the result in (28). This will be revisited later on. 

Firstly, we will deal with ∂x/∂p*r. The derivation of ∂x/∂s is similar to that of ∂x/∂p*r with 

some final adjustment which will also be discussed later.    

 Since x is equal to Ȗ(s) + į(s)lnĮ , ∂x/∂p*r can then be defined as:
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Thus, we are left with only the derivative of Ȗ and į with respect to p*r. Recall the definition 

of Ȗ and į from (11), we can then define the derivative of both Ȗ and į as: 
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the chain rule to define the derivative of z with respect to p*r . 
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Thus, the only terms we need to define for calculating (18) and (19) are ∂ı/∂p*r and ∂µ/∂p*r.  

Firstly, let�s look at the derivative of the standard deviation of the total travel time 

with respect to the equilibrated path choice probability, ∂ı/∂p*r. The information available is 

the second moment of the total travel time around its mean (variance of the total travel time) 

which is defined in (12). Therefore, we can define ∂ı/∂p*r through the chain rule as: 
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, and we already showed that ı2 
= E[T

2
] - µ

2
. Thus, we can define the derivative of the 

variance with respect to the equilibrated path choice probability as: 

[ ] [ ]
**

2

*

2

*

2

*

2

2
rrrrr pp

TE

pp

TE

p ∂
∂

−
∂

∂
=

∂
∂

−
∂

∂
=

∂
∂ µµµσ

      (21) 



The last term of (21), ∂µ/∂p*r, will be addressed later. Now, we will focus on the first term, 

∂E[T
2
]/∂p*r . As described earlier, E[T

2
] can be defined as (13). Thus, its derivative can be 

simply defined as: 
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Since 2

aW is simply a special case of a aW W , we will focus only on finding ∂E [WaWb]/∂p*r. 

From the expansion of E [WaWb] shown in (14), we can define its derivative as: 
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Define ij

abΩ as ( ) ( )[ ]j

aa

i

aajbia VVEbb µµ −−
~~

, we can then derive: 
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Following (14), we can define: 
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where, µa is defined in (2), and thus ∂µa/∂p*r = ∑įarįrwqw in which įar and įrw denote the 

dummy variables taking value of 1 if link a is relevant to route r and if route r is relevant to 

OD pair w respectively (and 0 otherwise). Now return to (24). We still need to define ∂E[(Va- 

µa)
i
(Vb- µb)

j
]/∂p*r to complete the formulation. Recall that E[(Va- µa)

i
(Vb- µb)

j
] can be defined 

following (15), we can define ∂E[(Va- µa)
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, where ∂ı2
a/∂p*r = ∑įarįrwqw and ∂cov(Va,Vb)/∂p*r = ∑įarįbrįrwqw. 

(ii) i and j are both odd numbers 
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, and ∂rab/∂p*r  is as defined above.  

At this point, we completed the derivation of the ∂E [WaWb]/∂p*r which can then be 

used to find ∂E [T
2
]/∂p*r. Return to (21), we still need to define ∂µ/∂p*r to complete the 

calculation. Following (14), we can define: 

( )[ ] ( )[ ]∑∑
=

+

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−+
∂
−∂

=
∂
∂ A

a

m

i r

iai

aa

r

i

aa
ia

r p

b
VE

p

VE
b

p 1

1

0
***

~
~ µ

µµ
          (28) 

Note that iab
~

∂ / *

rp∂  is already defined in (25) and (26). Thus, we only need to define ∂E [(Va 

-µa)
i
]/∂p*r to complete the calculation. We also can use the process to calculate E [(Va -µa)

i
(Va 

-µa)
i
(Vb -µb)

j
] to find E[Va -µa)

i
] with some remedy. If i = 0, then E [(Va -µa)

0
] = 1, and hence 

∂E [(Va -µa)
0
]/∂p*r = 0. On the other hand, if i = 1, then E [(Va -µa)

1
] = 0, and again ∂E [(Va 

-µa)
1
]/∂p*r = 0. 

For the case where i > 1, we can define E[Va -µa)
i
] in the form of E [(Va -µa)

i
(Va 

-µa)
i-1

(Va -µa)
1
]. With this reformulation, the approach employed to calculate E [(Va -µa)

i
(Va 

-µa)
i
(Vb -µb)

j
] can then be applied. Note that we will always have the case of both i and j are 

odd numbers since j is always 1. Therefore, we only need to find the derivative for the case 

(ii) in (27). We now complete the formulation of ∂µ/∂p*r. In summary, by calculating 

(16)-(28) we can compute ∂x/∂p*r analytically. Given that ∂p*r/∂s can be evaluated, we can 

calculated ∂x/∂p*r∂x/∂p*r. Recall that p*r is defined as the path choice probability at the 

equilibrium condition defined by the equation system of (1)-(6). To deal with ∂p*r/∂s, the 

technique of sensitivity analysis will be employed which will be discussed in the next section. 

For ∂x/∂s, the same derivation from (17)-(23) for ∂x/∂p*r can be employed by 



replacing the derivative with respect to p*r to the derivative with respect to s. Recall the 

modified (23) (now for ∂x/∂s) : 
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In this case, E [(Va -µa)
i
(Va -µa)
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(Vb -µb)
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] is not a function of s. Define ij
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Following (14), we can define: 
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Similarly, (28) can be modified to: 
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, and again we can use (31) and (32) to compute (33).  

 In summary, ∂x/∂s can be computed using (17)-(23) and (30)-(33). This completes 

the derivative of the derivative of the total travel time reliability with respect to the design 

parameters.  

 

Sensitivity analysis of equilibrated path choice probability 

The equilibrated path choice probability can be defined as follows: 
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where 
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Recall that J1 is the Jacobian of the fixed-point condition with respect to the path 

choice probability. This can be defined as: 
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Similarly to the case of SUE, any technique for computing the derivative of the 

Probit path choice probability can be applied with the modified link cost functions 

representing the expected travel costs. The technique for finding the derivative of path choice 

probability can be found in (29) and those who are interested in the implementation of this 

approach should be referred to (28).   

In the practical implementation, sa is directly associated with the change of the 

parameters in the original BPR link cost function of the form ta(Va,sa) = ȗa(sa) + 

Șa(sa)[Va/ș(sa)]
4
. Therefore, when calculating ∂bje/∂sa, the relationship between the original 

BPR link travel cost function and the (approximated) polynomial travel cost function, as 

defined in (8), must be considered. In the numerical test which will be presented in the next 

section, only the quadratic link cost function, ta(Va) = b0a + b1aVa + b2a(Va)
2
, will be adopted to 

reduce the complexity of the calculation. Note that this does not pose any restriction on 

applying the method to a travel cost function with a higher order. The second-order Taylor 

series expansion of f(x) about a point x = u is given by:  
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Thus, the relationships between the parameters in the quadratic link cost function and the 

BPR function can be made: 
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In summary with the information about the derivative of the objective function with 

respect to the design parameter (including the effect of the equilibrium condition), one can 

apply any of the fruitful available optimization routines to solve the RNDP stated in (7). The 

next section presents numerical results from a test with a small network.  

 

ILLUSTRATIVE EXAMPLE  

 This section tests the algorithm developed in the previous section with a small five 

link network. We adopt the �fmincon� solver within MATLAB in which the derivative of the 

objective function with respect to the design parameters is supplied to the solver in addition 

to the derivative of the constraints. The algorithm inside the �fmincon� solver is the sequential 

quadratic programming (SQP) (30).  

Figure 1 shows the five-link test network with the BPR link cost function. The 

network comprises of five links and a single origin-destination pair. This network has been 

used in previous studies, e.g. (17) and (31).  

 

 

 

 

 

 

 

 

 

FIGURE 1 Test network, O-D demand q = 100. 

The quadratic link cost function is constructed using the Taylor series expansion 

around a vector of link flow at the conventional Probit SUE condition, va, (see the previous 

section). Table 1 shows the coefficients of the quadratic link cost functions. Using (5) the 

modified link cost function representing the expected link travel time can be defined as: 

 ( )[ ] ( )2

210 aaaaaaaa bbbVtE µµµ +++= = ( ) 2

2210 aaaaaa bbbb µµ +++   (36) 

It should be noted that the link cost parameters adopted in approximating the pdf of the total 

travel time using (8)-(15) should be the coefficients for the quadratic link cost function as 

shown in Table 1. 

 

 

 

t1(v1) = 4 + 0.6(v1/40)4 

t2(v2) = 6 + 0.9(v2/40)4 

t3(v3) = 2 + 0.3(v3/60)4 

t4(v4) = 5 + 0.75(v4/40)4 

t5(v5) = 3 + 0.45(v5/40)4 

Origin Destination 



TABLE 1 Base SUE Link Flows and Quadratic Travel Time Coefficients 

link number (a) va b0a b1a b2a 

1 55.48 10.6637 -0.3203 0.00433 

2 44.52 10.1417 -0.2481 0.00418 

3 12.39 2.0016 -0.0004 0.00002 

4 43.10 8.0320 -0.1876 0.00326 

5 56.90 8.5289 -0.2591 0.00342 

 Monte Carlo simulation is employed to simulate an empirical frequency 

distribution of the total travel time. Figure 2 shows the empirical frequency distribution of the 

total travel time with 4000 Monte Carlo draws of the Poisson O-D demand. The mean and std 

as calculated from the empirical frequency distribution are 1277.30 and 275.14 respectively. 

The analytical mean and variance based on the approach described earlier are 1306.42 and 

279.96 which are relatively close. 
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FIGURE 2 Empirical distribution of total network travel time based on 4000 Monte 

Carlo draws from the Poisson demand distribution ( q = 100) 

Figure 3 illustrates the travel time distribution as the capacity of link 1 was gradually 

increased. The figure shows that in addition to the expected shift of the mean of the 

distribution changes in the dispersion and shape of the distribution is also observed. 

Particularly, one can observe the subtle changes on the right-tail of the distribution whereas 

the left-tails of the distributions are more stable. These results imply the concept of �spare 

capacity� in which a network with higher spare capacity is more capable of dealing with 

uncertain demand (especially a high level demand). 
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FIGURE 3 Analytical distribution of total network travel time for a range of changes on 

the capacity of link 1. 

Figure 4 demonstrates the effect of the link capacity on the TTR (TT ื 1,500). The 

capacity of each link is increased by 1-30 units. The figure shows that the TTR is most 

sensitive to the change on link 1, 5, 2, 4, and 3 in that order. Links 1 and 5 are related to two 

of the three paths in the network and hence covers a high volume of traffic. On the other hand, 

the capacity change on link 3 almost has no impact on the TTR. Link 3 is related to the path 

with the least path choice probability, and hence related to a small volume of traffic. 

The next test involves directly the RNDP. The design parameters considered in this 

test is the link capacity (ș). The budget constraint is set to be 50 and the cost per a unit 

change of link capacity is 2. In this test, the capacities of links 1, 2, 4, and 5 are the design 

parameters. We decided to drop link 3 due to its small influence on the TTR. Interestingly, the 

optimal result found by the �fmincon� only involves the improvement of the capacities on 

links 1 and 5 with the magnitude of 16.02 and 8.98 giving the probability of 0.97 for the total 

travel time to be less than 1,500. 

Figure 5 illustrates the sensitivity of the objective function with the change in the 

budget constraint. Six levels of the budget constraint are tested: 60, 50, 40, 30, 20, and 10. As 

shown in the figure, one can notice the declining rate of the improvement over the total travel 

time reliability as the budget increases. 



0 5 10 15 20 25 30
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Additional link capacity

T
o

ta
l 

T
ra

v
el

 T
im

e 
R

el
ia

b
il

it
y

 (
T

 <
=

 1
,5

0
0

)

Link 1

Link 2

Link 3

Link 4

Link 5

 

FIGURE 4 Effects on the total travel time reliability (TT ื 1,500) as the capacity of 

each link is increased.  
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FIGURE 5 Sensitivity of the improvement of the total travel time reliability as the level 

of budget constraint varies 

 



 

CONCLUSIONS  

 The paper presented a stochastic network model that includes two sources of 

uncertainties: demand and route choice uncertainty. The OD demands are assumed to follow 

Poisson distribution and the travelers� route choices are assumed to follow Probit SUE in 

which the drivers consider the perceived expected travel times. Then, the formulation of the 

reliable network design problem (RNDP) was presented with an objective function of 

maximizing the total travel time reliability (TTR) with a budget constraint. TTR is defined as 

the probability of the network total travel time to be less than a specified threshold.  

An approximation method for deriving the first and second moments (mean and 

variance) of the total travel time was explained. These moments are then used to fit the total 

travel time with the Johnson distribution using the log-normal system. With the approximated 

pdf of the total travel time, the TTR for a given threshold can be calculated. The paper then 

derived an analytical derivative of the TTR with respect to the design parameters (e.g. link 

capacity). To complete the derivative, the sensitivity analysis method for calculating the 

derivative of equilibrated Probit path choice probability with respect to the design parameters 

was described. 

The analytical derivative of the TTR is then supplied to the �fmincon� solver in 

MATLAB to solve the RNDP. The algorithm was tested with a five-link network. The tests 

were also conducted to investigate the changes of the total travel time distribution as the link 

capacities varied. The results showed that the link capacity change did not affect only the 

location of the total travel time distribution but also its dispersion and shape (especially a 

strong effect of the right-tail of the pdf was found). Additional tests on the influence of the 

capacity improvement on each link on the TTR were also conducted. The result showed that 

links which are related to a higher traffic volume and number of paths are likely to have more 

influence on the TTR. The algorithm was then employed to solve the test problem of RNDP 

successfully. Further investigation on the sensitivity of the TTR with the budget constraints 

was also made. The results suggested a gradually decreasing trend of the marginal gain in the 

TTR improvement as the budget level increased. 

The main reason for choosing the TTR as the main objective function of the RNDP 

is due to our view that TTR is an extension of the travel time reliability and is appropriate for 

the analysis with demand uncertainty. However, it is also envisaged that the modeling 

framework and algorithm proposed in this paper can also be applied to other indices. This 

possibility will be explored in our future research. In addition, further research will attempt to 

apply the algorithm with a larger scale network to show its practicality and investigate the 

discrete network design problem.  
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FIGURE 2 Empirical distribution of total network travel time based on 4000 Monte 

Carlo draws from the Poisson demand distribution ( q = 100) 
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FIGURE 3 Analytical distribution of total network travel time for a range of changes on 

the capacity of link 1. 
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FIGURE 4 Effects on the total travel time reliability (TT ื 1,500) as the capacity of 

each link is increased. 
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FIGURE 5 Sensitivity of the improvement of the total travel time reliability as the level 

of budget constraint varies 

 


