
Reliable Patch Trackers: Robust Visual Tracking by Exploiting Reliable Patches

Yang Li and Jianke Zhu

College of Computer Science

Zhejiang University, China

{liyang89, jkzhu}@zju.edu.cn

Steven C.H. Hoi

School of Information System

Singapore Management University

chhoi@smu.edu.sg

Abstract

Most modern trackers typically employ a bounding box

given in the first frame to track visual objects, where their

tracking results are often sensitive to the initialization. In

this paper, we propose a new tracking method, Reliable

Patch Trackers (RPT), which attempts to identify and exploit

the reliable patches that can be tracked effectively through

the whole tracking process. Specifically, we present a track-

ing reliability metric to measure how reliably a patch can

be tracked, where a probability model is proposed to esti-

mate the distribution of reliable patches under a sequential

Monte Carlo framework. As the reliable patches distributed

over the image, we exploit the motion trajectories to dis-

tinguish them from the background. Therefore, the visual

object can be defined as the clustering of homo-trajectory

patches, where a Hough voting-like scheme is employed to

estimate the target state. Encouraging experimental results

on a large set of sequences showed that the proposed ap-

proach is very effective and in comparison to the state-of-

the-art trackers. The full source code of our implementation

will be publicly available.

1. Introduction

Visual object tracking is a fundamental research topic

in computer vision, which enjoys a wide range of applica-

tions, including video surveillance, robotics, driverless car,

etc. Despite having achieved promising progress over the

past decade, it remains very challenging for designing an

all-situation-handled tracker that can handle various criti-

cal situations, such as illumination changes, geometric de-

formations, fast motions, partial occlusion, and background

clutters, etc.

Structural representation has recently been studied ac-

tively in tracking community, which has been shown as

an effective approach to enhancing the robustness. Typi-

cally, a grid-like structure [41, 17, 12], typically a bounding

box, is employed to represent the target object for tracking.

Since most of the tracked target is not strictly a rectangu-

lar shape, the bounding box representation often inevitably

Figure 1. The tracking confidence map of the next frame when the

tracker was initialized at different positions with a fixed bounding

box. The trackability varies largely in the image.

incorporates background information into the model, and

thus could degrade the overall performance of the tracker.

Therefore, the grid-like structure is not the optimal way to

represent real objects that are of non-rectangular shape.

To account for the object shape in tracking tasks,

segmentation-based approaches [22, 27] have been explored

to build accurate representations for model-free targets. Al-

though video segmentation [10] has found some promising

progress for object tracking, it is often very computation-

ally intensive to generate object proposals and link them

across frames. Moreover, it is also quite challenging for

the segmentation-based method to deal with cluttered back-

ground and occlusions, which often lead to unstable results.

Another family of tracking approaches that are naturally

1



robust to occlusions and deformations is keypoint-based

trackers [32, 4] which represent the visual object by a set of

salient points like SIFT or SURF features [24]. However,

they may suffer from difficulty in capturing global infor-

mation of the tracked target by only using the local points,

especially for the object with large homogenous region.

To address the above limitations, we propose a novel Re-

liable Patch Trackers (RPT), which aims to identify and ex-

ploit the most reliable patches across video for tracking.

Instead of resorting to hand-crafted structures, a trackable

confidence function is proposed to compute and select the

reliable patches, which is capable of capturing the underly-

ing object geometry, as shown in Figure 1. To locate those

patches, both trackable confidence and motion information

are incorporated into the particle filter framework, which

are further employed to vote for the target location and es-

timate the object scale. Unlike the conventional particle

filter-based approaches [31, 35, 25] that often estimate the

target state with affine space, our RPT approach infers the

distribution of reliable patches by trackability and motion

similarity, which are further employed for tracking through

a base tracker. During the tracking process, we resample

the patch particles only when it is necessary rather than re-

moving all particles and resample their state space at each

frame in traditional methods.

In summary, the main contributions of this paper include:

(i) a novel sequential Monte Carlo framework to effectively

locate visual objects by directly inferring a set of reliable

patches through particle filters; (ii) a reliability confidence

function for capturing the underlying object geometry with-

out resorting to a hand-crafted structural representation; (3)

a reliable patch tracker with an effective updating scheme

that takes advantage of a Hough voting scheme to locate the

object and estimate its scale; and (4) encouraging results

from extensive experiments on online visual object tracking

benchmark by comparing against state-of-the-art trackers.

2. Related Work

Video object tracking has been extensively studied in

computer vision over the past decade [38, 39, 16, 7, 23, 43,

42]. Comparing with the trackers using holistic feature rep-

resentations [31, 35, 15], the structured trackers [34, 17, 40,

26, 30, 27] are generally more promising, particularly in the

scenarios of deformations and occlusions.

The first major category of related work is the family

of part-based trackers, which often employs a predefined

structure. Adam et al. [1] proposed to represent the object

by the grid of fragments, where the target position is voted

from these fragments. Jia et al. [17] proposed to divide

the object into small patches by a regular grid; moreover,

l1 sparsity is adopted as the similarity metric to search the

closest candidates in next frame. In [34], a flock of track-

ers was proposed to track a set of patches with regular grid

structure that allows certain drifts. Besides the grid repre-

sentation, the star model and tree structure have also been

studied in [40] with promising results. Kwon and Lee [22]

also proposed a star-like appearance model, where a parti-

cle filter is employed to find the best state of the tracked

target. Moreover, it builds the foreground and background

models for segmentation in order to further refine the track-

ing results. Cai et al. [5] proposed to decompose target

into superpixels, and then employ graph-matching to link

the neighbor frames. Instead of using the predefined struc-

ture, our proposed method attempts to find the underlying

structure of the target objects during the tracking process.

Another category is the family of keypoint-based track-

ers [4, 36], which are widely used in SfM and SLAM [18,

19]. In model-free tracking, Grabner et al. [28] proposed a

boosting classifier to match the keypoint between different

frames. Godec et al. [27] proposed to train online Hough

forests to map image patch onto a probabilistic vote, where

back projection along with segmentation is used to estimate

the object region. Maresca and Petrosino [26] presented a

tracker by Generalized Hough Transform and multiple key-

point detection in a fallback framework. Recently, Nebe-

hay and Pflugfelder [30] attempted to enhance the tracking

performance by combining keypoint matching and optical

flow, where a consensus method was proposed to detect out-

liers. Unlike the keypoint-based methods, our approach at-

tempts to find the reliable patches dynamically in the track-

ing process which potentially could be more robust than the

keypoint-based approaches.

Besides, our approach is also related to the methods us-

ing multiple trackers [20, 21]. For example, Kwon and

Lee [20] introduced a decomposition scheme to incorporate

different templates for specific appearance of the target. To

make it more robust, the base trackers are sampled from

the predefined tracker space into the Markov Chain Monte

Carlo (MCMC) framework [21].

Unlike the previous approaches, in this paper, we pro-

pose to employ the Correlation Filter-based methods [14,

13, 8, 7] as the base trackers, which take advantages of the

convolution theorem to effectively learn the object template

model and perform tracking in the Fourier domain under the

tracking-by-detection framework.

3. Reliable Patch Trackers

In this section, we present the proposed Reliable Patch

Trackers (RPT) for robust visual object tracking. First, we

introduce a novel sequential Monte Carlo Framework which

takes advantage of reliable patches. Second, we investigate

how to compute the likelihood of tracking reliability for a

patch using visual information and estimate the patch-on-

object likelihood from motion information. Finally, we de-

scribe the implementation details of the proposed reliable

patch trackers.



3.1. Sequential Monte Carlo Framework

The key idea of the proposed method is to identify and

track the reliable patches on visual objects. Since it is hard

to find the exact reliable patches, we explore the Sequen-

tial Monte Carlo Framework [2] to estimate their probabil-

ity distribution. In the following, we formally formulate the

proposed idea.

In general, an image patch is sampled from a bounding

box x = [�, �, �, ℎ] ∈ ℛ4. Given the observations in previ-

ous frames �1:�−1 = {�1, �2, ..., ��−1}, the probability den-

sity function that determines whether patch x� in the current

frame is reliable can be formulated as:

	(x�∣�1:�−1) =

∫

	(x�∣x�−1)	(x�−1∣�1:�−1)
x�−1 (1)

where 	(x�−1∣�1:�−1) is the state density function. Accord-

ing to the Bayes rule, it can be recursively calculated as:

	(x�∣�1:�) =
	(��∣x�)	(x�∣�1:�−1)

	(��∣�1:�−1)
(2)

where 	(��∣x�) is the observation likelihood, and 	(x�∣x)
is the transition density function. Let � denote Gaussian

distribution, 	(x�∣x�−1) is defined as:

	(x�∣x�−1) = � (x�;x�−1,Ψ(x�−1)). (3)

where Ψ1(x) = [0 E]x is a function for selecting the im-

age coordinates. � represents a 2× 2 identity matrix. Note

that this assumption will allow the reliable parts to move

around the object in order to account for the deformations.

This will make the tracker more sensitive to the local struc-

tures.

Formally, we define a reliable patch that has two prop-

erties: (1) being trackable; and (2) sticking on the target

object. By assuming these two properties are i.i.d., the ob-

servation likelihood 	(��∣x�) can be formulated as:

	(��∣x�) = 	�(��∣x�)	�(��∣x�) (4)

where 	�(��∣x�) denotes the confidence of a patch to be

tracked effectively, and 	�(��∣x�) indicates the likelihood

that the patch is on the tracked object.

As the state space for variable x ∈ ℝ
4 is too large to be

directly inferred, we adopt the particle filter [2] to estimate

the posterior 	(x�∣�1:�−1). As in the Bootstrap filter [2], the

particle weight �
(�)
� for the �-th patch can be computed by

�
(�)
� = �

(�)
�−1	(��∣x

(�)
� ). (5)

In this paper, we represent the visual object by a set of

reliable patch particles. For simplicity, a patch particle is

defined as X
(�)
� = {x

(�)
� ,V

(�)
� , �

(�)
� }, where V

(�)
� denotes

the trajectory of patch x
(�)
� within a temporal window, and

Figure 2. The workflow diagram of the reliable patch particles pro-

ceed in three frames. The patch particles estimate the distribution

of the reliable patches and track them at the same time.

�
(�)
� indicates the label of patch x

(�)
� is positive or negative.

Thus, the visual object can be represented as

M� = {X
(1)
� , ...,X

(�)
� ,x

����	�
� }, (6)

where x
����	�
� denotes the final tracked object state. As il-

lustrated in Figure 2, we integrate the process of tracking

and estimating reliable patches into a single pipeline. The

objective of the proposed tracker is to make M� as long as

possible while we re-compute the particle weights at each

frame. By tracking the reliable patches across frames, the

overall performance can be greatly improved.

Remark. Unlike the conventional approaches [31, 35,

25] that estimate the target state with affine space, we di-

rectly employ the particle filter to infer whether the reliable

patches are on the tracked object. In contrast to traditional

particle filters, we do not remove all particles and resample

the state space at each frame. Instead, we track the reliable

patches through a base tracker. Once the posterior of each

reliable patch is computed by the particle weights, it can be

further employed to estimate the scale and location of the

tracked target through a Hough Voting-like scheme. There-

fore, the whole process ensures that we are tracking with the

reliable patches related to the visual object, which is thus

more robust than the conventional bounding box methods.

3.2. Patch-trackable Observation Likelihood

To estimate how likely a patch can be tracked effectively,

we adopt the Peak-to-Sidelobe Ratio (PSR) as a confidence

metric, which is widely used in signal processing to mea-

sure the signal peak strength in response map. Inspired

by [8], we generalize the PSR to the template-based tracker



as a patch trackable confidence function:


(X) =
max (R(X))− �Φ(R(X))

�Φ(R(X))
(7)

where R(X) is usually a response map. Φ is the sidelobe

area around the peak which is 15% of the response map

area in this paper. �Φ and �Φ are the mean value and stan-

dard deviation of R except area Φ, respectively. It can be

easily observed that the function 
(X) becomes large when

the response peak value is strong. Therefore, 
(X) can be

treated as the confidence for a patch to measure whether it

is tracked properly. Since Φ is proportional to the patch

size, 
(X) can naturally handle scale variations. Figure 1

shows the distribution of the score function in an example

image. It can be seen that there are some peak values in the

score map which reveals the underlying visual structure of

the image. In general, R(X) can be defined as:

R�,�(X) ∝
1


(T, �(x+ �(�, �)))
(8)

where 
(T, �(x)) denotes the distance between the tem-

plate T and the observation. �(x) represents the feature

extraction function, and �(�, �) is the deviation of coordi-

nate. Therefore our method is suitable for all template based

trackers which have a template T.

As the response value R(X) is inversely proportional to

the distance between the template and sampled patch, the

trackable score function 
(X) is compatible for most of

base trackers, such as Lucas-Kanade method [3], normal-

ized cross correlation and the Correlation Filter-based track-

ers (CFT) [14, 8, 33]. Due to the high efficiency and impres-

sive performance achieved in the recent competition [29],

we choose KCF [14] as our base tracker. Specifically, we

directly employ the response map of correlation filters to

facilitate the trackable score function. Therefore, trackable

observation likelihood can be formulated as follows:

	�(��∣x�) ∝ 
(X�)
� (9)

where � is a coefficient to trade off the contribution of the

likelihood. We empirically set � = 2 in this paper.

Figure 3 gives an example that plots the selected reliable

patches. It can be seen that the proposed method prefers

to choose patches around the headlight rather than those

around the door as the headlight region has more visual

sense compared against the flat door region. Therefore, our

method tends to find the underlying structure of the visual

target. Similar observations can be found in flock of tracker

method [34], which employs a hand-crafted structural rep-

resentation.

3.3. Patch-on-Object Observation Likelihood

To compute the probability of a patch lying on the

tracked object, we exploit the motion information to achieve

Figure 3. We label all patch particles in magenta box as positive

otherwise as negative for motion analysis and delete all particles

out of the cyan box.

this goal. Specifically, we track both foreground and back-

ground patch particles, and record the relative trajectory

for each patch: V� = [v

�−�+1, ...,v



� ]


 ∈ ℛ2�, where

v� = Ψ2(x� − x�−1) is the relative movement vector and

Ψ2 = [E2×2,0] ∈ ℛ2×4 is selective matrix to choose the

position vector in the original state.

Since the displacement of patch particles may corre-

spond to different objects, we record � relative movement

vectors to make the trajectory information to be more ro-

bust. We employ the �2 norm to measure the distance be-

tween trajectories.

Instead of using computationally intensive unsupervised

clustering methods such as agglomerative clustering [6] to

group the trajectories, we simply divide the image into two

regions by a rectangle box centering at the target. Then, we

label the patches inside the bounding box as positive and

those outside as negative. As shown in Figure 3, the yellow

box denotes the bounding box. Therefore, we measure the

similarity from a patch to its labelled group by formulating

a similarity score function as:

�(X) = ��

⎛

⎝

1

�−

∑

�∈Ω−

∣∣V −V(�)∣∣2 −
1

�+

∑

�∈Ω+

∣∣V −V(�)∣∣2

⎞

⎠

(10)

where �� ∈ {+1,−1} is the label to indicate whether x� is

in the yellow rectangle. Ω+
� is a set contains the indexes of

the positive patch particles and Ω−

� for negative ones. �+

and �− are size numbers responding to the sets, respec-

tively.

The function �(X) has the high score when the group

samplers share the homo-motion and the other group has

large motion difference while the negative score for those

wrongly labelled samplers. When the motion trajectories

between each group have no obvious distance, the function

has a value close to zero. Thus, we can softly label each

sampler again in the sampler set, and focus the patches’ em-

phasis on the ”objects”. Thus, we formulate �(X) to com-

pute the probability of being on a visual object as:

	�(��∣x�) ∝ e��(X�). (11)

where � is a coefficient to balance the contribution of object



probability. In this paper, we simply set � = 1. In case of

no obvious motion between foreground and background, 	�
is close to 1, which affects the observation model slightly.

Algorithm 1 RPT: the Reliable Patch Tracker algorithm

Require:

The model M�−1 and new arrived image I�
Ensure:

The updated Model M� for tracked target;

The new target state, x
����	�
� ;

1: for every X
(�)
�−1 in M�−1 do

2: Track X
(�)
�−1 with the base tracker �

(�)
�−1 in I�.

3: Update x
(�)
� and V

(�)
� in X

(�)
� .

4: end for

5: Calculate the particle weights W = [�
(1)
� , ..., �

(�)
� ]

according to Equation 4.

6: Vote target’s rough position p̂� according to Equation

13 with patch particle weights W.

7: Resample the patch particles according to C1,C2,C3

with the rough position p̂

8: Get target state x
����	�
� according to Equation 14.

9: return updated M� and x
����	�
� ;

3.4. The Reliable Patch Tracker Algorithm

Based on the proposed reliable patch particle represen-

tation, we can estimate the target state through the statis-

tical method [30, 26]. As in [30], we try to estimate the

scale of the tracked object by storing the vector d
(�)
� =

Ψ2(x
����	�
� − x

(�)
� ) ∈ ℛ2 for each patch particle. Then,

we calculate the set of each patch changes in scale:

�� =

{

∣∣r�,� ∣∣

∣∣d�,� ∣∣
, � ∕= �

}

(12)

where r�,� = Ψ2(x
(�)
� − x

(�)
� ) and d�,� = d

(�)
� − d

(�)
� . The

scale is estimated by the median of this set �� = med(��).
To make it more robust, a Gaussian filter is employed to

smooth the output of target scale.

The object position can be estimated by the Hough-

voting scheme [27]. Assuming that reliable patches are

structurally consistent with the tracked object, we can treat

the normalized particle weight �
(�)
� as the confidence mea-

sure of tracking results. Thus, we employ all the positive

patch particles to vote the center of the target as follows:

p
����	�
� =

∑

�∈Ω+

�
(�)
� (Ψ2x

(�)
� + ��d

(�)
� ) (13)

and the final state of the tracked object can be estimated by

x
����	�
� = [p����	�

� , ��Ψ(x����	�
�−1 )]. (14)

As the false positive patches have quite small weights

in the large motion gap, this makes the voting results very

robust. When the motion change is not obvious, the position

of a false positive patch is not far from the true position. As

the number of patch particles increase, the estimation of the

target state tends to be more accurate.

In contrast to the conventional methods [2] requiring to

resample all the particles at each frame, we keep the patch

particles from the previous frames and only recompute their

weights. Moreover, we resample the particle only when it

is necessary. In this paper, we define the following criteria

to perform resample:

(C1) Far away from target. As shown in Figure 3, we

define two regions with magenta color and cyan color re-

spectively. The particles may become less important when

they move too far away from the tracked object. There-

fore, we simply remove the patch particles outside the cyan

region. Meanwhile, we resample the positive particles out-

side the magenta region which may probably lead to some

drift.

(C2) Imbalance between foreground and background

particles. As the computational budget is fixed, we intend

to keep the balance between the foreground and background

patch particles to maintain the stability. Specifically, we re-

sample the positive particles with low weights when the por-

tion of positive particles is larger than a threshold �. Sim-

ilarly, we resample the negative particles when its portion

becomes large.

(C3) Low trackable confidence. We resample the patch

particles with the low trackable confidence, which usually

occurs in the homogeneous region lacking of textures. This

could potentially reduce the computational cost while im-

prove the robustness.

During the re-sampling process, the base tracker of

the patch particle will be re-initialized from time to time.

Therefore, the new appearance will be learnt from the new

patch particle. It is also important to note that we update

each base tracker individually. From above all, we sum-

marize the whole procedure of our proposed Reliable Patch

Tracker (RPT) in Algorithm 1.

4. Experimental Results

In this section, we give details of our experimental im-

plementation and discuss the results of tacking performance

evaluation. We examine the effectiveness of the proposed

approach on two datasets, including an online object track-

ing benchmark testbed [37] with 51 sequences and another

extra dataset with 10 challenging videos. More experimen-

tal results are included in supplemental materials.

4.1. Experimental Setup

We implemented the proposed Reliable Patch Tracker

(RPT) in Matlab using a single thread without further op-



timization. All the experiments were conducted on a regu-

lar PC with Intel-i7-3770 CPU (3.4 GHz) and 16 GB RAM.

For the proposed RPT method, the yellow and cyan regions

defined in Section 3.3 are set to 1.5 and 9 times the target

bounding box, respectively. Moreover, we record the the

trajectories of 5 consecutive frames for the motion analy-

sis. During the tracking, we try to maintain the fixed 4:1

ratio between the number of positive particle patches and

negative ones through the resample criteria C2. We use the

default setting for the base KCF tracker [14] in RPT except

having changed the padding parameter from 1.5 to 3 for bet-

ter coverage.

To facilitate fair performance evaluations, two typical

evaluation criteria are used in our experiments. The first

criterion is mean Center Location Error (CEL), which is the

pixel distance between the tracked results’ center and the

ground truth. The other is the Pascal VOC Overlap Ratio

(VOR) [9], which is defined as � �� = ��	�(B�∩B�)
��	�(B�∪B�) ,

where B denotes a bounding box and �,� indicate the

ground truth and the tracking results, respectively.

4.2. Visual Benchmark

Besides 29 trackers in the tracking benchmark

dataset [37], we have conducted experiments by com-

paring with another four recently proposed state-of-the-art

trackers including KCF [14], CN [7], STC [39] and

TGPR [16] to demonstrate the effectiveness of our pro-

posed RPT approach. Note that we employ the original

implementations of these trackers from the authors’

websites with the default parameters.

For the visual tracking benchmark [37], the experimen-

tal results are illustrated by both precision plot and success

plot. The precision plot shows the percentage of success-

fully tracked frames vs. the CEL in pixels, which ranks

the trackers as precision score at 20 pixels. On the other

hand, the success plot draws the percentage of successfully

tracked frames vs. the VOR threshold, where Area Under

the Curve (AUC) is used as metric for ranking. The bench-

mark covers 51 challenging sequences that is a variety of

scenarios used in the previous literature.

To make it clear, we only plot the top 10 ranked trackers

and the entire plots are included in supplemental materi-

als. As shown in Figure 5, our proposed method ranks the

first and achieves the best performance with a very large

margin in all the ranking plots. Specifically, the proposed

method achieves 0.576 ranking score in success plot and

0.812 ranking score as illustrated in Figure 5(a). Compar-

ing with the base tracker KCF with 0.514 success ranking

score and 0.740 precision ranking score, our method has

obtained over 12% and 9.7% improvements, respectively.

From Figure 5(b)- 5(h), the performance of different at-

tributed groups indicates that our method is clearly more

accurate and robust. Also, our method clearly outperforms

those part-based trackers [17] [1] in the benchmark. This

demonstrates that the idea of finding reliable patches for

tracking is effective and promising in practice.

For better illustration, we further analyze the top 5 per-

formed trackers in the following. As VOR is usually con-

sidered to be valid with the score larger than 0.5. Similarly,

CEL is treated to be valid with the score smaller than 20.

Therefore, we list the total number of sequences that fulfill

these criteria in Table 1. It can be seen that the proposed

tracker has successfully tracked 38 sequences based on the

VOR threshold and passed 41 sequences based the CEL cri-

teria, which account for around 80% of the total number

of sequences in the whole benchmark. This demonstrates

that tracking with reliable patches enables a base tracker to

be capable of handling more challenging situations. De-

spite having achieved the encouraging performance for the

proposed approach, our current implementation runs only

around 4 Fps using the non-optimized single-thread MAT-

LAB code. Note that the presented patch particle filter

framework can easily extended to a parallel implementa-

tion and considerably optimized with more efficient imple-

mentation in C/C++. Figure 6 shows the snapshot of the

sequences RPT passed with the patch particles visible.

Method mVOR> 0.5 mCEL< 20 mFps.

Struck [11] 28 29 10.008

SCM [41] 28 28 0.374

KCF [14] 31 35 339

TGPR [16] 35 36 0.727

RPT 38 41 4.154

Table 1. List the numbers of sequences that the mean VOR is larger

than 0.5 or the mean CEL is smaller than 20 for each tracker. The

mean FPSs are also presented.

4.3. More Sequences

To further evaluate the performance of our proposed ap-

proach, we conduct the experiments with the top five track-

ers on the additional 10 challenging video sequences from

previous studies [41, 17, 29]. Table 4.2 list the mean VOR

and the mean CEL of each sequences. Figure 4 illustrates

the tracking results of the 5 trackers.

Specifically, in board, the proposed tracker is able to

track the board in background clutter even when the board

turns back. This is mainly due to the motion information

in the reliable patch. panda is cropped from cartoon video,

which contains in plane rotation and a large blank region

in background. Since our algorithm is capable of find-

ing the trackable patch, the sequence is tracked perfectly

while KCF drifts at the beginning and other trackers fail

when the panda cross the tree. As these trackers are top

ranked, they all succeed in stone, polarbear and surfing.

SCM drifts in sunshade as the illumination changed dra-

matically. As caviar3 has sever occlusion, all the trackers

fails. Our method fails since the negative samples are not on



148
556 166 387 181

92 263 221 332 388

RPT Struck KCF TGPR SCM

Figure 4. The extensive 10 sequences with top 5 trackers’ tracking results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

 

 

RPT [0.576]

TGPR [0.536]

KCF [0.514]

SCM [0.499]

Struck [0.474]

CN [0.444]

TLD [0.437]

ASLA [0.434]

CXT [0.426]

VTS [0.416]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

 

 

RPT [0.812]

TGPR [0.747]

KCF [0.740]

Struck [0.656]

SCM [0.649]

CN [0.635]

TLD [0.608]

VTS [0.575]

CXT [0.575]

ASLA [0.532]

(a) Overall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE − background clutter (21)

 

 

RPT [0.606]

TGPR [0.556]

KCF [0.535]

Struck [0.458]

CN [0.453]

SCM [0.450]

VTS [0.428]

ASLA [0.408]

TLD [0.345]

CXT [0.338]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Precision plots of OPE − background clutter (21)

 

 

RPT [0.822]

KCF [0.753]

TGPR [0.748]

CN [0.642]

Struck [0.585]

SCM [0.578]

VTS [0.578]

ASLA [0.496]

CXT [0.443]

TLD [0.428]

(b) Background Clutter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE − in−plane rotation (31)

 

 

RPT [0.569]

KCF [0.497]

TGPR [0.480]

CN [0.469]

SCM [0.458]

CXT [0.452]

Struck [0.444]

ASLA [0.425]

TLD [0.416]

VTS [0.416]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Precision plots of OPE − in−plane rotation (31)

 

 

RPT [0.808]

KCF [0.725]

TGPR [0.676]

CN [0.675]

Struck [0.617]

CXT [0.610]

SCM [0.597]

TLD [0.584]

VTS [0.579]

ASLA [0.511]

(c) In-plane Rotation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − illumination variation (25)

 

 

RPT [0.555]

TGPR [0.507]

KCF [0.493]

SCM [0.473]

ASLA [0.429]

VTS [0.429]

Struck [0.428]

CN [0.417]

TLD [0.399]

CXT [0.368]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Precision plots of OPE − illumination variation (25)

 

 

RPT [0.810]

KCF [0.728]

TGPR [0.686]

SCM [0.594]

CN [0.587]

VTS [0.573]

Struck [0.558]

TLD [0.537]

ASLA [0.517]

CXT [0.501]

(d) Illumination Changes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − fast motion (17)

 

 

RPT [0.549]

Struck [0.462]

TGPR [0.462]

KCF [0.459]

TLD [0.417]

CXT [0.388]

CN [0.373]

VTS [0.300]

SCM [0.296]

ASLA [0.247]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Precision plots of OPE − fast motion (17)

 

 

RPT [0.721]

Struck [0.604]

KCF [0.602]

TGPR [0.580]

TLD [0.551]

CXT [0.515]

CN [0.480]

VTS [0.353]

SCM [0.333]

ASLA [0.253]

(e) Fast Moving

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE − out−of−plane rotation (39)

 

 

RPT [0.553]

TGPR [0.510]

KCF [0.495]

SCM [0.470]

CN [0.443]

Struck [0.432]

VTS [0.425]

ASLA [0.422]

TLD [0.420]

CXT [0.418]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Precision plots of OPE − out−of−plane rotation (39)

 

 

RPT [0.796]

KCF [0.729]

TGPR [0.710]

CN [0.652]

SCM [0.618]

VTS [0.604]

Struck [0.597]

TLD [0.596]

CXT [0.574]

ASLA [0.518]

(f) Out-plane Rotation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE − motion blur (12)

 

 

RPT [0.559]

TGPR [0.512]

KCF [0.497]

Struck [0.433]

CN [0.410]

TLD [0.404]

CXT [0.369]

VTS [0.304]

SCM [0.298]

ASLA [0.258]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Precision plots of OPE − motion blur (12)

 

 

RPT [0.749]

KCF [0.650]

TGPR [0.628]

Struck [0.551]

CN [0.550]

TLD [0.518]

CXT [0.509]

VTS [0.375]

SCM [0.339]

ASLA [0.278]

(g) Motion Blur

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − scale variation (28)

 

 

RPT [0.535]

SCM [0.518]

ASLA [0.452]

TGPR [0.434]

KCF [0.427]

Struck [0.425]

TLD [0.421]

VTS [0.400]

CXT [0.389]

CN [0.384]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Precision plots of OPE − scale variation (28)

 

 

RPT [0.788]

KCF [0.679]

SCM [0.672]

Struck [0.639]

TGPR [0.638]

TLD [0.606]

CN [0.598]

VTS [0.582]

ASLA [0.552]

CXT [0.550]

(h) Scale Changes

Figure 5. The success and precision plots of the benchmark.



Figure 6. 20 sequences that the mean CEL of RPT is smaller than 20. The patch particles are also presented with the red boxes and green

boxes which represent positive and negative particles respectively. (Better view in color.)

Table 2. The mean VOR and CEL of the 10 sequences for top 5 trackers

mean VOR mean CEL

RPT TGPR [16] KCF [14] SCM [41] Struck [11] RPT TGPR [16] KCF [14] SCM [41] Struck [11]

board 0.786 0.092 0.803 0.317 0.769 18.7 242.3 17.3 86.3 28.4

caviar3 0.141 0.257 0.136 0.145 0.127 71.3 23.4 69.3 62.5 67.2

panda 0.624 0.677 0.020 0.253 0.358 3.8 2.4 150.1 94.1 90.7

stone 0.526 0.506 0.498 0.596 0.496 2.2 1.6 3.0 3.3 3.1

polarbear 0.718 0.631 0.647 0.715 0.611 9.9 9.5 9.5 9.3 12.2

sunshade 0.723 0.727 0.753 0.409 0.787 5.1 4.8 4.5 45.7 3.7

surfing 0.725 0.862 0.703 0.790 0.870 3.1 1.7 3.3 1.8 1.4

torus 0.803 0.756 0.787 0.472 0.158 3.4 7.1 4.0 30.1 56.0

bicycle 0.463 0.486 0.242 0.432 0.408 5.4 4.8 59.4 55.5 6.9

tunnel 0.512 0.324 0.324 0.618 0.324 4.4 8.6 6.3 7.7 10.5

averg. 0.602 0.532 0.491 0.475 0.491 12.7 30.6 32.7 39.6 28.0

the occluded person at the beginning. Struck and SCM drift

in torus due to the out of plane rotation while our method

can track the target very well. In bicycle, the scale of raider

changes dramatically. KCF drifts when pass the wire pole.

In tunnel, all tracker tracks the target successfully while the

scale is not accurately estimated.

5. Conclusion

In this paper, we proposed a novel framework of Reli-

able Patch Trackers (RPT) which attempts to identify and

exploit reliable patches for robust visual tracking. To ef-

ficiently find the reliable patches, we employed a particle

filter-based method with two orthogonal properties, includ-

ing the trackability and the motion similarity to estimate the

distribution of those reliable patches. After finding the re-

liable patches, we tracked those patches with some effec-

tive base tracker and then employed the reliable patch par-

ticles to represent the visual target. In addition, an efficient

updating scheme was carefully designed to enable the al-

gorithm for running online. By tracking with those more

meaningful and reliable patches, the proposed tracker can

thus handle more diverse and challenging situations of vi-

sual tracking. Finally, we obtained encouraging empirical

performance from our extensive experiments by comparing

the proposed tracker with several state-of-the-art trackers.

Acknowledgments

The work was supported by National Natural Sci-

ence Foundation of China under Grants (61103105 and

91120302).



References

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-

based tracking using the integral histogram. In CVPR, 2006.

[2] A.Doucet, N. Freitas, and N.Gordon. Sequential Monte

Carlo Methods in Practice. Springer-Verlag, 2001.

[3] B.D.Lucas and T.Kanade. An iterative image registration

technique with an application to stereo vision. In Procced-

ings of Imageing Understanding Workshop, 1981.

[4] B.Poling, G.Lerman, and A.Szlarm. Better feature tracking

though subspace constraints. In CVPR, 2014.

[5] Z. Cai, L. Wen, J. Yang, Z. Lei, and S. Li. Structured visual

tracking with dynamic graph. In ACCV, 2012.

[6] C.D.Manning, P.Raghavan, and H. Schutze. Introduction to

Information Retrieval. Cambridge University Press, 2008.

[7] M. Danelljan, F. S. Khan, M. Felsberg, and J. van de Weijer.

Adaptive color attributes for real-time visual tracking. In

CVPR, 2014.

[8] D.S.Bolme, J.R.Beveridge, B.A.Draper, and Y. M. Lui. Vi-

sual object tracking using adaptive correlation filters. In

CVPR, 2010.

[9] M. Everingham, L. Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The pascal visual object classese(voc) chal-

lenge. IJCV, 88(2):303–338, 2010.

[10] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hi-

erarchical graph based video segmentation. In CVPR, 2010.

[11] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured

output tracking with kernels. In ICCV, 2011.

[12] S. He, Q.-X. Yang, R. Lau, J. Wang, and M.-H. Yang. Visual

tracking via locality sensitive histograms. In CVPR, 2013.

[13] F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploit-

ing the circulant structure of tracking-by-detection with ker-

nels. In ECCV, 2012.

[14] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. TPAMI,

2015.

[15] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab.

Dominant orientation templates for real-time detection of

texture-less objects. In ICCV, 11.

[16] J.Gao, H.Ling, W.Hu, and J.Xing. Transfer learning based

visual tracking with gaussian process regression. In ECCV,

2014.

[17] X. Jia, H. Lu, and M.-H. Yang. Visual tracking via adaptive

structural local sparse appearance model. In CVPR, pages

1822–1829, Providence, June 2012.

[18] M. J.Milford and Gordon.F.Wyyeth. Seqslam: Visual route-

based navigation for sunny summer days and stormy winter

nights. In IEEE International Conference on Robotics and

Automation, 2012.

[19] G. Klein and D. Murray. Vparallel tracking and mapping for

small ar workspaces. In ISMAR, 2007.

[20] J. Kwon and K. M. Lee. Visual tracking decomposition. In

CVPR, 2010.

[21] J. Kwon and K. M. Lee. Tracking by sampling trackers. In

ICCV, 2011.

[22] J. Kwon and K. M. Lee. Highly nonrigid object track-

ing via patch-based dynamic appearance modeling. TPAMI,

35(10):2427–2441, 2013.

[23] Y. Li and J. Zhu. A scale adaptive kernel correlation filter

tracker with feature integration. In ECCV Workshops, pages

254–265, 2014.

[24] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[25] X. Mei and H. Ling. Robust visual tracking using l1 mini-

mization. In ICCV, 2009.

[26] M.E.Maresca and A.Petrosino. Matrioska: A multi-level ap-

proach to fast tracking by learning. In ICIAP, 2013.

[27] M.Godec, P.M.Roth, and H.Bischof. Hough-based traking

of non-rigid objects. In ICCV, 2011.

[28] M.Grabner, H.Grabner, and H.Bischof. Learning features for

tracking. In CVPR, 2007.

[29] M.Kristan, R.Pflugfelder, and A. et al. The visual object

tracking vot2014 challenge results. In ECCV Workshops,

2014.

[30] G. Nebehay and R. Pflugfelder. Consensus-based matching

and tracking of keypoints. In Winter Conference on Applica-

tions of Computer Visio, 2014.

[31] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental

learning for robust visual tracking. IJCV, 77(1-3):125–141,

2008.

[32] S.Hare, A.Saffari, and P.H.S.Torr. Efficient online struc-

tured output learning for keypoing-based object tracking. In

CVPR, 2012.

[33] J. van de Weijer, C. Schmid, J. J. Verbeek, and D. Lar-

lus. Learning color names for real-world applications. TIP,

18(7):15121524, 2009.

[34] T. Vojir and J. Matas. The enhanced flock of trackers. In

Registration and Recognition in Images and Videos, 2014.

[35] D. Wang, H. Lu, and M.-H. Yang. Least soft-thresold squares

tracking. In CVPR, Portland, June 2013.

[36] C. Wu, J. Zhu, J. Zhang, C. Chen, and D. Cai. A convolu-

tional treelets binary feature approach to fast keypoint recog-

nition. In ECCV, pages 368–382, 2012.

[37] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A

benchmark. In CVPR, 2013.

[38] J. Zhang, S. Ma, and S. Sclaroff. Meem: Robust tracking

via multiple experts using entropy minimization. In ECCV,

2014.

[39] K. Zhang, L. Zhang, M.-H. Yang, and D. Zhang. Fast track-

ing via spatio-temporal context learning. In ECCV, 2014.

[40] L. Zhang and L. van der Maaten. Preserving structure in

model-free tracking. IEEE Transactions on Pattern Recog-

nition and Machine Intelligence, 36(4):756–769, 2014.

[41] W. Zhong, H. Lu, and M.-H. Yang. Robust object track-

ing via sparsity-based collaborative model. In CVPR, pages

1838–1845, Providence, June 2012.

[42] J. Zhu, S. C. H. Hoi, and M. R. Lyu. Nonrigid shape recovery

by gaussian process regression. In CVPR, pages 1319–1326,

2009.

[43] J. Zhu and M. R. Lyu. Progressive finite newton approach to

real-time nonrigid surface detection. In CVPR, 2007.


