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ABSTRACT

Motivation: Mature microRNAs (miRNAs) are processed from long

hairpin transcripts. Even though it is only the first of several steps,

the initial Drosha processing defines the mature product and is char-

acteristic for all miRNA genes. Methods that can separate between

true and false processing sites are therefore essential to miRNA

gene discovery.

Results: We present a classifier that predicts 50 Drosha processing

sites in hairpins that are candidate miRNAs. The classifier, called

Microprocessor SVM, correctly predicts the processing site for 50%

of known human 50 miRNAs, and 90% of its predictions are within

two nucleotides of the true site. Another classifier that is trained on

the output from theMicroprocessor SVMoutperforms existingmethods

for prediction of unconserved miRNAs. Reanalysis of characteristics

and supporting evidence for a set of newly annotated miRNAs shows

that somemiRNAsmaybemisannotated.This suggests that expressed

hairpins should not be annotated as miRNAs until they are verified to

be Drosha and Dicer substrates.

Availability: The classifiers are publicly available at https://

demo1.interagon.com/miRNA/

Contact: paal.saetrom@interagon.com

Supplementary information: Supplementary data is available at

Bioinformatics online.

1 INTRODUCTION

MicroRNAs (miRNAs) constitute a large class of non-protein-

coding genes with the potential to downregulate protein-coding

genes via sequence-specific target mechanisms (Bartel, 2004).

Current estimates suggest that almost a thousand miRNAs exists

in humans, and while most are well-conserved in other species,

some are specific to mammals (Bentwich et al., 2005). MicroRNAs

are crucial in animal development (Ambros, 2004) and seem to play

an important role in genetic diseases, including cancer (Esquela-

Kerscher and Slack, 2006).

In humans, miRNAs are primarily transcribed by RNA poly-

merase II (Lee et al., 2004) and undergo multistep processing before

silencing their targets (Murchison and Hannon, 2004). First,

primary transcripts (pri-miRNAs) are processed into precursors

(pre-miRNAs) by the Microprocessor complex, which comprise

Drosha and DGCR8 (Gregory et al., 2004; Denli et al., 2004).
Second, another complex that consists of Exportin 5, a carrier

protein, and RanGTP, transports pre-miRNAs from the nucleus

and into the cytoplasm (Lund et al., 2004; Bohnsack et al.,
2004) where they are released and processed by Dicer into short

double-stranded RNAs with 2 nt 30 overhangs (Bernstein et al.,
2001; Hutvágner et al., 2001). These mature products are then

unwound and one strand is incorporated into what could potentially

be several variants of the RNA-induced silencing complex (RISC)

(Schwarz et al., 2003; Mourelatos et al., 2002; Hutvágner and

Zamore, 2002; Hammond et al., 2001). The RNA component guides

RISC to messages with at least partial sequence complementarity

to the guide strand (Jackson et al., 2003; Brennecke et al., 2005).
The Microprocessor step—where pri-miRNAs are processed into

pre-miRNAs in the nucleus—leaves a 2 nt 30 overhang (Lee et al.,
2003). In the cytoplasm, Dicer cuts at a certain distance from the

overhang created by the Microprocessor’s cut (Vermeulen et al.,
2005). The first processing step therefore determines the mature

product. Several algorithms have been developed to find miRNA

genes (Berezikov et al., 2006) and targets (Bentwich, 2005),

but despite the importance of the problem, we are not aware of

any attempts to predict Microprocessor processing sites. Some

algorithms do, however, predict the mature miRNA sequence

and thereby also the processing site as an integral part of the

gene predictions (Lim et al., 2003; Lai et al., 2003; Xie et al.,
2005; Nam et al., 2005).
Primary miRNAs share various sequence and structure charac-

teristics that are likely to contribute towards efficient processing in

the miRNA pathway (Ohler et al., 2004; Zeng and Cullen, 2003,

2004; Zeng et al., 2005; Krol et al., 2004). We previously reported

that many features are conserved between known miRNAs (Sætrom

et al., 2006). These commonalities include sequence and structure

characteristics both upstream and downstream of the Microproces-

sor cut site. As for sequence characteristics, a significant presence or

absence of certain bases at specific positions are conserved between

miRNAs. The structural features include internal loops and bulges

that commonly appear in specific positions. Importantly, the

conservation of base pairing continues into the stem, but no�To whom correspondence should be addressed.
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conservation is found beyond the first 13 bases upstream of the

annotated start of the pre-miRNA (Sætrom et al., 2006). A recent

publication that studies the molecular basis for pri-miRNA recog-

nition by the Microprocessor complex concludes that the cleavage

site is determined mainly by the distance from the first unpaired

nucleotides in the stem, thus confirming our results experimentally

(Han et al., 2006).
Here, we describe a support vector machine classifier that can

predict 50 Microprocessor processing sites in human 50 miRNAs

with 50% accuracy. Importantly, if the predicted site is wrong, the

actual site is within 2 nt of the predicted site in �90% of the cases.

This Microprocessor SVM can be useful as a post-processor for

existing tools that only predict whether hairpins are likely miRNAs.

Furthermore, we use the Microprocessor processing site predictions

to create a miRNA gene predictor that performs better than currently

available methods for predicting unconserved miRNAs. Our Micro-

processor SVM predicts the 50 processing site and predictions of the
30 processing site—and, as a consequence, 30 miRNAs—will there-

fore be less accurate. Nevertheless, the miRNA gene predictor’s

performance is independent on whether the mature miRNA is from

the 50 or 30 stem. By using the two classifiers to analyze 130 recently

published miRNA sequences (Cummins et al., 2006), we show that

several of these sequences do not share the characteristics of pre-

viously known miRNAs. Importantly, the lack of common charac-

teristics as measured by our classifiers, correlates with a lack of

evidence for the reported sequences being miRNAs. This correla-

tion suggests that current databases may contain falsely annotated

miRNAs.

2 MATERIALS AND METHODS

2.1 Sequences

We downloaded all 332 human miRNA sequences from miRBase (Griffiths-

Jones, 2004) version 8.0 and all 130 new human miRNA sequences from

miRBase version 8.1 to use as a dataset for 10-fold cross-validation and as

an independent test set. Genomic sequences were from NCBI build 35

of November 2005 and were downloaded from the Ensemble FTP site

(ftp://ftp.ensembl.org/pub/release-37/homo_sapiens_37_35j/data/fasta/dna/).

Non-coding RNA (ncRNA) gene annotations where from Ensembl v37 of

February 2006.

2.2 Predicting RNA secondary structure

We used RNAfold (Hofacker, 2003) version 1.4 with default parameters to

predict RNA secondary structures.

2.3 Finding candidate processing sites

We defined all candidate processing sites by the 50 processing site; the

30 processing site was given by the 2 nt overhang relative to the 50 site.
For a miRNA, we defined the true processing site as the candidate site where

the 50 end was the same as the 50 end found in miRBase. For miRNAs with

mature sequences in the 30 stem and no annotated �-sequence, we assumed

the real 50 processing site gave a 2 nt 30 overhang relative to the annotated

30 site.
To find the candidate processing sites for a particular miRNA sequence or

predicted genomic hairpin, we used the predicted secondary structures of

110 nt long sequence windows centered on the hairpin. The candidate pro-

cessing sites were then defined as all the 50 sites that gave precursors from

50 to 80 nt long. To ensure that all candidates were folded as hairpins, we

excluded all sequences that (1) did not have a hairpin loop within the

minimum precursor sequence or (2) did not have at least 1 bp between

nucleotides on opposite sides of the hairpin loop, such that the distance

between the nucleotides was between 50 and 80 nt. Furthermore, we required

that the nucleotide at the site forming the shortest candidate precursor base-

paired with a nucleotide in the 30 stem. Because of this requirement, the

number of candidate processing sites varied between different hairpins.

2.4 Feature vectors for Microprocessor SVM

All features, except the loop size, were specifically calculated for each

processing site candidate (Table 1). The secondary structure features in a

candidate precursor and its flanking regions were calculated based on the

predicted secondary structures of 110 and 180 nt long sequence windows

centered on the hairpin. Precursor length is the number of nucleotides from

50 processing site to 30 processing site and includes the 2 nt 30 overhang. Loop
size is the number of predicted unpaired bases in the hairpin loop. Position

specific nucleotide occurrences (features 3 and 7) are encoded using four

binary features such that A ¼ [1,0,0,0], C ¼ [0,1,0,0], G ¼ [0,0,1,0] and

U ¼ [0,0,0,1]. Nucleotide frequencies (features 5 and 9) are four features

counting the number of occurrences of each nucleotide. Position specific

base-pair information (features 4 and 8) is the average number of nucleotides

base-pairing at a specific position relative to the 50 and 30 processing sites.

For a specific position x, this value BPx is 0, 0.5 or 1 depending on whether

none one or both of nucleotides x upstream of the 50 processing site and x� 2

downstream of the 30 processing site are base-paired with a nucleotide in the
opposite strand. Total number of base pairs (features 6, 10 and 11) is the sum

of BPx in the corresponding region. In total, the feature vector consisted of

686 variables.

Table 1. Features used by the Microprocessor SVM

ID Explanation

1 Precursor length and loop size

2 Distance from the 50 processing site to the loop start

3 Nucleotide occurrences at each position in the 24 nt regions of the

precursor 50 and 30 arms

4 Base-pair information of each nucleotide for the 24 nt at the

precursor base

5 Nucleotide frequencies in the two regions in 3

6 Total number of base pairs in the region in 4

7 Nucleotide occurrences at each position in the 50 nt 50 and 30

flanking regions

8 Base-pair information of each nucleotide for the 48 nt in the flanking

region outside the precursor

9 Nucleotide frequencies in the two regions in 7

10 Total number of base pairs for the 15 nt immediately flanking the

precursor

11 Total number of base pairs in the region in 8

Table 2. Additional features used by the miRNA SVM

ID Explanation

12 Number of potential processing sites

13 Score for the best processing site

14 Average score for all potential processing sites

15 Standard deviation for all potential processing sites

16 Difference between features 13 and 14

17 Distance between the three top-scoring processing sites

18 Number of local maximums in the processing site score distribution
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2.5 Additional features for miRNA SVM

The seven additional features used by the miRNA SVM (Table 2) were all

derived from the Microprocessor SVM predictions using basic statistics

(features 12, 13, 14, 15 and 16). The distance between the three top-scoring

processing sites (feature 17) is the total number of nucleotides between the

three top-scoring sites. The number of local maximums in the processing site

score distribution (feature 18) is the number of candidate sites with a score

higher than �0.5 and a score higher than its closest neighboring sites.

2.6 Performance measures

In a classification problem, a prediction can either be a true or false

positive or true or false negative prediction. From the counts of each

case (TP, FP, TN and FN) sensitivity, specificity and positive predictive

value are defined as:

Se ¼ TP

TPþ FN
‚ ð1Þ

Sp ¼ TN

TNþ FP
‚ and ð2Þ

PPV ¼ TP

TPþ FP
: ð3Þ

2.7 Classifier performance estimation

In 10-fold cross-validation, the data set is randomly divided into 10 equally

sized folds and for each fold, a classifier is trained on the remaining 9 folds

and tested on the 1 remaining fold. The test results in the 10 folds usually

give a good estimate of an algorithm’s ability to generalize to unseen data

(Kohavi, 1995). Randomly dividing the set of known miRNAs, however,

risk introducing bias as many groups of miRNAs have the same or simi-

lar sequences and structures. We therefore placed all similar miRNAs,

as defined in miRBase version 8.1 (ftp://ftp.sanger.ac.uk/pub/mirbase/

sequences/8.1/miFam.dat.gz), in the same fold. Similarly, for the

Microprocessor SVM, we placed all candidate processing sites from the

same miRNA in the same fold.

2.8 Extracting hairpins from the genome

We used a fast algorithm based on edit distance computations to extract

hairpins from the human genome. The algorithm, called ScorePin, uses

dynamic programming to calculate the structural similarity between the

given sequence and a hairpin structure with a perfectly base-paired stem.

See the online Supplementary Material for algorithm details.

We ran ScorePin on both strands of the complete human genome. All

positions that scored below or equal to a given threshold were considered

hairpin candidates, but we used only the best scoring candidate within a

window of 14 nt. We used a threshold of 110 and this resulted in a total

of 8 556 723 hairpin candidates, which included 98% of the miRNAs in

miRBase release 8.1. The threshold was chosen based on a 10-fold cross-

validation to maximize ScorePin’s specificity and sensitivity. We then used

RNAfold (Hofacker, 2003) to verify the hairpin structure and to ensure that

the hairpin had candidate processing sites. This filtering reduced the number

of hairpins to 6 798 341 without reducing the number of miRNAs. A total of

2004 (0.03%) of these had at least one of the strands overlapping with

ncRNA annotations from Ensembl v37.

3 RESULTS AND DISCUSSION

We wanted to construct a classifier that automatically determines

the processing site when presented with a hairpin candidate and to

find out whether this property could be used to improve current

miRNA gene prediction algorithms. SVMs are known to produce

classifiers that generalize well to unseen data (Schölkopf, 1997) and

have already been used for miRNA gene predictions (Xue et al.,
2005; Sewer et al., 2005). We used the gist implementation of

SVMs (Pavlidis et al., 2004) with a radial basis function kernel

(Burges, 1998) and default parameters to construct a classifier that

separates between true and false sites (Fig. 1A).

The SVM’s feature vector included both sequence and structure

properties (Fig. 1B) that were selected based on the results of our

previous study (Sætrom et al., 2006). Table 1 lists the features; see

Materials and Methods for details.

Fig. 1. TheMicroprocessor SVMcalculates features relative to the putative 50 processing site. (A) For a particular hairpin, the set of 50 processing site candidates
are the sites that result in precursor candidates of lengths between 50 and 80 nt. The figure shows hsa-mir-23a’s predicted secondary tructure, and its processing

site candidates; the true processing site, based on miRBase annotations, is in bold. (B) For a particular processing site, we compute the input features to the

Microprocessor SVM from the regions immediately surrounding the site. More specifically, we compute features from the 50 nt in the 50 and 30 flanking regions,
the 24 nt in the 50 and 30 arms of the putative precursor, the base-pair information for the 48 nt in the flanking region outside the precursor, and the base-pair

information for the 24 nt part of the precursor.
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3.1 The Microprocessor SVM accurately predicts

annotated processing sites

We used a modified version of 10-fold cross validation on the

miRNAs from miRBase (release 8.0) to test the Microprocessor

SVM’s predictive power (see Materials and Methods). For 327

of the 332 miRNAs in the database, the annotated 50 processing
site resulted in a predicted precursor between 50 and 80 nt. These

327 sites formed the positive dataset; the remaining sites formed the

negative dataset.

A comparison of the average scores of true and false target sites

on the test sets showed that the SVM could separate true from false

processing sites (�0.084 for true sites versus�0.968 for false sites).

As expected, true processing sites are more homogeneous than false

processing sites, as the standard deviation of 0.439 for true sites is

smaller than the corresponding 0.592 for false sites.

Sensitivity and specificity—the relative number of correctly pre-

dicted true and false processing sites (see Materials and Methods)—

are intuitive and useful performance measures, but these measures

depend on a predefined threshold that defines the minimum score

a position must receive to be considered as a positive prediction.

Figure 2A shows a receiver operating characteristic (ROC) curve

(Hanley and McNeil, 1982) that displays the Microprocessor

SVM’s tradeoffs between sensitivity and specificity across all

thresholds. Figure 2B shows the SVM’s sensitivity and specificity

for all thresholds, and also shows the corresponding positive pre-

dictive value. Thus, without taking into account that many process-

ing sites are related as they are located in the same hairpin,

the Microprocessor SVM can separate true from false sites; for

example, �80% of the true sites can be picked up before 20% of

the false sites are included in the results.

For a particular pri-miRNA, however, thresholds for defining

positive predictions are not necessary, as the highest scoring

position naturally becomes the predicted processing site. Of the

327 miRNAs in our dataset, the highest scoring site was the true

site for 43.1%. We refer to this score as the prediction rate. Impor-

tantly, a site’s score depends on the probability of the site being

the miRNA’s true site. Figure 3A shows that the number of false

processing sites with scores above that of the true site is non-random

and that >75% of the miRNAs have two or fewer false predictions

above the true site. Furthermore, the true site is usually close to the

highest scoring site. As shown in Figure 3B, �90% of predicted

processing sites are either correct or 1 or 2 nt away from the true site.

Thus, for most miRNAs theMicroprocessor SVM either predicts the

true processing site or a site that is very close to the true site.

Note that the above accuracy estimates dependonour initial assump-

tion that formiRNAs from the30 stem, the real 50 processing site always
gave a 2 nt 30 overhang relative to the annotated 30 site. This is not
generally true. Consequently, for the miRNAs where this simplified

assumption does not hold, we have used the wrong 50processing site

in our experiments. This also means that even if the Microprocessor

SVM predicted the correct processing site for these miRNAs, we will

record the prediction as wrong. Indeed, the Microprocessor SVM has

a lower prediction rate for miRNAs that are in the 30 arm (35.1%)

compared with miRNAs that are in the 50 arm (50.3%). As we can be

confident that the processing sites we inferred for the miRNAs from

the 50 stem are correct, it is likely that our initial prediction rate

estimate of 43.1% is too low.

3.2 The precursor’s flanking region is most

important for processing site recognition

To construct a biological model for the recognition of processing

sites by the Microprocessor complex, it is necessary to find which

feature contributes most to the predictor’s performance. Decoding

black box classifiers like SVMs is difficult, but as an approximation,

we did an analysis where we removed each of the 11 features from

the Microprocessor SVM’s feature vector, retrained the SVM,

and measured the resulting 10-fold cross-validation performance.

Figure 4 shows the resulting SVMs’ performance relative to the

original Microprocessor SVM with all features included.

The most important features for determining the processing site

are the precursor length and loop size (feature 1). This is perhaps not

surprising, as the variation in miRNA precursor length is small

(Sætrom et al., 2006) (avg¼ 60.7 and SD¼ 4.9 for human miRNAs

in miRBase 8.1). Except for the precursor length, the most important

features are located outside the precursor. The second and third most

important features are the nucleotide occurrences and base-pair

information in the precursor’s flanking region (features 7 and 8).

Other important features are the nucleotide occurrences in the

precursor and the length of the precursor 50 arm (features 3 and

2). On the other end of the scale, the general base composition in the

flank and the number of base pairs in the flank closest to the

Fig. 2. The Microprocessor SVM distinguishes between real and false pro-

cessing sites. (A) The ROC-curve shows, for varying thresholds, the relative

number of true and false processing sites with a predicted score above the

given threshold. Random predictions give a straight line from (0,0) to (1,1).

(B) TheMicroprocessor SVM’s sensitivity (Se), specificity (Sp), and positive

predictive value (PPV) for varying thresholds.

Fig. 3. The score depends on the probability of being a true site. (A) The

number of positions with a higher score than the true site is usually low. (B)

Almost 90% of all true cut sites are within two nucleotides of the highest

scoring site.
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precursor (features 9 and 10) are detrimental to the SVM’s perfor-

mance. Furthermore, the other features that summarize a region’s

general characteristics (features 5, 6 and 10) are relatively

unimportant—possibly because these features vary little between

close processing sites. Thus, the SVM likely uses the precursor

length as a rough guide to find likely processing sites, and the

position specific occurrences of nucleotides and base-pairs to

fine-tune the predictions.

Whether particular nucleotides in the precursor’s flanking region

are single stranded or not is important for Microprocessor process-

ing site recognition (Han et al., 2006) and is also a strong charac-

teristic of mammalian miRNAs (Sætrom et al., 2006). These results
confirm the importance of both a single stranded flanking region

and certain nucleotide motifs in it (Sætrom et al., 2006) and suggest
that these sequence motifs are important for processing site recog-

nition. The motifs’ full importance can, however, only be found

by mutation studies that disrupt the sequence motifs but retain the

base-pairing patterns.

3.3 Reliable processing site prediction improves

miRNA gene prediction

Since recognition by Drosha is a hallmark of true pri-miRNA

transcripts, we hypothesized that reliable predictions of processing

sites could be used to distinguish miRNA genes from random hair-

pins. We used an edit distance-based algorithm to extract close to

6.8 million hairpins from the human genome (see Materials and

Methods). The set included all known miRNAs, except mir-98,

mir-198, mir-134, mir-384, mir-425 and mir-484, which translates

to a sensitivity of 98%. The number of candidate hairpins is in

accordance with previously published miRNA gene prediction

algorithms (Bentwich et al., 2005; Nam et al., 2005), but the

sensitivity is higher; for example, Bentwich et al. (2005) extracted
�10 million hairpins from the human genome, but missed 15% of

the known miRNAs.

We then used the Microprocessor SVM to score the potential

processing sites in all the genomic hairpins and used the highest

scoring processing site for each hairpin as the hairpin’s score. As

shown by the dotted line in Figure 5, the Microprocessor SVM can

predict miRNA genes with fairly good results. Sixty percent of the

true miRNAs are picked up at a level where >95% of the initial

hairpin set has been excluded.

The Microprocessor SVM shows good performance when

separating miRNAs from random hairpins, despite that we did

not train the SVM for this purpose. We therefore expected that

an SVM explicitly trained to distinguish miRNAs and random

hairpins based on the Microprocessor SVM’s processing site pre-

dictions would have an even higher performance. This is because

even though certain features may be unimportant for the Micropro-

cessor SVM to predict the correct processing site, these features can

be important to distinguish miRNAs from random hairpins. This is

particularly true for the number of base-pairs in the precursor

(feature 6), which Lim et al. (2003) reported to be the most

important variable for predicting miRNAs in Caenorhabditis
elegans. To train this miRNA SVM, we used a set of 3000

random genomic hairpins and the miRNAs from miRBase 8.0 to

create a set of negative and positive feature vectors. More

specifically, for a particular hairpin or miRNA we used the Micro-

processor SVM’s highest scoring processing site candidate to esti-

mate the true processing site for that hairpin and used this site to

create a feature vector that included the same features as for the

Microprocessor SVM.

The value for the highest scoring processing site candidate indi-

cates whether or not a given hairpin is a likely miRNA (Fig. 5).

Similarly, as miRNAs have a higher standard deviation than random

hairpins (0.518 and 0.249), the standard deviation of processing site

scores for a particular hairpin may indicate whether the hairpin is a

likely miRNAs. Consequently, we included several features derived

from the Microprocessor SVM predictions in the miRNA SVM

feature vectors (Table 2; see Materials and Methods for details).

Figure 5 shows that the miRNA SVM performs much better than

the Microprocessor SVM alone (solid versus dotted line). These

performance characteristics also hold when the two SVMs classify

Fig. 4. Some features are more important for predicting the processing site

than others. The graph shows how removing various features changes the

SVM’s performance. The reported performance change is the average relative

change in ROC-area, prediction rate, average distance from the topscoring

prediction to the true processing site and average number of false processing

sites with a higher score than the correct site. A negative change in the two

former measures indicates lower performance, whereas a negative change in

the two latter measures indicates increased performance. Consequently, we

reversed the sign of the two lattermeasures before computing the average. See

Supplementary Figure 1 for changes in the individual measures.

Fig. 5. Microprocessor processing site prediction improves miRNA gene

prediction. (A) The dotted line shows the ROC-curve for the predictor that

was trained on true versus false processing sites in pri-miRNAs, whereas the

solid line shows ROC-curve for the predictor that was trained on miRNAs

versus random hairpins. True positives are estimated based on cross-

validation; false positives are based on the genomic predictions. The points

for Sewer, ProMir, Xue are the sensitivities and specificities reported by

Sewer et al. (2005), Nam et al. (2005), and Xue et al. (2005). (B) Detailed

excerpt of (A).
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the subset of genomic hairpins that overlap with other known ncR-

NAs (Supplementary Figure 2). Furthermore, the performance of

the miRNA SVM does not depend on whether the miRNA is in the

50 or 30 stem, as there is no correlation between the miRNA SVM’s

predictions and whether the miRNAs is 50 or 30 (data not shown).

The sensitivity of the algorithm has improved enough to pick up

�90% of the true miRNAs if �5% false predictions can be

tolerated. Of course, when the initial number of hairpins is in the

millions, it quickly becomes impractical if the specificity of the

predictions is decreased.

Nevertheless, compared to other existing methods that do not rely

on sequence or structure conservation to predict miRNA genes, our

method has a much better performance. At sensitivity levels com-

parable to those of Sewer et al. (2005) and ProMir (Nam et al.,
2005), our method reduces the number of genomic hairpin candi-

dates to 24 and 20%. Compared with Xue et al. (2005), the miRNA

SVM reduces the number of hairpin candidates to 60%, but the

sensitivity level reported by this method is impractical in a full

genome screen, as the number of remaining hairpin candidates is

almost half a million (483 490). This illustrates the difficulty of

predicting miRNAs in whole genomes, but also highlights the

merit of basing miRNA gene prediction on reliable processing

site predictions.

3.4 MicroRNA gene prediction relies on overall

differences between miRNAs and genomic

hairpins

To evaluate the importance of the different features used by the

miRNA SVM, we did a similar analysis as for the Microprocessor

SVM; that is, we removed each of the different feature groups,

retrained and tested the SVM using 10-fold cross-validation, and

observed the SVM’s performance change. We measured the ROC-

area for specificities �99%, as we were primarily interested in the

SVM’s performance in the high-specificity region. Changes in the

complete ROC-area were similar but of a smaller magnitude (data

not shown). Figure 6 summarizes the results.

Compared to the Microprocessor SVM (Fig. 4), the miRNA

SVM relies on a different set of features. The miRNA SVM’s

most important features by far are the nucleotide frequencies (5)

and the total number of base pairs (6) in the putative precursor.

These features had little influence on the Microprocessor SVM’s

performance (Fig. 4), but the miRNA SVM possibly uses these

features to filter out hairpins that clearly are not miRNAs

because of lack of base-pairing or an uncharacteristic nucleotide

composition in the precursor. Similarly, the precursor length (1),

nucleotide occurrences and base-pair information in the precursor’s

flanking region (7 and 8), and the length of the precursor 50 arm (2)

are less important. As these features are important for the Micro-

processor SVM’s predictions, they will be more homogeneous

than other features in the miRNA SVM’s input vector and there-

fore also less useful for distinguishing miRNAs from random

hairpins. Most of the features do, however, contribute to the

miRNA SVM’s performance; the only exceptions are the nucleotide

occurrences and nucleotide frequencies in the flanking regions

(7 and 9). Thus, whereas the Microprocessor SVM mostly uses

position specific features to pinpoint the likely processing site,

the miRNA SVM uses overall features to separate miRNAs from

random hairpins.

Note that by including random genomic hairpins in the Micro-

processor SVM’s negative training set, we could likely have trained

a single SVM both to separate miRNAs from random hairpins and

to find the true processing site in Microprocessor substrates. The

features derived from the Microprocessor SVM’s predictions would

not, however, be available to this single SVM. As these features do

contribute to the miRNA SVM’s performance (Fig. 6), the single-

SVM solution would likely have lower performance than our

approach has.

3.5 Reanalysis suggests that some sequences in

miRBase are not miRNAs

We also tested the Microprocessor and miRNA SVMs on a set

of 130 new miRNAs from release 8.1 of miRBase, of which 122

passed our preprocessing filters. On this set, the Microprocessor

SVM correctly predicted the processing site for 27.9% of the

miRNAs. Similarly, the miRNA SVM had problems separating

some of these new miRNAs from genomic hairpins (Supplementary

Figure 3). These results seem to indicate that the SVMs had over-

fitted our initial training set and could not capture the charac-

teristics of these new miRNAs, possibly because the known set

of miRNAs is biased towards certain characteristics. Several

Fig. 6. All features except the nucleotide information in the precursor flanking regions are important formiRNAgene prediction. The graph shows how removing

different features changes the SVM’s performance in terms of ROC-area for specificities�99%. The performance changes are estimated based on 10-fold cross-

validation and an independent test set of 17 000 random genomic hairpins. Features 1.1 and 1.2 are the precursor length and loop size.
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other results indicate, however, that some of these sequences may

instead have been falsely annotated as miRNAs.

First, when we used a 10-fold cross-validation to retrain and

test the Microprocessor SVM on the complete set of 449 miRNAs

from miRBase 8.1, we got a prediction rate of 33.4%. Again,

this rate is considerably lower than the prediction rate for the

initial set of miRNAs. Thus, even when we add the new miRNAs

to our training set, the SVM fails to classify these sequences as

miRNAs.

Second, as was previously reported, these new miRNAs differ

from the rest of the known miRNAs in several aspects (Berrzikov

et al., 2006). All the new human miRNAs were discovered by

sequencing small RNAs (Cummins et al., 2006), but (1) the number

of tags for the new miRNAs was much lower than for the previously

known miRNAs (2000 compared with 70 000), and (2) only 3 of

the new miRNAs are differentially expressed in a Dicer-disrupted

cell-line, as compared with 55 of the 97 known miRNAs.

Third, Berezikov et al. (2006) points out that two of the new

miRNAs (hsa-mir-565 and hsa-mir-594) overlap with tRNA anno-

tations. Neither sequence was represented by >1 clone nor differ-

entially expressed in the Dicer-disrupted cell-line (Cummins et al.,
2006). Furthermore, both sequences receive very low scores by the

Microprocessor and miRNA SVM; the hairpins and annotated pro-

cessing sites of hsa-mir-565 and hsa-mir-594 are scored 2nd and 8th

(miRNA) and 29th and 20th (Microprocessor) lowest among the

new miRNAs. We therefore believe that these two sequences were

falsely annotated as miRNAs.

Fourth, the total body of evidence for these reported

miRNAs truly being miRNAs (hairpin conservation, sequencing

of miRNA�-strand, multiple observations of expression, genomic

clustering with other miRNAs, strong homology to other miRNAs

and multiple tags), correlates with the predictions from the Micro-

processor and miRNA SVMs. More specifically, reported miRNAs

that had much additional evidence tended to get scored higher by the

two SVMs than reported miRNAs that had none or one additional

supporting evidence. The correlations between Microprocessor and

miRNA SVM scores and the total amount of supporting evidence

were 0.35 and 0.34, which is significant (P ¼ 4 · 10�5 and

P ¼ 8 · 10�5 with two-tailed Student, t-tests).
Granted, one cannot dismiss potential miRNAs as false based on

lack of supporting evidence. Certain miRNAs are not conserved

(Bentwich et al., 2005), have temporal or cell-specific expression

patterns (Lu et al., 2005) that may complicate detection, are

not clustered with other miRNAs (Altuvia et al., 2005), or have
no homology to other miRNAs. But if we take the least biased

approach and only look at the evidence from the sequencing,

which is presence of multiple tags or the miRNA�-strand, the cor-

relations betweenMicroprocessor and SVM scores and total amount

of evidence were even higher (0.39 and 0.36; P¼ 4 · 10�6 and P¼
3 · 10�5). Similarly, when we removed the miRNAs with none or

one additional supporting evidence and evaluated the SVMs’ pre-

dictions on this set, we got results that were similar to those on the

initial dataset (Microprocessor SVM prediction rate of 41.8%; see

Supplementary Figure 4 for miRNA SVM ROC). Thus, though it is

possible that the new sequences in miRBase 8.1 that were difficult to

classify are miRNA genes with different characteristics than the

majority of known miRNAs, we find the correlation between low

prediction scores and lack of additional evidence suspect. We there-

fore propose that some of these sequences were falsely annotated as

true miRNAs. Furthermore, we echo Berezikov et al.’s opinion that
a single sequenced clone mapped to a non-conserved hairpin should

only be referred to as a candidate miRNA (Berezikov et al., 2006)
until further evidence can be found.

4 SUMMARY AND CONCLUSIONS

We have presented a support vector machine classifier that predicts

Microprocessor processing sites with high accuracy. We have also

shown that using the predictions from this classifier as input to a

miRNA gene predictor gives more accurate predictions than cur-

rently available methods for finding unconserved miRNAs do. In

addition to the classifier’s obvious use in predicting miRNA genes,

we believe that it will be useful for designing short hairpin expres-

sion constructs that mimic miRNAs.

Short hairpin RNAs (shRNAs) for sequence-specific silencing

by RNA interference exploit the cellular machinery of miRNAs.

Short hairpin RNAs are structurally similar to pri-miRNAs or pre-

miRNAs (Brummelkamp et al., 2002; Zeng et al., 2002), but

whereas the mature product from pre-miRNA-like shRNAs can

be reliably predicted, the mature product from pri-miRNA-like

shRNAs may be more difficult to predict. Short hairpin RNAs

modeled as pri-miRNAs are often modified versions of a putative

pri-miRNA, and these modifications may affect processing by the

Microprocessor complex (Zeng and Cullen, 2003; Zhou et al.,
2005). We believe that our classifiers will be useful in shRNA

design as they can assess whether a construct resembles endogenous

miRNAs and is a likely Microprocessor substrate, and predict the

likely processing site.

Our results also indicate that miRNA annotation practices should

be changed such that annotations make clearer distinctions between

verified and candidate miRNAs. Current guidelines require both

expression and biogenesis evidence for a sequence to be annotated

as a miRNA (Ambros et al., 2003), but in practice, the biogenesis

evidence is synonymous with the sequence being part of a hairpin

structure. Short expressed sequences may, however, be part of pre-

dicted hairpins without being miRNAs. Sequences from tRNAs

have previously been annotated as miRNAs and been removed

from miRBase (Sætrom et al., 2006), and hsa-mir-565 and hsa-

mir-594 in the current version of the registry may be part of

tRNAs as well (Berezikov et al., 2006). Similarly, our results indi-

cate that several newly sequenced small RNAs that were mapped to

hairpins and annotated as miRNAs without additional evidence,

lack features that may be essential for miRNA biogenesis.

Current knowledge of animal miRNAs indicate that they undergo

two distinct processing steps, namely excision of the precursor from

the primary transcript by the Microprocessor complex and cleavage

of the precursor by Dicer. Current guidelines for miRNA annotation

consider Dicer processing as sufficient evidence, but we believe that

until a sequence can be shown to be both a Drosha and Dicer

substrate, the sequence should be annotated as a miRNA candidate

and not a verified miRNA. We expect that such a distinction will

help future research by pointing out more and less reliable data in

existing databases.
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