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Abstract 

Gene expression is regulated pre- and post-transcriptionally via cis-regulatory DNA and RNA motifs. The 

identification of individual functional instances of such motifs in genome sequences is a major goal for 

inferring regulatory networks yet has been hampered due to the motifs’ short lengths that lead to many 

chance matches and poor signal-to-noise ratios. In this paper, we develop a general methodology for the 

comparative identification of functional motif instances across many related species, using a phylogenetic 

framework that accounts for the evolutionary relationships between species, allows for motif movements, 

and is robust against missing data due to artifacts in sequencing, assembly or alignment. We also provide 

a robust statistical framework for evaluating motif confidence, which enables us to translate evolutionary 

conservation into a confidence measure for each motif instance, correcting for varying motif length, 

composition, and background conservation of the target regions. 

We predict targets of fly transcription factors and miRNAs in alignments of 12 recently sequenced 

Drosophila species.  When compared to extensive genome-wide experimental data, predicted targets are 

of high quality, matching and surpassing ChIP-chip and recovering miRNA targets with high sensitivity. 

The resulting regulatory network, suggests significant redundancy between pre- and post-transcriptional 

regulation of gene expression. 

 

Availability 

All data and predicted transcription factor and miRNA targets are freely available at 

http://compbio.mit.edu/fly/motif-instances/. 

 

Introduction 

Understanding gene expression and its regulation in response to developmental and environmental stimuli 

is one of the greatest challenges of modern biology. Regulatory control of gene expression occurs at many 

levels, both pre- and post-transcriptionally, generally based on short DNA and RNA signals known as 

regulatory motifs.  These are recognized in a sequence-specific way by diverse protein and RNA 

regulators to direct transcription initiation, mRNA export, stability, and translation, ultimately leading to 

diverse gene regulatory programs in organogenesis and development, and in response to environmental 

stimuli. 

The sequence-based nature of regulatory control should in principle enable computational identification 

of regulator targets, by recognizing individual motif instances that constitute functional binding sites. 
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However, due to their short lengths, motifs match very frequently to the genome or in fact any (random) 

nucleotide sequence by chance alone, and the majority of genome-wide motif occurrences do not lead to 

functional regulator binding, being either occluded by chromatin structure, separated from necessary co-

factor motifs, or otherwise non-consequential to transcriptional regulation (Wasserman and Sandelin 

2004). To address the large signal-to-noise problem and predict functional regulatory elements, previous 

computational approaches have sought regions of motif clustering across several co-operating motifs, 

which are often associated with enhancer function (Berman et al. 2002; Markstein et al. 2004; Philippakis 

et al. 2006; Schroeder et al. 2004). Although these approaches have been successful in identifying novel 

enhancers, which are functional when tested in vivo, they only identify a small subset of all functional 

targets of each regulator, and are only applicable when the specific combinations of factors are already 

known.  In particular, they are unable to identify individual motif instances when these act in isolation, or 

with diverse sets of co-factors.  

Comparative genomics provides a general methodology for distinguishing functional regulatory motif 

instances, as biologically meaningful elements are typically under negative selection during evolution, the 

type and extent of evolutionary conservation generally reflecting the specific requirements of the selected 

function (Miller et al. 2004; Ureta-Vidal et al. 2003). As closely related species often share substantial 

parts of their morphology and developmental programs, the expression of important genes, their 

regulatory connections, and the underlying regulatory elements are also likely conserved. In fact, some 

gene regulatory network kernels involved in organogenesis, such as heart specification, are conserved in 

species as distant as flies and vertebrates (Davidson and Erwin 2006). Thus, although some processes are 

subject to more rapid divergence or positive selection (e.g. body color and pigmentation (Prud'homme et 

al. 2006)), this suggests that comparative genomics at a range of evolutionary distances should allow for 

the identification of many regulatory components of gene expression programs.  

Indeed, previous comparative genomics studies have used the conservation of regulatory elements for the 

de novo discovery of regulatory motifs across related species (Chan et al. 2005; Cliften et al. 2003; 

Ettwiller et al. 2005; Kellis et al. 2003; Xie et al. 2005). These studies have relied on the average 

conservation of thousands of motif instances for each regulator, leading to a high genome-wide signal for 

motif discovery.  However, it has remained unclear what fraction of conserved motif instances were 

functional, and what fraction of functional instances were conserved, namely whether in fact comparative 

genomics is applicable for high-specificity and high-sensitivity identification of individual motif 

instances. Moreover, the available genomes have been either too few for sufficient neutral divergence, or 

too distantly related for motif instances to be conserved (e.g. (Cooper et al. 2005; Ettwiller et al. 2005)). 

Accurate motif instance identification would thus require many closely related species, which also present 
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novel conceptual and methodological challenges, with respect to sequence coverage, alignment accuracy, 

and motif movement, gain, and loss (Boffelli et al. 2003; Cooper et al. 2005; Eddy 2005; Margulies et al. 

2003; Margulies et al. 2007; Thomas et al. 2003). 

Methods such as phylogenetic footprinting, evolutionary rate profiling and phylogenetic HMMs have 

been successfully used to identify genomic regions under evolutionary selection (Cooper et al. 2005; 

Margulies et al. 2003; Margulies et al. 2007; Siepel et al. 2005; Wasserman et al. 2000), but they cannot 

determine the regions’ functions that are selected for. Similar to more complex models of motif evolution 

(e.g. (Moses et al. 2004; Zhou and Wong 2004)), such methods are often restricted to regions that are well 

aligned, and can be sensitive to motif-movements or errors in sequencing, assembly, or alignment 

(Margulies et al. 2007; Moses et al. 2004). Further, methods to predict genomic regions with regulatory 

potential generally do not allow the identification of regulatory targets for individual factors or miRNAs 

(Elnitski et al. 2003; Taylor et al. 2006). Lastly, the comparative prediction of miRNA binding sites in 

3’UTRs proved successful (reviewed in (Lai 2004; Rajewsky 2006)), but has relied on site presence in 

defined sets of informant species, and a severe loss of sensitivity has been observed when the number of 

informant species was increased (Grun et al. 2005; Lewis et al. 2003; Stark et al. 2005). 

In this paper, we develop a general methodology for identifying functional motif instances based on their 

evolutionary conservation across many related species, and provide a robust statistical framework for 

evaluating motif confidence, enabling us to achieve both high sensitivity and high specificity. Our 

approach uses a phylogenetic framework, which allows for motif-movements and local alignment 

inaccuracies, and is robust against missing data due to artifacts in sequencing, assembly or alignment. Our 

statistical framework enables us to translate evolutionary conservation into a confidence measure for each 

motif instance, correcting for varying motif length, composition, and background conservation of the 

target regions.   

We apply our framework to whole-genome alignments of 12 recently sequenced Drosophila species 

(Drosophila 12 Genomes 2007; Stark et al. 2007), and predict targets of 83 transcription factors (TFs) and 

78 miRNAs (57 distinct families), leading to 46,525 regulatory connections.  We use genome-wide ChIP-

chip experiments and direct tests of TF or miRNA targeting (independently published by us (Stark et al. 

2005; Zeitlinger et al. 2007) and others (Abrams and Andrew 2005; Sandmann et al. 2007; Sandmann et 

al. 2006; Sethupathy et al. 2006)) to show that computationally-predicted regulator targets are of very 

high quality, matching and surpassing ChIP-chip sensitivity and specificity, and can identify seemingly 

functional instances even when these are not bound in the conditions experimentally surveyed. Lastly, we 
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study properties of the resulting network, which suggest significant redundancy between pre- and post-

transcriptional regulation.  

Assessing motif-instance conservation across many genomes 

Unlike protein-coding and RNA genes, which are typically well aligned in the multiple sequence 

alignments of related species, many regulatory motifs are too short to guide alignment algorithms, and 

thus may not appear at orthologous positions in multiple sequence alignments (Wasserman and Sandelin 

2004; Wray et al. 2003). As motifs can act at a wide range of distances, individual motif instances may 

move, either by insertions and deletions, or by ‘birth’ of new motifs and loss of old motifs via 

compensatory mutational changes (Ludwig et al. 2000). In addition, individual instances of regulatory 

motifs may actually diverge across different species, and may experience duplication, gain, and loss 

across the evolutionary tree (Ludwig et al. 2005; McGregor et al. 2007; Prud'homme et al. 2006). Lastly, 

comparison of many species introduces new artifacts due to sequencing, assembly and alignment, which 

may affect the alignment of equivalent regulatory motif instances (see Figure S1 and (Margulies et al. 

2007)).   

To account for these unique evolutionary and alignment properties of regulatory motifs, we developed a 

phylogenetic framework for motif instance identification which tolerates motif movement and loss, while 

recognizing their clear selective pressure across the phylogenetic tree. Briefly, we search for motif 

instances in each of the aligned genomes and, given the set of species that contain motif instances within 

tolerable distances of the D. melanogaster instance, we evaluate the total evolutionary branch length over 

which the motif appears conserved. The overall score of a motif instance becomes this total branch length 

of the phylogenetic tree over which the motif is conserved, which we call the Branch Length Score, or 

BLS (Figure 1). We thus implicitly assume that all motif instances in D. melanogaster are potentially 

ancestral and count instances in the informant species as evidence when they are conserved. We do not 

interpret presence/absence patterns of motif instances as evolutionary gain- and loss events, as they could 

arise from artifacts in sequencing or alignment. The BLS value of a given motif instance ranges from 

BLS=0.0 (non-conserved) to BLS=1.0 (fully-conserved), representing the fraction of the total 

phylogenetic tree covered by the species containing the motif. 

This BLS conservation measure has many attractive properties, which enable us to define the 

conservation level of motif instances across a complete genome, to select conservation thresholds for 

defining all genome-wide instances of a regulatory motif, and to assign confidence values to the observed 

conservation, as we describe below. Moreover, because missing instances in the aligned species are not 

interpreted as evolutionary loss-events and are not explicitly penalized, the BLS measure is robust against 
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missing sequence due to low coverage sequencing, assembly errors or alignment artifacts. Lastly, BLS 

provides a direct estimate of the expected neutral divergence of the species compared (Felsenstein 2004), 

accounting for different divergence times between species, correcting for redundant contributions of 

individual species in a complex tree, and their different rates of divergence (Figure 1).  

Establishing confidence levels for BLS conservation scores 

To translate this BLS conservation score to a robust statistic that can be used across different motifs and 

different types of genomic regions (e.g. promoters, introns, 5’ or 3’ UTRs, etc.), we mapped each BLS 

score to a confidence value between 0% and 100%, representing the probability that a given motif 

instance is functional. This probability reflects the increased conservation of motif instances compared to 

overall sequence similarity and is estimated using control motifs, similar to the signal-to-noise ratio for 

miRNA target predictions (Lewis et al. 2003). Evaluated in a motif- and region-specific way, it corrects 

for differences in motif length and composition, and for different average conservation levels and 

nucleotide-composition of different genomic regions. Intuitively, longer and highly-specific motifs are 

very unlikely to be conserved by chance and thus result in high confidence levels, even for modest BLS 

thresholds. Further, regions of overall high conservation (such as protein-coding exons) are likely to 

contain many conserved motif instances by chance alone, and thus require more stringent BLS thresholds 

to achieve a desired confidence level. Lastly, AT-rich motifs are likely to have many conserved 

occurrences in AT-rich regions due to chance alone (and GC-rich motifs in GC-rich regions), and thus 

require higher BLS thresholds if the corresponding control motifs show similarly high conservation. 

We found that the number of random motif instances generally decreased rapidly for increasing BLS 

values, while the number of instances for known motifs remained high (Figure 2a).  For example, at 

BLS≥0.50, the motif for Snail (CAGGTG) has 229 occurrences in promoter regions, compared to 54 

motif instances on average for a pool of 10 control motifs. Therefore, we would expect that of these 229 

Snail instances, 54 are likely due to chance, while 175 of them (76%) are non-random, leading to a 

confidence of C0.5=76% for each of these motif instances, at BLS=0.5.  At a more stringent conservation 

threshold of BLS≥0.70, Snail shows 152 instances while the control motifs show 24 instances on average, 

leading to a confidence of C0.7=128/152=84%. Similarly, the miRNA K-Box motif (Lai et al. 1998) 

(CTGTGAT; 5’ seed motif of Drosophila miRNAs 2, 6, 11, 13, and 308) reaches confidence values 

>75% at a BLS=0.4, and >90% at a BLS=0.76 (Figure 2a). We note that the confidence measure is 

conservative by nature: 76% confidence for example means that 76% of conserved instances are 

conserved above background and are thus likely functional. The remaining 24% of conserved instances 
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might contain functional instances that cannot be discerned from noise, suggesting a maximum false 

positive rate of up to 24%. 

We found that with increasing confidence levels motifs were predominantly found in regions in which 

they are known to function. For example, with increasing confidence the percentage of TF motif instances 

within promoter regions rises from 20 to 90%, that of miRNA motif instances within 3’UTRs from 25% 

to 100% (Figure 2b,c). In addition, the percentage of miRNA motif instances on the transcribed strand of 

3’UTRs rises from essentially random (uniform 50%) to exclusively on the transcribed strand (100%), 

while promoter motifs do not show any strand preference (Figure 2d). These results illustrate the 

effectiveness of region-specific confidence values (which require more stringent BLS thresholds for more 

highly-conserved regions), as high-confidence motif instances were not simply biased towards regions 

with overall high conservation, but specifically selected in regions they are known to act. 

Effect of allowing motif movements on instance identification.  

Using confidence cutoffs also allowed us to assess the influence of tolerating motif movements on the 

recovery of functional motif instances. Allowing for motif movement permits capturing functionally 

equivalent instances across genomes, independent of their relative positions in the alignment. However, 

while this approach will always increase the number of conserved instances recovered for real motifs, it 

also increases the number of spurious motif instances that appear conserved due to increased background 

conservation for large tolerated movements.  

The number of motif instances recovered at a given confidence value presents a robust measure of overall 

discovery power, as it evaluates sensitivity at a fixed specificity. If the window of tolerated motif 

movement is too small, many true motif instances will be missed.  Conversely, if the window of tolerated 

motif movement is too large, we would expect both real and control motifs to show increased 

conservation, thus reducing the confidence and leading to fewer confidently identified instances.  

Between these two extremes, we would expect the number of high-confidence motif instances to peak for 

an optimal window of tolerated motif movement, and decrease for lower or higher values.  

Indeed, we found that allowing for motif movements of 10 to 500 nucleotides relative to the D. 

melanogaster instance often increased the number of confident motif instances, while allowing for large 

movements generally decreased this effect (Figure 3b). Different window sizes were optimal for different 

motifs: longer TF motifs with higher information content peaked for longer windows (Pearson correlation 

0.40 for information content, 0.33 for length), while motifs with many matches in D. melanogaster 

showed shorter optimal windows (Correlation -0.27 for TF, -0.26 for miRNA motifs). We also found a 
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correlation with GC-content for miRNA motifs (0.28), as expected since 3’UTRs are AT-rich, but there 

was very little correlation for TF motifs (-0.15). These results illustrate the more rapidly increasing noise 

levels for motifs with low information content, while motifs with higher information content are less 

likely to appear by chance within the length of the tolerated window.  

 

Overall, the single best window improved the recovery of 56% of TF motifs (20 nucleotides), and of 71% 

of miRNA motifs (50 nucleotides; both at 60% confidence). For 71% TF motifs, some window between 

10 and 500 nucleotides improved sensitivity, and the improvement was substantial for 11% (at 60% 

confidence; P≤0.05 after Bonferroni correction to account for testing multiple windows). Similarly, 93% 

of miRNA motifs showed improved sensitivity, which was substantial for 13%. Improvements were 

observed over a wide range of confidence cutoffs, showing that tolerating motif movement is important at 

any desired confidence level for motif instance identification. These results confirm our intuition that 

indeed, many motif instances are offset considerably in the 12-species alignments, whether due to 

alignment artifacts or evolutionary plasticity of regulatory motifs.  

BLS measure enables increased sensitivity 

The confidence measure also enabled us to gauge the sensitivity of the BLS measure, measured as the 

number of instances recovered at a fixed specificity, compared to different methodological choices.  In 

particular, we asked whether requiring perfect conservation across fewer species (the 9 Sophophora 

subgroup species, the 4 melanogaster subgroup species, and D. pseudoobscura as the only informant) 

would lead to higher sensitivity / specificity levels, perhaps due to many lineage-specific motifs. 

We found that the BLS measure across all 12 species recovered most instances for all TF and miRNA 

motifs, at all confidence levels (Figure 3a). For TF motifs, our approach recovers more than 1.4-fold 

more instances than the second most sensitive of the other approaches at 60%, 1.5-fold more at 70%, and 

3-fold more at 80% confidence (for miRNAs motifs, 1.8-fold more at 60%, 2-fold more at 70% and 1.8-

fold more at 80% confidence). When comparing the 3 other approaches for confidence thresholds below 

65%, we found that perfect conservation was indeed more sensitive across the 4 closely related species in 

the melanogaster subgroup and in D. pseudoobscura compared to perfect conservation across 9 

Sophophora species.  However, very few motifs reached higher confidence levels, due to the high overall 

sequence similarity between these species, resulting in an apparent drop in motif recovery. We also found 

that the discovery power in D. pseudoobscura was comparable to the 4 melanogaster species, likely due 

to its position in the phylogenetic tree.   



 9  

Lastly, the BLS and confidence measures allow us to gauge the effect of additional species. We found 

that evaluating motif conservation across all 12 species allowed more motifs reach confidence levels of 

60% than was possible with the other species combination and led to higher average signal-to-noise ratios 

than any other species combination for TFs and miRNAs (Figure 3c).  

These results show that the discovery power for target gene identification continues to increase even with 

more distantly related species.  The usefulness of distant species only becomes effective by the use of the 

BLS measure, while the inclusion of distantly related species resulted in lower performance when perfect 

conservation was required. Overall, the combination of additional species, and a phylogenetic framework 

for evaluating motif conservation allowed high-sensitivity and high-specificity in motif instance 

identification.  

Conserved motif instances identify functional in vivo targets 

We then compared our computationally determined conserved motif instances with experimentally 

determined in vivo targets of known regulators.  To define in vivo targets, we used several large-scale 

experimental datasets:  a set of high-confidence direct CrebA targets confirmed with a variety of reporter 

assays (Abrams and Andrew 2005), three genome-wide Chromatin IP experiments for developmental TFs 

with known motifs (Snail, Mef-2, and Twist) (Sandmann et al. 2007; Sandmann et al. 2006; Zeitlinger et 

al. 2007), and a set of experimentally confirmed targets for different miRNAs (Sethupathy et al. 2006; 

Stark et al. 2005).  We note that the experimentally validated miRNA sites were initially predicted based 

on conservation to D. pseudoobscura, and thus are biased towards higher conservation (already showing 

BLS>0.26). However, the CrebA and the three ChIP datasets were determined independently of any 

comparative information, and thus provide an entirely independent evaluation of our methodology, 

allowing us to estimate both sensitivity and specificity of our predictions.  

For each regulator, we compared motif instances at different confidence cutoffs with the experimentally 

derived in vivo targets. We found that motif instances at increasing confidence thresholds strongly 

enriched for experimentally derived in vivo targets (Figure 4a).  In absence of any comparative 

information, Mef-2 motif instances in D. melanogaster showed no enrichment for experimentally derived 

targets, while conserved instances showed up to 5-fold enrichment (at 60% confidence).  Similarly, 

enrichment rose from 3-fold to 7-fold for Snail at increasing confidence levels, from 4-fold to 9-fold for 

Twist, and from 4.5-fold to 12-fold for CrebA (P=4x10
-11

, 3x10
-10

, 2x10
-6

, and 1x10
-7

 at the highest 

confidence for the four factors). This illustrates the ability of evolutionary information to select for 

functional motif occurrences, experimentally shown to be bound and/or functional in vivo.  In fact, the 

enrichment was most pronounced for CrebA (12-fold enrichment; P=1.4x10
-7

), for which the targets had 
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been shown to be direct transcriptional targets, while some of the ChIP-derived targets may reflect 

indirect binding, or binding that is non-consequential for transcription. 

We also found that even stringent confidence thresholds recovered a large fraction of experimentally 

derived in vivo targets, illustrating the high sensitivity of our approach (Figure 4b). When ChIP-bound 

motifs overlapped experimentally defined enhancer elements(Sandmann et al. 2007; Sandmann et al. 

2006; Zeitlinger et al. 2007), 65% Mef-2, 65% Snail, and 25% Twist motif instances were recovered at 

our 60% confidence cutoff. The lower rate for Twist was possibly due to an overly specific Twist motif 

used (Markstein et al. 2004). Recovery was again highest for CrebA, for which 76% of motif instances 

were conserved, illustrating the high sensitivity of comparative genomics methods for validated direct 

targets (Figure 4c). 

Recovery was much lower when all ChIP-bound regions were considered, regardless of enhancer 

information, suggesting that some of the ChIP-derived targets may be due to noise, and that conservation 

is able to pinpoint functional enhancers within ChIP-bound regions. Lastly, we recovered 90% of miRNA 

motif instances in experimentally confirmed targets at 80% confidence (Sethupathy et al. 2006; Stark et 

al. 2005) (Figure 4d), showing that despite the added branch length (from BLS>0.26 for D. 

pseudoobscura to BLS>0.60 at 80% confidence across the 12 genomes on average), our methods 

maintain high sensitivity.  

In contrast to evaluating conservation by the BLS methodology, requiring perfect conservation across all 

12 Drosophila species or across the 9 Sophophora species recovered significantly fewer experimentally 

validated motif instances for TF and miRNA motifs (see above and Figure S2). 

Non-conserved binding events show decreased functional enrichment 

Although the overlap between conservation derived motif instances and in vivo binding was highly 

significant and we recovered a substantial fraction of ChIP-bound enhancers, CrebA targets, and miRNA 

targets, we noted that numerous motif instances in ChIP-bound regions were not conserved above 60% 

confidence, especially for regions that had not previously been shown to be enhancers (Figure 4b). Non-

conserved sites might be functional, but missed due to unusually large motif movements or sequencing 

and alignment errors. Alternatively, they may play roles with only lineage-specific selection (and thus not 

meeting our 60% confidence threshold) or represent largely non-consequential binding, without a specific 

biological role subject to evolutionary selection. To distinguish the two possibilities, we studied the 

enrichment of conserved and non-conserved motif instances of the mesodermal factors Mef-2, Twist, and 

Snail in muscle genes.  
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We found that ChIP-bound motif instances that were evolutionarily conserved showed enrichment or 

depletion in promoters of muscle genes for all three factors: the transcriptional activators Mef-2 and Twist 

showed 8-fold and 7-fold enrichment respectively, and Snail, a mesodermal repressor, showed 3-fold 

depletion in muscle genes.  In contrast, ChIP-bound motif instances that were not conserved showed only 

1 to 2-fold enrichment or depletion for all three factors (Figure 4e).  This suggests that potential lineage-

specific roles corresponding to non-conserved ChIP-bound sites may lie outside the regulators’ conserved 

functions in core development processes (e.g. mesoderm/muscle development). Alternatively, these sites 

may be of decreased biological significance, perhaps representing non-consequential binding sites with no 

role in gene-expression regulation, which are known to be recovered in ChIP experiments (Boyer et al. 

2005; Lee et al. 2006). In either case, our results show that non-conserved sites are not simply due to low 

sensitivity of comparative methods, but are functionally distinct from conserved sites.  

ChIP-derived and conservation-derived targets show comparable functional significance 

Interestingly, evolutionary conservation identified many high-confidence motif instances outside ChIP-

bound regions. These may be functional sites reflecting higher coverage for conservation-derived targets, 

or spurious sites reflecting noise in the methodology. To distinguish the two possibilities, we used the 

correlation of these additional motif instances with muscle genes, providing an independent assessment of 

the overall quality of our predictions.  

We found that conservation-derived targets outside ChIP regions were enriched in the same categories in 

which the factors are known to act.  In fact, even outside ChIP regions, conserved sites showed 

comparable or higher enrichment or depletion in muscle genes than those identified by the ChIP 

methodology (Figure 4f), suggesting they may be of similar overall quality. For Twist, enrichment was 

1.3-fold higher, for Snail, depletion was 2.5-fold higher, and for Mef-2 enrichment was slightly lower 

(0.9-fold). Overall, when assessing ChIP- and conservation-derived targets independently (i.e. 

considering all ChIP targets and all conservation-derived targets), our approach showed a consistently 

higher enrichment or depletion in muscle genes than ChIP- chip (1.4-fold for Twist, 2-fold for Snail, and 

1.01-fold for Mef-2; Figure 4f).  

Our results suggest that the additional sites outside ChIP-bound regions are likely functional and reflect 

the higher coverage of conservation-derived targets as compared to experimentally derived targets. 

Indeed, while ChIP-derived targets are constrained by the developmental stages or cell types surveyed, 

comparative approaches capture all conserved gene targets regardless of their spatial or temporal 

constraints. Moreover, comparative approaches are not constrained by the abundance of TFs at bound 

sites, but only by the strength of evolutionary selection; they can thus identify important sites even when 
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these are bound more rarely (or in few cell types).  Lastly, comparative genomics enables us to capture 

additional functional targets that may be missed due to experimental limitations of ChIP technology, for 

which reported false negative rates are up to 30% (Boyer et al. 2005; Lee et al. 2006). 

A regulatory network of D. melanogaster at 60% confidence  

We conclude that comparative genomics provides a powerful methodology for identifying functional 

targets showing high sensitivity and high specificity. For factors with experimentally determined in vivo 

binding sites, we showed that evolutionary conservation provides comparable discover power as ChIP, 

and importantly reveals additional functional sites that potentially function at stages or tissues not 

surveyed.  More generally, even when ChIP studies are not available, comparative genomics can provide 

a first overview of the regulatory connections across a complete genome. 

We used our comparative approach to present an initial regulatory network of D. melanogaster at 60% 

confidence for both pre- and post-transcriptional regulators (Figure 5). Overall, 49 of 57 miRNA motifs 

(86%) and 67 of 83 TF motifs (81%) had instances with confidence values of 60% or higher and were 

considered (Tables S1 and S2). The remaining motifs may have too few physiologically relevant and 

conserved target sites to discern them reliably from background, or may not accurately reflect the factors 

binding properties, potentially being overly specific or degenerate. 

We find a total of 46,525 regulatory connections for TF motifs and 3,662 for miRNA motifs, targeting 

8,287 genes and 2,003 genes, respectively. The distribution of targets is highly asymmetric:  while we 

find on average 123 targets per TF motif and 41 targets per miRNA motif, some TF motifs have up to 

4,129 targets (homeobox factors), and some miRNA motifs more than 150 targets (miR-4, miR-92, and 

miR-1). We note, that some motifs (e.g. the homeobox TF motif or the K-box miRNA motif) correspond 

to multiple TFs or miRNAs, and thus the numbers likely represent combined targets for all individual 

factors. The distribution of target sites per gene (in-degree) is also highly imbalanced:  while a typical 

gene is regulated by 6 different TF motifs and 2 different miRNA motifs on average, some genes have 

targeted by up to of 33 different TF and up to 14 different miRNA motifs. Genes with high in-degree 

were enriched in morphogenesis, organogenesis, neurogenesis, and a variety of tissues, while genes with 

small in-degree were enriched in ubiquitously expressed or maternal genes with functions in DNA, RNA, 

or protein metabolism for both TF and miRNA motifs (Table S3). Many genes with high in-degree were 

TFs (P<10
-9

 for TF and miRNA motifs) and transcriptional regulators were indeed more densely targeted 

than other genes, by both TF- (10.1 vs. 5.5, P<10
-20

) and miRNA motifs (2.3 vs. 1.8, P<5x10
-5

). The 

similarity between the TF and miRNA motif network was further illustrated by mutual enrichment: genes 
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with high TF in-degree are enriched in genes with high miRNA in-degree (P=8x10
-5

), as are genes with 

low in-degree for both types of regulators (P=2x10
-7

).  

This initial network contained many connections with independent support in the literature (Figure 5; 

Table S4). For example, we identified the direct regulation of achaete by hairy (Van Doren et al. 1994), 

several direct targets of Suppressor of hairless Su(H) in the enhancer of split E(spl) complex (Bailey and 

Posakony 1995), direct regulation of the gap gene giant by bicoid (Kraut and Levine 1991). In addition, 

the network proposed many novel connections supported by experimental evidence, including a direct 

regulation of bagpipe by tinman, which both cooperate in mesoderm induction and heart specification 

(Yin and Frasch 1998).  More generally, when tissue-specific expression data was available, we found 

that on average 46% of all targets were co-expressed with their factor in at least one tissue (Figure 5), 

which is significantly higher than expected by chance (P=2x10
-3

).  

Discussion 

We showed that comparative analysis of many related genomes allows us to identify functional motif 

instances with very high confidence. Overall, 86% miRNA motifs and 81% TF motifs had instances with 

confidence values of 60% or higher. The remaining factors may have too few physiologically relevant and 

conserved target sites to discern them reliably from background, or may contain inaccuracies in their 

binding site motifs might be artificially specific or degenerate. 

We found that the availability of many genomes allowed for very high signal-to-noise levels for many 

motifs at the most stringent settings. However, more importantly, we showed that the BLS measure 

allowed us to use the increased number of species to strongly increase sensitivity at any given specificity 

compared to requiring perfect motif conservation in arbitrary subsets of species. While requiring perfect 

conservation across many genomes is of limited use, the increased power enables approaches that account 

for artifacts in sequencing, assembly and alignment, and tolerate diverged, missing, or moved motif 

instances. Our BLS measure is more generally applicable to PWMs (Stormo 2000), to more complex 

models of regulatory motifs that account for dependencies between individual motif positions (Naughton 

et al. 2006; Yada et al. 1998), and to more advanced rules for miRNA-target recognition that for example 

score the contribution of the 3’pairing energy (Brennecke et al. 2005; Stark et al. 2003).  

We found that comparative genomics and ChIP-chip showed similar power for functional target 

identification. The two approaches are complementary, each with unique advantages: conservation helps 

pinpoint evolutionarily selected functional targets across all conditions, while ChIP-chip reveals stage- 

and tissue-specific binding in vivo, as well as species-specific sites which may play important 
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evolutionary roles in the emergence of new functions. As motifs of additional regulators are derived by 

experimental (e.g. by SELEX (Tuerk and Gold 1990) or protein-binding micro-arrays (Mukherjee et al. 

2004)) or computational approaches (e.g. by motif-overrepresentation (Tompa et al. 2005) or genome-

wide motif-instance conservation (Kellis et al. 2003; Xie et al. 2005)), and tissue-specific binding 

becomes available for dozens of factors (e.g. through the ENCODE and modENCODE projects), 

comparative studies can help establish and refine their genome-wide targets. Indeed, we found that motif 

instances identified by both approaches had the highest functional enrichments, suggesting that combined 

approaches may prove useful in the future. Although the regulatory network we present likely lacks many 

true regulatory relationships that could not be reliably recovered, our comparison with ChIP-chip data and 

other validated targets showed that the network is of high overall quality. We anticipate that the network 

and the predicted regulatory connections prove to be a useful resource for the fly community working on 

the biology of TFs or miRNAs and their target genes, and their roles in development. The methodology to 

assess motif conservation across many genomes and predict functional motif-instances with high 

sensitivity is more generally applicable for the study of any genome. 

 

Methods 

Regulatory motifs 

We obtained TF motifs from Transfac (Matys et al. 2003), Jaspar (Sandelin et al. 2004), FlyReg 

(Bergman et al. 2005), and the literature. To remove redundancy for global statements about motif-

targets, we clustered TF motifs using centroid-linkage hierarchical-clustering with a Pearson correlation 

coefficient cutoff of 0.8 (calculated on the columns of the equivalent PWM) at the best alignment offset 

(Gupta et al. 2007; Pietrokovski 1996; Schones et al. 2005; Xie et al. 2005). To avoid the creation of 

artificial motifs by averaging, we chose the original motif from each cluster that is closest to the cluster 

average as the cluster representative. We defined miRNA motifs as the non-redundant set of 7mers 

reverse complementary to miRNA 5’ends positions 2-8 (seeds after (Lewis et al. 2003)) for all Rfam 

miRNAs (Griffiths-Jones et al. 2006). We represent all motifs as consensus sequences over an alphabet of 

15 characters (IUPAC code, http://www.chem.qmul.ac.uk/iupac/) consisting of the four nucleotides 

A,C,G,T, the six two-fold degenerate characters S=(CG), W=(AT), Y=(CT), R=(AG), M=(AC), K=(GT), 

the four three-fold degenerate characters H=(ACT), B=(GCT), V=(G,A,C), D=(G,A,T) and the four-fold 

degenerate character N=(ACGT). A motif instance (or motif occurrence) is a sequence that matches the 

motif at each position, i.e. containing one of the allowed characters at that position.  
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We translate consensus sequences to PWMs given the definition of the degenerate characters. We 

translate PWMs to consensus sequences by choosing the character with the highest sum of the PWM 

column entries corresponding to that character minus a correction for character degeneracy (1/2 for 

ACGT, 2/3 for SYRMK, 5/6 for HBVD, and 1 for N). 

 

Genome alignments and annotation 

For all analyses, we used whole genome MULTIZ alignments of 12 Drosophila genomes (Stark et al. 

2007), available from UCSC (Kent et al. 2002). We used the Drosophila melanogaster genome-

annotations from FlyBase (Release 4.3), and excluded simple repeats, repeat masked regions obtained 

from UCSC, and non-coding exons according to FlyBase 4.3. 

 

Motif matching and BLS measure 

We searched all motif instances in the Drosophila melanogaster genome and evaluated their conservation 

in the 12 species using the whole-genome alignments. For each motif instance in D. melanogaster, we 

recorded all instances in the other genomes that were aligned, allowing for motif movements (see below). 

We prevented double-counting of motif instances by assigning each instance in an informant species to 

the closest instance in D. melanogaster. We evaluated the conservation of all motif instances by summing 

the branch-lengths of the sub-tree of the species with conserved motif-instances (BLS). This procedure 

implicitly assumes that all instances are potentially ancestral, such that an instance conserved in a remote 

informant species would score more highly than instances in closely related informants. One disadvantage 

of this approach is therefore that chance occurrences or gains in distant species may contribute false 

positives. The phylogenetic tree branch lengths were obtained from a whole genome alignment of all 12 

species (Dewey et al. 2006; Stark et al. 2007). 

 

P-values 

All P-values are calculated based on the hypergeometric distribution, and correction for multiple-testing 

was done with the Bonferroni correction. 

 

Allowing for motif movements 

When assessing motif conservation, we allowed motif instances in the informant species to be offset 

relative to the alignment position of the D. melanogaster instances within a given window (counted as 

distance in either direction in characters excluding gaps). We did not use a prior for a cutoff on maximal 

tolerable motif movement, as we are not aware of a systematic experimental study that assessed typical 

movements of functionally equivalent motifs in related species, nor a systematic assessment of the 
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maximum movement tolerable while maintaining function. We consequently used the window that 

maximized signal over noise.  

While it is clear that increasing tolerated windows may capture additional equivalent instances across 

genomes, thereby increasing sensitivity, they also increase the number of spurious motif instances that are 

recovered by chance. We account for the increased background conservation by the use of control motifs 

(see above), and determine the optimal allowable motif movement window (the one that recovered most 

motif instances) out of 32 windows between 0 to 500 nucleotides (0, 5, 10, 20, 30, ..., 90, 100, 120, 140, 

…, 480, 500). For figure 4b and for analyzing the correlation of optimal window size with different motif 

properties, we assessed 119 windows between 0 and 10,000 nucleotides (0, 10, 20, …, 190, 200, 300, …, 

9,900, 10,000). Similarly, we allow for strand reversals of TF motif instances in informant species, when 

they help instance recovery in the respective windows. The significance of sensitivity improvement for 

individual windows and for allowing windows in general was assessed by hypergeometric P-values 

compared to motif instances identified with a window of 0 nucleotides, i.e. perfect alignment of instances. 

 

Estimation of confidence levels of motif instances 

For each motif and type of genomic region (promoter, 5’UTR, 3’UTR, intron, etc.), we created 100 

shuffled control motifs and selected those that had a similar number of matches to the region in the D. 

melanogaster genome (+/- 20%). By requiring the control motifs to have occurrence rate similar to real 

motifs in the respective genomic regions in D. melanogaster (i.e. without conservation), we corrected for 

biases in di- or tri-nucleotide frequencies (see discussion in (Lewis et al. 2003)). To remove possible 

redundancy, we clustered the control motifs (cutoff 0.8) and selected only one representative per cluster, 

limiting to 10 motifs total that were least similar to known motifs. For each real motif and its controls, we 

computed the conservation rate (the number of conserved instances at a given BLS cutoff divided by the 

total number of instances in the D. melanogaster genome) in each region and at each BLS cutoff. We 

determined the confidence at each BLS as the fraction of conserved motif instances above background 

conservation, where  the latter was estimated using the conservation ratio of the control motifs. This 

provided a BLS-to-confidence mapping for each motif and region. The variation between the control 

motifs lead to an average standard-error of 5% for TF motifs, and 4% for miRNA motifs at 60% 

confidence, indicating an accurate assessment of background conservation. 

 

Comparison with experimental datasets 

We obtained all experimentally validated miRNA target gene pairs from Tarbase (Sethupathy et al. 2006) 

and our previous study (Stark et al. 2005). We obtained ChIP-chip regions and the subset that overlapped 
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known enhancers from (Sandmann et al. 2007; Sandmann et al. 2006; Zeitlinger et al. 2007) and CrebA 

target genes from (Abrams and Andrew 2005). We calculated the enrichment of sites at different 

confidence cutoffs between 3’UTRs of validated miRNA/target pairs and all 3’UTRs, and between ChIP 

regions within 2kb upstream regions and the union of all 2kb upstream regions. As CrebA targets were 

originally defined through mostly 5’UTR instances (Abrams and Andrew 2005) and Mef-2 showed 

considerable overlap with 5’UTR regions, we included the 5’UTR and restricted the upstream region to 

500bp instead. We assessed the recovery of motif-instances as the fraction of motif-instances in in the 

functional regions (with the same restrictions) that reached the indicated confidence. To assess the 

fraction of these that are expected by putatively increased overall conservation in these regions, we assess 

the recovery of control motifs at the same BLS (not confidence, as the control motifs – by definition – 

would not reach high confidence levels). 

 

Evaluation of experimental and motif instances by correlation with muscle genes 

We used correlation with expression patterns to independently evaluate ChIP-regions and predicted motif 

instances. Muscle genes were 616 genes annotated as “muscle system (13-16)” by the manually curated 

BDGP in situ database (ImaGO) (Tomancak et al. 2002). To obtain a unique assignment of regions to 

genes, we restricted our analysis to the 5' UTR and 500 bases upstream of each gene. We calculated 

functional enrichments as the fraction of nucleotides covered by motif instances (at 60% confidence) or 

ChIP regions in muscle genes divided by the corresponding number in all genes present in ImaGO. 

Hypergeomertic p-values were computed for motif instances using control motifs at the same BLS and 

window and for ChIP regions using the fraction of muscle genes matched versus the fraction of all genes 

matched (note that individual nucleotides are correlated, such that nucleotide P-values would 

overestimate the significance). 

 

Assessing the indegree distribution 

We assessed the non-randomness of the indegree distribution against a control Erdos-Renyi random 

network (Bollobás 2001) with the same number of edges. To construct this network, we added edges by 

selecting a source and target node with probability 1/m and 1/n, where m and n were the number of source 

and target nodes in the true network, respectively. We assessed the difference of indegree distributions 

between the true and control network with a Wilcoxon rank sum test. We also assessed the difference in 

indegree distribution between all transcription factors (as defined by (Adryan and Teichmann 2006)) and 

all other genes also with a Wilcoxon rank sum test. 

 

Functional/Imago enrichment of high and low indegree genes 
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We considered all genes with a GO (Ashburner et al. 2000) and ImaGO (Tomancak et al. 2002) 

functional annotation (n=7,495 and 5,996, respectively) and computed the indegree (number of incoming 

edges) for each gene in the transcription factor (TF) and miRNA networks. For both networks we defined 

high indegree nodes as the 1% with the highest indegree (>=20 for the TF network and >=4 for the 

miRNA network) and low indegree nodes as miRNA anti-targets (indegree=0) and the same fraction of 

nodes with lowest indegree in the TF network (80%; <=7 edges). For each GO/ImaGO category, we 

assessed over-representation and depletion with a hypergeometric P-value. 

 

Mutual Enrichment between high indegree transcriptional and miRNA targets 

We considered all genes that were either a target or a regulator in the TF and microRNA networks 

resulting in a total of 8760 nodes and defined high and low indegree sets as above. We then evaluated if 

nodes in the miRNA network with high indegree were enriched high indegree nodes of the transcriptional 

network (or vice versa) using a hypergeometric P-value. 

 

Tissue co-expression 

For each TF with available expression information (n=42; ImaGO  (Tomancak et al. 2002)), we counted 

the number of targets that was co-expressed with the TF any of the annotated tissues and the number of 

targets that was not co-expressed. The statistical significance of co-expression of a TF with its target was 

estimated using the hypergeometric distribution with p being the probability of a gene being present in 

one of the tissues in which the TF is known to be expressed, x the total number of co-expressed targets 

and n the total number of targets of the TF with known tissue expression. 

 

Network figure 

The network figure was drawn in Cytoscape (Shannon et al. 2003) to display genes (nodes) and 

regulatory connections (edges) of the 60% confidence network. We colored edges and nodes if genes 

were expressed in the same tissue according to ImaGO  (Tomancak et al. 2002). For clarity, we only show 

20 randomly picked targets per transcription factor, i.e. without influencing the fraction of colored edges. 

 

Availability 

All data and predicted transcription factor and miRNA targets are freely available at 

http://compbio.mit.edu/fly/motif-instances/. 
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Figure Legends 

Figure 1: The BLS measure (Brach Length Score) for assessing motif-conservation in many 

genomes. A. Conservation level and corresponding BLS scores for two Mef-2 motif instances. The 

BLS measure scores the total branch length of the subtree connecting the species with motif instances, as 

a fraction of the total branch length of all twelve species. As shown in these examples (Mef-2 motif: 

YTAWWWWTAR), BLS accounts for local alignment inaccuracies, gaps, motif movement, and motif 

loss. Species abbreviations used for:  Drosophila melanogaster, simulans, sechelia, yakuba, erecta, 

ananassae, persimilis, pseudoobscura, willistonii, mojavensis, virilis, and grimshawii.  B. BLS scores for 

different instance conservation scenarios. Given the pattern of presence (black) and absence (white) 

within a phylogenetic tree, BLS evaluates the total branch length of the sub-tree connecting the species 

that contain the motif: when all species are present, BLS is 100% (column A); different sets of species 

lead to different BLS scores based on their evolutionary distances – distantly-related species lead to 

higher scores as they span larger evolutionary distances (columns B,C); species that are very closely 

related to each other lead to only small incremental contributions, due to their phylogenetic redundancy 

(columns D, E); sequencing, assembly, and alignment artifacts are not penalized, such as those stemming 

from lower-coverage genomes, as redundancy of branches between close species complements BLS 

(column F). Information about sequence coverage is from (Drosophila 12 Genomes 2007) and (Richards 

et al. 2005).  

Figure 2: High-confidence recovery of individual motif instances. A. Mapping BLS scores to 

confidence values. Recovery of conserved motif instances the transcriptional repressor Snail (CAGGT) 

in promoter regions (2 kb regions upstream of transcription start sites), and the K-box miRNA 

(CTGTGAT) in 3’UTRs, at different BLS cutoffs (x-axis). Instances of shuffled control motifs (grey 

area) decrease much more rapidly than instances of real motifs (height of black curve), leading to a large 

fraction of motif instances conserved above background (black area). The motif confidence score (red 

line) is calculated as the fraction of conserved instances above background. Random motifs are selected to 

have equal frequency as real motifs at BLS=0. B. Increasing confidence values select functional motif 
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instances.  B. With increasing confidence cutoffs (x-axis), transcription factor (TF) motif instances fall 

increasingly in promoter regions (light blue), 5’UTRs (red), and introns (green), at the exclusion of 

3’UTRs (dark blue) and coding regions (yellow). In contrast, miRNA motif instances fall increasingly 

into 3’UTRs to the exclusion of promoters and other regions. Relative size of regions is normalized at 

BLS=0. C. miRNA motif instances at increasing confidence cutoffs are increasingly on the transcribed 

strand of 3’UTRs (black curve), while no such trend is seen for TF motifs (grey).  Curves are truncated 

when < 10 instances reach the respective confidence.  

Figure 3: Discovery power for motif instance prediction. A. Effect of tolerated motif movement. 

Number of recovered motif instances at 60% confidence for TF and miRNA motifs.  Left panel:  For both 

TF motifs (grey: bicoid motif, VVVBTAATCC), and miRNA motifs (black: miR-iab-4 motif, 

GTATACG), instance recovery increases until an optimal window size (500 and 400 nucleotides, 

respectively), and then decreases for larger movements, suggesting that tolerating motif movements 

increases overall discovery power. Right panel: Performance across all TF motifs (black) and all miRNA 

motifs (grey) shows improved recovery until windows of 300-500 nucleotides (for 60-80% of motifs), but 

reduced performance for larger window sizes. The performance for individual examples (left panel) 

shows a sharper peak than the overall performance across all motifs (right panel), as different window 

sizes are optimal for different motifs. B. BLS measure leads to increased sensitivity. Number of motif 

instances recovered (y-axis) at each confidence value (x-axis) for transcription factor (TF) motifs (left 

panel) and miRNA motifs (right panel). The BLS measure applied to the 12 fly genomes (blue) recovers 

more motif instances at each confidence, as compared to approaches requiring motif presence in all 

compared species (‘full’ conservation), applied to the 5 melanogaster species (red), the pairwise 

comparison of D. melanogaster and D. pseudoobscura (yellow), or the 9 Sophophora species (green). C. 

Additional species lead to increased specificity. Two measures of discovery power for the BLS measure 

applied to the 5 melanogaster group species (green), a pairwise comparison of D. melanogaster and D. 

pseudoobscura (grey), the 9 sophophora species (black), and all 12 Drosophila species (red).  Left panel:  

More TF and miRNA motifs reach 60% confidence for increasing number of genomes at larger 

evolutionary distances.  Right panel: Increasing numbers of genomes at larger evolutionary distances also 

lead to increased signal-to-noise ratio, measured as the conservation level of real motifs vs. control motifs 

at the most stringent BLS cutoff. 

 

Figure 4: Conserved motif instances identify functional in vivo targets. Functional in vivo targets were 

determined for Mef-2, Twist and Snail using ChIP-chip (Sandmann et al. 2007; Sandmann et al. 2006; 

Zeitlinger et al. 2007), and direct transcriptional targets were determined for CrebA using various assays 
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(Abrams and Andrew 2005). A. Increasing confidence values show increased enrichment for in vivo 

sites.  Fold enrichment in functional in vivo sites (y-axis) for conserved motif instances at varying 

confidence values (x-axis). Hypergeometric P-values for max fold enrichments are 4x10
-11

 for Mef-2, 

2x10
-6

 for Twist, 3x10
-10

 for Snail, and 1x10
-7

 for CrebA.  Increasing confidence levels selected functional 

in vivo sites with increased enrichment for all four regulators, showing that high conservation selects for 

functional motif instances (X=0% shows the enrichment in the absence of comparative information, i.e. 

without requiring conservation). Curves are truncated when motifs don’t reach the respective confidence 

levels. B,C,D. High-sensitivity recovery of in vivo targets for TF and miRNA regulators. Fraction of 

motifs in bound regions recovered at 60% confidence (black bars), compared to the fraction expected 

given the overall conservation of the respective regions, as assessed by control motifs using the same BLS 

cutoff (grey; suggesting preferential conservation of the corresponding TF motif instances).  B. Recovery 

of ChIP-bound motifs, across all ChIP-bound regions (C), and only those instances overlapping known 

enhancers (E). Recovery rates show high sensitivity for TF motif instances, especially when these overlap 

enhancer regions. C. Recovery of experimentally validated direct CrebA targets shows even higher 

sensitivity, likely due to the multiple lines of experimental evidence establishing them as direct targets. D. 

miRNA recovery at 80% confidence is very high. E. Non-conserved ChIP sites show reduced 

functional enrichments. Enrichment in promoter regions of muscle genes for motif instances of 

activators Twist and Mef-2, and depletion for motif instances of repressor Snail are reduced for ChIP-

bound regions for which motif instances are not conserved, suggesting they may contain a higher fraction 

of non-functional sites. The enrichment/depletion is even weaker for ChIP-bound regions without motif 

instances (all enrichments are significant with P-values between 1.1x10
-4

 and 5.1x10
-13

 except those for 

Snail). F. Conservation-inferred targets and ChIP-inferred targets show comparable functional 

enrichments. Conservation-inferred motif targets at 60% confidence (red; all P<10
-4

) show higher 

muscle-gene enrichment/depletion than ChIP-inferred targets (black). Even outside ChIP-bound regions, 

conserved motifs show comparable enrichment and depletion (blue; all P<5x10
-3

). 

Figure 5: An initial regulatory network in Drosophila.  Regulatory network with 46,525 connections 

between 83 TF and 57 miRNA motifs (circles) and their target genes (squares) at 60% confidence. If the 

regulator and its target are co-expressed in at least one tissue according to ImaGO (Tomancak et al. 

2002), the corresponding edges and nodes are colored red, otherwise they are left grey. The high fraction 

of red colored edges (46%, P=2x10
-3

) highlights the quality of the network.  Nodes with gene names and 

bold edges indicate examples of regulatory connections with evidence in the literature (see Table S4). 
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CATTTATTAT---T------ATT---AATTAATGGCGTT-----------TCGCAGC--GCTGG-C-----------------------TTTTTATTATTAACCATTATTT----

CATTTATTAT---T------ATT---AATTAATGGCGTT-----------TCGCAGC--GCTGG-CTG---------------------TGTTTATTATTTATCATTATTA----

CGTTTATTAT---T------ATC---AATTAATGGCGTT-----------TCGCAGC--GGTGG-C-----------------------TGTTTATTATTAACCATTACTA----
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CATTAATTATGAGT------ATT---AATTAATGAAGTT-----------T--------GCTCT-T-----------------------CGCTCACCGATAGCTATTTTTAATAC
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