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ABSTRACT

Knowledge about the current motion related activity of a

person is information that is required or useful for a number

of applications. Technical advances in the past years have

reduced prices for sensors capable of providing the neces-

sary input, in particular MEMS based inertial measurement

units (IMUs). In addition to a low price, unobtrusiveness is

a requirement for a activity recognition system. We achieve

this by mounting one IMU to the belt of the user. In this

work we present the design of our recognition system, in-

cluding the features computed from the raw accelerations

and turn rates as well as four different classification algo-

rithms. These are used in Bayesian techniques trained from

a semi naturalistic, labeled data set. The best classifier rec-

ognizes the activities ’Sitting’, ’Standing’, ’Walking’, ’Run-

ning’, ’Jumping’, ’Falling’ and ’Lying’ of any person with

recognition recalls and precisions between 93 and 100% ex-

cept for an only 80% recall rate for ’Falling’ as that suffers

from its very short duration.

1 INTRODUCTION

Knowledge about the current activity of a person, in partic-

ular motion related activities, is helpful in many domains:

Indoor Navigation for instance would benefit from the

knowledge about the current activity. Bayesian Location es-

timation systems like the one in [1] for instance can use this

information to select an appropriate movement model for

the person to be navigated. GPS receivers can go into idle

modes when the person is not moving, or they can change

their tracking characteristics.

In indoor positioning and navigation, the current ac-

tivity may also be used as an information source to limit

the possible locations in combination with the integration

of floor plans (see for instance [2]), just like walls act like

constraints that aid localisation. An example for this is Mi-

crosoft’s Greenfield experiment [3].

For first responders, security personnel or fire fight-

ers, knowledge about their current or recent physical activity

or status is very relevant. The controlling agency can react

more quickly to unforeseen events and is alerted if person-

nel are endangered. In domains like Ambient Assisted Liv-

ing knowledge of a person’s physical activity can be used as

early warning systems in the case, say, that they are show-

ing signs of reduced activity or unhealthy or unusual activ-

ity patterns. In the future, Smart Phones and other devices

might even adapt their appearance and interfaces not just

as a function of time and location, but also in response to

whether the user is walking or if she is sitting, for exam-

ple. One can also consider lifestyle applications that, for in-

stance, automatically adapt the music played by a portable



music player depending on time, location and activity.

In all these use cases, a set of requirements becomes

obvious. The recognition of activities has to function in

real time, without long learning phases during usage. The

system must not depend on infrastructure settings as ac-

tivity recognition via image processing would with fixed

mounted cameras, and finally, the system must be easy to

wear, lightweight, compact and unobtrusive.

The aim of this paper is to show the design and per-

formance of robust and reliable activity recognition in real-

time with a single IMU worn on the belt for the activi-

ties ’Sitting’, ’Standing’, ’Walking’, ’Running’, ’Jumping’,

’Falling’, and ’Lying’. These seven activities have been cho-

sen to serve the above described use cases. These activities

are the most general ones, and furthermore representative

for all motion related activities, as they include such with a

repetitive pattern, static activities, but also short-time activi-

ties. We also take into account activity transitions in general

– they are less relevant for applications, but helpful to sup-

port the recognition system itself.

After an overview of the related work in section 2, we

will explain in section 3 how we process the raw data to

extract signal-level features that represent characteristics for

human movements. These features can be used in various

classification algorithms, in particular Bayesian algorithms,

to infer the activity. The algorithms we used in our work are

presented in section 4. They are tested and evaluated with

real data, which is described in sections 5 and 6, before we

end with a short conclusion and outlook to further work.

2 RELATED WORK

Most of the related work on activity recognition to date is

focussed on inferring human motion and posture related ac-

tivities [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] rather than high level

activities like in [14, 15]. Recognizing motion related ac-

tivities, along with precise location, is fundamental to all

higher-level context aware computing applications, since so

much of what defines our current situation depends on, or

can be inferred from, where we are and what we are physi-

cally doing.

There are a number of motion related activities studied

in the literature [5]:

• Human motion activities like walking, walking up-

stairs and downstairs, standing or sitting.

• Sports activities such as jogging, cycling, rowing, cal-

listhenics or martial arts moves.

• Gestures such as open door or close door mainly for

industrial environments.

Several examples of the activities and sensors used in

the related work are shown in Table 1. Good results have

been reached, in particular when combining several sen-

sors from different positions on the body, which makes such

recognition systems however more obtrusive and less prac-

tically usable.

In general however results can hardly be compared as

the data sets differ, are recorded under different conditions

(see a discussion on the relevancy of these in Intille [16])

and evaluated with different mechanisms.

3 FEATURE SELECTION

To recognisee activities with an IMU, features computed

from its raw data can be used. This is because a feature is a

statistical parameter or characteristic of the signal that could

be significant for at least one activity or transition. We have

chosen the approach of using features as a stepping stone

from the signal to the estimator (see Section 4) because they

are a much more compact representation, and they also lend

themselves to interpretation as to what aspects of the signals

are relevant to our estimation problem.

3.1 SOURCES OF INFORMATION

Most related work in biomechanics (see e.g. [20]) and ac-

celerometer based recognition of human motion related ac-

tivities (see the overview in section 2) identified the norm

of the acceleration as the main source of information. How-

ever, an IMU can provide acceleration and angular velocity

regarding different reference frames as well as angular in-

formation describing the axes of every frame. The follow-

ing sections explain the reference frames and the measured

sensor information we used.

3.1.1 Global Frame

The global frame is in our case defined in reference to the

Earth and its center: The Earth gravity field influences the

measurements of the accelerometers (as a component of the

specific force). Measurements made in this reference frame

are important sources of information and are considered in

our work. Concretely, relevant information on human mo-

tion is strongly reflected in the vertical axis.

The angular velocity in the global frame, however, is

not studied as is appeared from our studies that the informa-

tion of this signal over this frame is not strongly related to

human motion.

3.1.2 Approximation of the Body Frame

The IMU we used (an Xsens MTx-28A53G25) provides the

measurements in the sensor frame (SF) and the necessary

attitude information in order to rotate them to the global

frame. However, acceleration and angular velocity relative

to the human body seem to be the most relevant informa-

tion (and not relative to an earth-fixed reference frame or

the sensor frame as the sensor can be placed on the body

in any orientation and position). The three axes of the body

frame are defined to intersect at the sensor location (see Fig-

ure 1 (a)), the z axis is directed towards the head, while the

other axes ( x and y) form the plane orthogonal to this ver-

tical axis. In order to obtain the rotation between the sensor

frame from the vertical axis in the body frame, the 3D ori-

entation computed internally in the sensor package can be

used (see Figure 1 (b)).
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(a) The ideal body frame will have its origin in the center

of mass of the human body in standing position or any other

location that does not vary over time. However, the sensor

location will define the origin of the body frame and location

depends on where the user puts the sensor.

(b) Final approximation to the body frame: The

heading of the human body cannot be estimated

unless magnetometers are used. Relevant infor-

mation, however, is only included in the norm,

and signal components in the vertical axis and the

horizontal plane of the body frame.

Figure 1. Defining the body frame at the sensor location.

3.1.3 Information Signals

Taking into account global (GF) and body (BF) frames, the

following signals are defined in this work:

• ∣a∣, the norm of the acceleration a and ∣!∣, the norm

of the angular velocity ! defined as

∣a∣ =
√

a2x + a2y + a2z

∣!∣ =
√

!2
x + !2

y + !2
z ,

(1)

where ai and !i, i ∈ {x,y,z} is the acceleration and

angular velocity respectively at the i’th-axis.

• ∣aℎorizBF
∣, horizontal acceleration in the body frame

and ∣!ℎorizBF
∣, angular velocity in the horizontal plane



of the body frame,

∣aℎorizBF
∣ =

√

a2xBF
+ a2yBF

∣!ℎorizBF
∣ =

√

!2
xBF

+ !2
yBF

,

(2)

where aiBF
and !iBF

, i ∈ {x,y} is the measured ac-

celeration and angular velocity respectively at the i’th-

axis of the body frame.

• avertBF
, vertical acceleration in the body frame and

!vertBF
, angular velocity in the vertical axis in the

body frame,

avertBF
= azBF

!vertBF
= !zBF

,
(3)

where azBF
and !zBF

are the acceleration and angu-

lar velocity at the z-axis of the body frame.

• avertGF
, vertical acceleration in the global frame,

avertGF
= azGF

, (4)

where azGF
is the acceleration measured along the z-

axis of the global frame.

3.2 FEATURE REDUCTION AND SELECTION

Our objective was to select features which represent the main

physical phenomena and signals for every activity. Every

feature should add new information to the system. In order

to select the most relevant ones, features have been com-

puted and plotted in combination with other relevant fea-

tures in a way that clusters became observable. Also the

observation of signals over time (an example is shown in

Figure 2) helped to recognize interdependencies between

features and activities.

Figure 2. Example of the evolution of some features over time for

the sequence standing, running and standing. ∣a∣ is plot-

ted for this sequence. Below, standard deviation of ∣a∣
over a running window of 256 samples, �∣a∣.

After extensive human evaluation of the signals and

features and their relevance to activities, we chose 19 fea-

tures (shown in Table 2) which we believe to be significant

and which are used for the classification algorithms.

Feature No. Definition Window size

1 MAX∣aℎorizBF
∣ 128

2 ∣aℎorizBF
∣ 128

3 �∣aℎorizBF
∣ 128

4 MAXavertBF
128

5 avertBF
128

6 �avertBF
128

7 RMSavertBF
128

8 IQR∣!ℎorizBF
∣ 128

9 avertGF
32

10 ∣a∣ 32

11 ∣a∣ 512

12 �∣a∣ 256

13 IQR∣a∣ 128

14 MFC∣a∣ 128

15 Ê(∣a∣LPF <2.85 Hz) 128

16 Ê(∣a∣BPF 1.6−4.5 Hz) 64

17 Ê(∣a∣BPF 1.6−4.5 Hz) 512

18 �avertBF
,∣a∣ 128

19 att∣aℎorizBF
∣,avertBF

64

Table 2. The set of features used for activity recognition. Most of

the features are extracted from the body frame and ∣a∣.

Features 10 – 17 are computed from the norm of the

acceleration, the signal shown in (1). Mean values over dif-

ferent window lengths are relevant for short-term and longer,

repetitive activities. The standard deviation �∣a∣ helps dis-

tinguishing between static and dynamic activities, while the

interquartile range IQR∣a∣ is relevant for the distinction be-

tween jumping and falling. The interquartile range is the

difference between the 25th and the 75th percentile (where

the 50th percentile is the median). The main frequency com-

ponent MFC∣a∣ computed by a Fast Fourier Transform, can

identify walking and running and is in particular used to dis-

tinguish falling and jumping from running. Features 15 –

17 represent the energy of the norm of the acceleration in

some particular frequency bands. While the low pass filter

in feature 15 is helpful in distinguishing between walking

and jumping or running; the band pass filters in features 16

and 17 can help us distinguish between running and jump-

ing.

Features 1 – 3 and 8 use the horizontal acceleration

in the body frame, see (2). The maximum horizontal accel-

eration MAX∣aℎorizBF
∣ helps distinguishing between static

and dynamic activities and has particularly high values for

falling. The mean value distinguishes the static activities re-

liably and the standard deviation helps to distinguish the ac-

tivities jumping, falling and running. The horizontal angular

velocity in the body range is used in the interquartile ranges

IQR!ℎorizBF
. High values are only reached for falling.

The attitude of the sensor, feature 19, takes into ac-



count the signals shown in (2) and (3). The attitude

att∣aℎorizBF
∣,avertBF

= (Δ∣aℎorizBF
∣)2 + (ΔavertBF

)2

gives us information about the attitude difference between

the current activity and the known sensor attitude during

standing.

The vertical acceleration in the body frame, the sig-

nal defined in (3), is also used for features 4 – 7 and 18.

The maximum value MAXavertBF
helps to distinguish be-

tween jumping, falling and walking. The mean value distin-

guishes standing, sitting and lying, while the standard de-

viation helps discriminating between all dynamic activities.

The root mean square RMSavertBF
is a good discriminator

for the static activities.

The correlation coefficient �avertBF
,∣a∣ (i.e. between

the accelerations defined in (1) and (3)) is used as feature

18. Walking, Running and Jumping have very high values

here, while other activities do not lead to consistent patterns.

Features 9 finally uses the vertical acceleration in the

global frame, signal (4). Its mean value is used to detect the

free fall phases during jumping and falling.

3.3 FEATURE QUANTIZATION

The feature quantization (or value discretization)) process

tries to identify meaningful value ranges of these features.

To identify these value ranges, histograms and plots in 2D

of the features have been used, together with an inspection

of the pertinent activity discrimination.

Figure 3 shows an example for a quantization. The

quantized feature is the main frequency component of ∣a∣.
The activities for which this feature is meaningful and ap-

propriate are walking, running, jumping and falling. The

histograms and the two dimensional plot of the feature sug-

gest four intervals of these states, the numerical values of

which are determined with the help of the graphical repre-

sentation.

4 CLASSIFICATION ALGORITHMS

The activity recognition system has to decide which of the

seven physical activities have effectively caused the mea-

sured values of the 19 features. This is a general classifica-

tion problem that can be dealt with by a large range of algo-

rithms, such as logics, k-nearest Neighbor approaches, Sup-

port Vector Machines (SVMs), Artificial Neural networks

(ANNs) [21], Decision Trees or Bayesian Techniques [22].

Our work applies and compares different Bayesian es-

timation techniques as they suffer least from overfitting, high

storage and processing requirements, intolerance to noise or

outliers. The following characteristics make them the most

appropriate approach:

1. Discrete Bayesian networks require little storage space

as only the conditional probability tables (CPTs) of

every node have to be stored.

2. Bayesian networks have proven successful for many

applications.

3. They may need a relatively small dataset [21].

(a)

(b)

Figure 3. Feature quantization example. The feature is the main

frequency component of ∣a∣. It mainly is relevant for

walking, running, jumping and falling. Four states can

be identified with the help of the histograms (a) and the

plots of a pair of features (b).

4. Their visual representation is easy to interpret and

hence the link to physical world is not lost.

5. They are suitable for real-time applications as the speed

of classification is high, under the constraint that there

is evidence in all nodes.

6. They are very tolerant to noise as they use the proba-

bility distribution of the data.

7. Under some conditions, and these are met here, infer-

ence is a very simple computational task.

Bayesian techniques span again a number of concrete

techniques. There are static and dynamic Bayesian Net-

works (BNs), with a number of inference algorithms for

each kind. The structure and the parameters (probabilities)

of a BN can be designed manually or learnt from an existing

dataset with dedicated algorithms. A structural simplifica-

tion of BNs is the Naı̈ve Bayes approach, assuming that all

observed features are independent of each other [23].

In our work, we compare a Naive Bayes approach with

parameters learnt from a data set, with a true BN whose pa-

rameters and structure have been learnt from the same data



set. Based on these basic BNs, we also investigate the utility

of dynamic BNs in comparison to static ones by employing

a Hidden Markov Model that underlies our discrete activity

transitions and evaluating it with a grid based filter. Learn-

ing was performed with the K2 algorithm of Cooper and

Herskovits [24] using a Log score function to rate possible

BN structures proposed by a Greedy Hill Climber.

The following sections will briefly outline the theory

behind BNs and the different classification methods in more

detail.

4.1 BAYESIAN NETWORKS

A Bayesian Network (BN) [25] is a probabilistic model con-

sisting of a Triplet (V,E, p), with a set of Random Variables

(RVs) V = {X1, X2, . . . , Xn}, a set of dependencies E =
{(Xi, Xj)∣i ∕= j, i, j ∈ V } between these RVs and a joint

probability distribution (JPD) p(V ) = P (X1, X2, . . . , Xn).
P is the product of the Conditional Probability Distribution

(CPD) of every RV p(Xi)∀Xi ∈ V . A BN must not con-

tain directed cycles. This model subsumes a great variety of

other stochastic methods, such as Hidden Markov Models or

stochastic dynamic systems [26]. It allows for inference of

knowledge being able to deal with missing or uncertain data

(as for erroneous sensors or uncertain data links) and can be

built or modified either by machine learning algorithms or

by human expertise.

Random variables represent sets of events. Thereby

they can be continuous or discrete, which has consequences

on CPDs. In the case of a continuous value range ℝ, the

CPD is a function CPD(Xi) : ℝ → [0, 1], in the case of a

discrete value range, ℝ consists of a finite number of states,

that are assigned a probability depending on the state of the

nodes which Xi depends on.

A particular interpretation of BNs are Causal Networks,

where dependencies are interpreted as causal influence. This

model makes understanding of such a network very intu-

itive, in particular with a graphical representation of the BN.

A BN can be drawn as a directed acyclic graph (DAG) like

the one in Fig. 4. These graphs take advantage of the fact

that with its explicit dependencies, a BN exploits the con-

ditional independence to represent a JPD more compactly.

Every RV represents a node or vertex in the graph, every

dependency (Xi, Xj) a directed edge from node Xi to node

Xj . This representation imposes the understanding of the

set pa(Xj) = {Xi∣∀i ∈ V ∧ (Xi, Xj) ∈ E} as the par-

ents of Xj . The definition of children of Xj cℎ(Xj) follows

similarly. Dependencies and therefore the set of parents of

all nodes help to represent the JPD more compactly:

p(V ) = p(X1, X2, . . . , Xn) =

n
∏

i=1

p(Xi∣pa(Xi)).(5)

With the structure (RVs and their dependencies en-

coded in the network structure) and the CPDs, these net-

works contain the already known information about a spe-

cific domain represented by the BN. They are a knowledge

representation and maintenance format. To incorporate cur-

rent observations about the domain to allow inference, these

can be introduced as evidence into the corresponding RV.

The observation that RV Xj = xj,1 sets p(Xj = xj,1) = 1
and p(Xj = xj,z) = 0∀z ∕= 1. In the case of discrete RVs,

this can be interpreted as ”switching” the probability tables

of children nodes to the observed columns.

An important concept for BNs is d-separation with the

”d” standing for dependence. It helps to reduce the network

to only relevant portions for given observations and a spe-

cific target RV whose state is queried. If two variables are

d-separated relative to a set of variables Z, then they are in-

dependent conditional on Z in all probability distributions

of its BN. Roughly speaking, two variables X and Y are

independent conditional on Z if knowledge about X gives

you no extra information about Y once you have knowledge

of Z [27].

More precisely: a path is a sequence of consecutive

edges including one or more nodes. A path is called blocked

or d-separated if a node on the path blocks the dependency.

This is the case if the path p and the set of observed nodes

Z are in a constellation in which

• “p contains a chain i→ m→ j or a fork i← m→ j

such that the middle node m is in Z, or”

• “p contains an inverted fork (or collider) i→ m← j

such that the middle node m is not in Z and such that

no descendant of m is in Z.”

The d-separation criterion can be summarised by: “a

node is conditionally independent of its non-descendants,

given its parents” or “a node is conditionally independent

of all other nodes in the network, given its parents, children,

and children’s parents – that is, given its Markov blanket”

[28]. This means that the Markov blanket of a node is the

only knowledge needed to predict the behavior of that node

[25]. The values of the parents and children of a node evi-

dently give information about that node. However, its chil-

dren’s parents also have to be included, because they can

be used to ”explain away´´ the node in question. For the

node Activity the Markov Blanket is shown shaded for

the exemplary BN shown in Fig. 4.

Activity

Figure 4. The Markov Blanket of the node Activity in a simpli-

fied example BN is shown in gray. It contains the node’s

parents, children and the parents of the children without

the node itself.



4.2 INFERENCE IN STATIC BAYESIAN

NETWORKS

There are many different approaches for efficient inference

in BNs, a good overview is given bei Guo in [29]. One of

the most famous algorithms for exact inference that can be

used for real-time inference is Lauritzen and Spiegelhalter’s

clique-tree propagation algorithm called Probability Prop-

agation in Trees of Clusters (PPTC). It takes advantage of

proven fast inference algorithms in tree-like structured BNs

[30], but transformation in this structure still takes exponen-

tial time in the number of nodes of the BN. The general case

of inference in BN is proven to be NP hard.

The problem of exact inference can be simplified if the

required probability p(X∣e) needs to be computed of a sin-

gle RV Xtarget whose Markov blanket carries evidence in

all its nodes. As this is the fortunate case in the problem pre-

sented in this paper, all values of features are known at the

same time, because we are calculating the features from the

IMU signals. The classification problem is now simplified

to infer

argimax[p(Xtarget,i∣eMB)], (6)

where eMB is the evidence of all RVs in the Markov blanket.

Using the Bayesian theorem,

p(Xtarget∣eMB) =
p(Xtarget, eMB)

p(eMB)
,, (7)

where p(eMB) is constant for all the states of the target

node, so the problem is simplified to compute

argimax[p(Xtarget,i, eMB)] =

= argimax(p(acti, f1, f2...fM )) ,
(8)

where acti is the RV for Activity (jumping, falling, walk-

ing,...), and the features fi (1 ≤ i ≤ 19) in our case repre-

sent evidence eMB .

p(acti, f1, f2...fM , ) can be calculated multiplying the

correspondent value of the CPTs as denoted in Equation 5.

Figure 5. Naı̈ve Bayes approach for activity recognition. The ac-

tivity the user is performing is the cause of the observa-

tion of the features.

Classification with Naı̈ve Bayes BNs, like the one shown

in Figure 5, can make use of the independence assump-

tion when calculating argimax(p(acti∣f1, f2...fM )). As

p(f1, f2...fM ) is constant for all the activities and if we as-

sume that all features are independent conditioned on Activity,

argimax(p(acti∣f1, f2...fM )) =

= argimax(p(f1, f2...fM ∣act
i)p(acti))

= argimax(

M
∏

j=1

p(fj ∣act
i) ⋅ p(acti)).

(9)

Hence classification has to infer the activity that max-

imizes
∏M

j=1
p(fj ∣act

i) ⋅ p(acti), where p(fj ∣act
i) is learnt

from the data set and p(acti) is the prior probability, in our

case set manually to values given in Table 3.

As all features carry evidence, p(acti, f1, f2...fM ) can

be calculated immediately and the most likely activity which

maximizes this probability can be identified directly.

4.3 DYNAMIC BAYESIAN NETWORKS

In most cases, the last activity a person has performed in-

fluences their current activity. For instance, if somebody is

currently lying, the most probable activity he or she will be

performing immediately afterwards is getting up or still ly-

ing, but usually not falling and certainly not running. This

knowledge can provide valuable input for activity recogni-

tion, since it constrains the estimated sequence of activities

to one which is likely. We can say that estimating the ac-

tivity at discrete time instance t is aided by the inference of

previous activities.

Figure 6 shows a Hidden Markov Model (HMM) that

models this process. A Hidden Markov Model of first or-

der is the simplest case of a Dynamic Bayesian Network,

which has one discrete hidden node and one observed node

per time slot. Feature values are observed (and therefore

called O) during the current user’s activity. The only in-

fluence from a time slot t to a time slot t + 1 is the cur-

rent activity the user is performing. Periodic evidence by

features disclose the probabilities of every activity through

Bayesian network inference, but these probabilities are also

modified depending on the probabilities of the last activities

performed. One can think of each time slice of Figure 6 to

comprise a BN such as that shown in Figure 4 or Figure 5,

with an additional arrow from the previous activity pointing

to the current activity (Ot contains all observed features at

that time instance t).

This first-order HMM for the activity recognition can

be characterized by

� ∼ (A,B, �), (10)

where:

• A = {aij ∣aij = p(actjt+1∣act
i
t), 1 ≤ i, j ≤ N} is the

state transition probability distribution or transition

model. A will be represented as a matrix and is given

in Table 4.

• N is the number of states of the hidden variable which

correspond to the different activities. The individual

states at time t are actt = act1t , act
2
t , ..., act

N
t . Activ-

ities are considered as hidden because they cannot be

observed directly.



Sitting Standing Walking Running Jumping Falling Lying Up & Down

0.195 0.2435 0.409 0.001 0.001 0.0005 0.14 0.01

Table 3. Prior probabilities of the node Activity assumed in this work.

Figure 6. Hidden Markov Model of activity transitions in which

p(actt∣actt−1) were manually configured by expert

knowledge and p(Ot∣act
i

t, �) are given by the under-

lying Bayesian network.

• B = {bj ∣bj = p(Ot∣act
j
t ), 1 ≤ j ≤ N} is the ob-

servation symbol probability distribution in state j,

defined by the measurement model in the underlying

Bayesian network.

• O are the observation symbols which represent the

observable physical or calculated output [31]. An ob-

servation symbol for a single point in time is in our

case given by a vector with values for all features

f1, f2, ..., fM computed from the raw sensor data. The

vector of features is common for all the hidden states

and can be denoted Ot = (f1,t, f2,t, ..., fM,t), where

fi,t, 1 ≤ i ≤M is the value of the feature i at time t.

• � = {�i} is the initial state distribution, where �i =
p(acti0) is the prior probability, 1 ≤ i ≤ N (see Ta-

ble 3; alternatively we can initialize inference with a

known, defined activity such as standing).

4.4 INFERENCE IN DYNAMIC BAYESIAN

NETWORKS WITH A GRID BASED FILTER

Inference in a HMM such as that in Figure 6 is the estima-

tion of the most probable hidden state at time t given the

past and current observations O1:t = O1, O2, ..., Ot as well

as the model �, argimax(p(actit∣O1, O2, ..., Ot, �)).
As in our system the hidden state space has a finite

number of states (i.e. activities), grid based methods can

be applied providing an optimal estimation of the posterior

probability density function p(actt∣O1:t, �). Like the gen-

eral optimal recursive Bayesian filter, the grid based filter

consists of the prediction and update steps. The correspond-

ing equations adapted to the HMM for activity recognition

are the following:

• Prediction:

p(actt∣O1:t−1, �) =
N
∑

i=1

wi
t∣t−1�(actt−act

i
t),(11)

• Update:

p(actt∣O1:t, �) =

N
∑

i=1

wi
t∣t�(actt − actit), (12)

where

wi
t∣t−1 ≜

N
∑

j=1

w
j

t−1∣t−1
p(actit∣act

j
t−1)

wi
t∣t ≜

wi
t∣t−1

p(Ot∣act
i
t, �)

∑N

j=1
w

j

t∣t−1
p(Ot∣act

j
t , �)

.

(13)

Once the posterior probability is estimated, the most

probable activity is given by the state with the maximum

probability.

5 ACQUISITION OF TEST DATA

A total of 16 people, 6 females and 10 males aged between

23 and 50 years, of different height, weight and constitu-

tion participated in the acquisition of the test data set. They

were all asked to follow a schedule of which activities to

perform and in which order, to allow us to cover all activi-

ties. Test candidates were asked to execute them in their per-

sonal style without a strict choreography. They even were

encouraged to perform the same activities differently and

to sometimes perform these activities in such as way that a

human observer could just about identify them accurately.

Data were recorded in indoor and outdoor environ-

ment under semi-naturalistic conditions. The human ob-

server was carrying a laptop computer to which the sensor

was mounted. This person was responsible for the label-

ing with a dedicated graphical application. The sensor was

placed on the belt of the test candidate either on the right or

the left part of the body. The data set comprises all different

sensor positions. In order to check orientation performance

of the sensor, test candidates performed their activities also

with different headings.

The final data set contains over 4 hours and 30 min-

utes of activity data. It is online and freely accessible un-

der http://www.kn-s.dlr.de/activity/. Table

5 shows the exact amount of recorded data per activity.

6 EVALUATION

This section first compares (in subsection 6.1) the four dif-

ferent classifiers described in Section 4 using recorded IMU

raw data of two subjects. These recordings had not been

included in the training data used to learn the BN.

http://www.kn-s.dlr.de/activity/
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Activity Duration (minutes)

Standing 107

Sitting 55

Lying 25

Walking 70

Running 15

Jumping 7

Falling 2

Table 5. Constitution of the data set per activities.

To evaluate the performance of the classifiers, we use

precision and recall measures, see [32].Subsequently, in sub-

section 6.2 we evaluate the implemented HW and SW sys-

tem with our requirement that activities have to be recog-

nized in real time.
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Figure 7. Information flow of the raw data to the finally recog-

nised activity

The complete system implementing the activity recog-

nition applies the information flow explained in Figure 7.

The acceleration and turn rate data in 3D and the rotation

matrix are the input to the recognition algorithm that first

computes the basic signals. Using those signals, the features

are computed. These (and those signals which are used di-

rectly as features without any further computation) are input

to the static classifiers estimating the current activity. In the

case of dynamic inference, this estimate is then used in the

dynamic classifier, determining the most probable current

activity.

The structure of the learnt Bayesian network used in

the classifiers can be seen in Figure 8. It was trained with the

complete data set that was collected as described in Section

5 with evidence samples and ground-truth labeling provided

at 4 Hz.

Classifying at 4 Hz proved to be sensible as a trade off

between accuracy and resource consumption. As the min-

imum duration of one activity is around one second, four

classifications and therefore four feature computations per

second are sufficient to not miss significant phases of any

activity. Moreover, additional investigations have shown

that classification with higher frequencies does not change

precision or recall significantly.

6.1 STATIC VERSUS DYNAMIC INFERENCE

This section will compare the four approaches. Therefore

we use the labeled data of two colleagues, Emil and Sinja,



Figure 8. Structure of the learnt Bayesian network. All features

are inside the Markov Blanket of the node activity.

and compare the labels with the output of the four approaches

for each evaluation, i.e. four times per second.

The evaluation of the activities standing, sitting and

standing of Emil are shown in Figure 9. As the distinction

between standing and sitting is based only on the attitude

of the sensor – which depends again on the particular way

the subject is sitting – the dynamic estimation improves the

result significantly in this case.

The evaluation of an example of the sequence walking,

running, jumping and standing is shown in Figure 10. On

the one hand, the distinction of running and jumping is im-

proved by the approach based on the unrestricted Bayesian

network. On the other hand, walking and running are not

confused by Naı̈ve Bayes, but the unrestricted Bayesian net-

work approach provides good results as well as soon as the

dynamic information is included.

An exemplary sequence walking, falling and lying is

shown in Figure 11. All four approaches work well in gen-

eral. It is important to point out, however, that the dura-

tion of falling (at 166 seconds) is constantly over-estimated,

especially by the Naı̈ve Bayes estimators, where falling is

estimated to extend to the 168s time frame.

Figure 12 shows promising classification results in terms

of the recall and precision criteria. It illustrates clearly the

advantages of the approaches with the full, learnt BN as op-

posed to just the Naı̈ve Bayes approaches. Although the

system is able to recognize every activity at some point of

its duration, most activities are misclassified at their begin-

ning, which affects the results in terms of precision and re-

call. Particularly visible are these effect for short-time ac-

tivities. It is caused by the sliding window containing data

samples that resulted during the previous activity. In activ-

ities like falling, which last for about 3 to 5 evidence sam-
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(a) Static Naı̈ve Bayes estimator
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(b) Dynamic Naı̈ve Bayes estimator
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(c) Estimator based on static, learnt BN
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Figure 9. Inference results for an example of the sequence stand-

ing, sitting and standing. The thin, colored line at

the top of these figures depicts the ground truth, col-

ors identify the current activity. Below the ground truth

the estimated probabilities of every activity are plotted

(squares).

ples (roughly one second), our effective recognition delay

of about 2 samples (see below) decreases the precision and

recall of the system significantly. In all figures 9, 10, and

11 we can identify this recognition delay. Another factor

possibly degrading the results originates from the manual

labeling of the test data, which includes human error, partic-

ularly in terms of accurately labeling the transitions between

activities.

To quantify the recognition delay of the system, re-

member that most of the features of the final set are defined

for a window length of 128 samples (or 1.28 seconds). It is

sensible to postulate that at least the 50% of the window

should be associated with the current activity in order to

achieve an accurate inference result. 50% of the samples
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(b) Dynamic Naı̈ve Bayes estimator
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(c) Estimator based on static, learnt BN
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(d) Dynamic Estimator based on learnt BN

Figure 10. Inference results of the sequence walking, running,

jumping and standing. The thin, colored line at the

top of these figures depicts the ground truth, colors

identify the current activity. Below the ground truth

the estimated probabilities of every activity are plotted

(squares).

of a window of 128 samples implies a recognition delay of

at least 64 samples or 0.64 seconds (at a sample frequency

of 100 Hz). If evidence is computed every 0.25 seconds, the

recognition delay can be approximated to be two evidence

samples. Taking this into account, recall and precision for

every activity are shown in Table 6 for the static and the

dynamic approach with the learnt BN.

Table 6 shows that the dynamic approach leads to bet-

ter recall rates. The dynamic approach also improves preci-

sion (specially for falling) in most of the activities except for

jumping and sitting. Taking into account the recognition de-

lay, all activities achieve recall rates higher than 93%. The

system’s accuracy for transitions (up and down) is not eval-

uated here, as they were not a target for our approach, but
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(a) Static Naı̈ve Bayes estimator
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(b) Dynamic Naı̈ve Bayes estimator
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(c) Estimator based on static, learnt BN
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(d) Dynamic Estimator based on learnt BN

Figure 11. Detail of the inference results of walking, falling and

lying. The thin, colored line at the top of these figures

depicts the ground truth, colors identify the current ac-

tivity. Below the ground truth the estimated probabili-

ties of every activity are plotted (squares).

were only used as additional states to improve the dynamic

inference.

6.2 COMPUTATION TIME

To measure the execution time, feature computation and in-

ference were repeated 780 times. The evaluation platform

was a PC with Intel Core 2 Duo microprocessor, E8400, at

3.00 GHz with 2 GB RAM running Windows XP.

The results for all classifiers which were implemented

in Java are shown in Table 7 together with the length of

feature computation, in order to compare the complexity of

these processes. In this table, the 25th percentile, the 50th

percentile, the 75th percentile, the mean, the minimum and

the maximum of the execution times obtained are given.

The feature computation is not time-consuming. The dif-



Static unrestricted Bayesian network recognition algorithm

Sitting Standing Walking Running Jumping Falling Lying

Recall 0.99 0.96 1 0.69 0.66 1 0.99

Precision 0.99 0.98 0.94 1 1 0.57 1

Dynamic unrestricted Bayesian network recognition algorithm

Sitting Standing Walking Running Jumping Falling Lying

Recall 1 0.98 1 0.93 0.93 1 0.98

Precision 0.97 1 0.98 1 0.93 0.8 1

Table 6. Precision and recall for static and dynamic inference in the learnt Bayesian network considering the recognition delay of 0.5 seconds.
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Figure 12. Recall and precision for every activity and every recog-

nition algorithm. The approaches using the learnt BN

structure outperform the Naı̈ve Bayes classifiers.

ference between the inference of Naı̈ve Bayes and the un-

restricted Bayesian network considering static and dynamic

approaches is notable. Inference based on the Naı̈ve Bayes

network takes from 0.3 to 0.4 ms. In contrast, using the

learnt Bayesian network, inference takes from 7 to 8 ms,

due to the complexity of this network. The complexity of a

BN is determined by the number of its nodes and the size

of their corresponding CPTs. The memory size of the learnt

Bayesian network and the Naı̈ve Bayes network shown in

Table 8 demonstrate the difference of complexity of both

networks and explain the significant inference differences.

Inference based on the Grid-based filter for the dy-

namic approach takes around 1 up to 2 ms more than the

static approach. Dealing with the HMM increases the in-

ference time, but the main computational cost in terms of

execution time comes from the Bayesian network used.

BN Memory size

Naı̈ve Bayes network 33.3 KB

Learnt Bayesian network 3.62 MB

Table 8. Memory size of the Bayesian networks after the training

process (unrestricted Bayesian network) and for the as-

sumption of Naı̈ve Bayes.

This evaluation shows that activities can be recognized

in real time. Using the grid based filter for classification

which has proven best in section 6.1, the recognition time

amounts in total to approximately 10 ms, which allows for

classification with 100 Hz, the maximum rate of our IMU.

Given that we seen that classification with 4 Hz already

yields our excellent results, activity recognition in real time

is even realizable on processors with less resources or run-

ning as a background process.

7 CONCLUSION AND OUTLOOK

In this paper we have demonstrated how to design a com-

plete activity recognition system based on Bayesian tech-

niques using acceleration and turn rate data from an IMU

worn at the belt. The presented approach is unobtrusive, re-

liable, shows high precision and recall and can be evaluated

in real time.

Our present set-up assumes a placement of the sen-

sor array on the belt and hence once can assume that sensor

orientation does not change over time. In terms of other

sensor placements, we suggest that algorithms might be im-

plemented that estimate the current orientation of the device

with respect to the human body to account for shifts in ori-

entation. A scenario where a mobile phone is carried in the

pocket could be a very useful one. It is conceivable that we

calibrate for different orientations during periods of walk-

ing or running where we can assume that the person is in an

upright pose.

In the future we want to fuse this activity information

with pedestrian positioning systems for indoor and outdoor

environments to improve the actual positioning accuracy.



Operation Q1 (ms) Q2 (ms) Q3 (ms) � (ms) Min. Max.

Feature computation 1.43 1.45 1.47 1.5 1.4 4.1

Static Naı̈ve Bayes estimator 0.31 0.319 0.32 0.34 0.29 2.17
Dynamic Naı̈ve Bayes estimator 0.33 0.34 0.35 0.36 0.3 3.26

Estimator based on static, learnt BN 5.6 7.2 8.3 7.2 3.9 27.7
Dynamic Estimator for the learnt BN 6 7.7 9 7.7 4.1 18

Table 7. Execution times of feature computation and inference process from 780 runs on an Intel Core 2 Duo microprocessor E8400,at 3.00

GHz with 2 GB RAM. The 25th percentile, the 50th percentile, the 75th percentile, the mean, the minimum and the maximum of the

execution times for the feature computation and inference process based on Naı̈ve Bayes and the learnt Bayesian network show, that

inference with one estimator usually stay below 10 ms.

Therefore additional activities may have to be included. In

particular ’climbing stairs’ could be useful in 3D position-

ing scenarios.

Moreover, the physical activity information can be used

together with other information to infer higher level infor-

mation, e.g. that a person is giving a presentation, cooking,

attending a meeting or in a dangerous situation.
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