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Abstract

We present a techniquc for the rapid and reliable prediction of linear functional outputs of ellip-

tic (and parabolic) partial differential equations with affine parameter dependence. The essential

components are (i) (provably) rapidly convergent global reduced basis approximations - Calm'kin

projection onto a space I'VN spanned by solutions of the governing partial differential equation

at N selected points in parameter space; (ii) a posterioT"i error estimation -- relaxations of the

error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the

outputs of interest; and (iii) off-line/on-line computational procedures -- methods which decouple

the generation and projection stages of the approximation process. The operation count for the

on-line stage -- in which, given a new parameter value, we calculate the output of interest and

associated error bound -- depends only on N (typically very small) and the parametric complexity

of the problem; the method is thus ideally suited for the repeated and rapid evaluations required

in the context of parameter estimation, design, optimization, and real-time control.

1 Introduction

The optimization, control, and characterization of an engineering component or system requires tlle

prediction of certain "quantities of interest," or performance metrics, which we shall denote outputs --

for example deflections, maximum stresses, maximum temperatures, heat transfer rates, fiowrates, or

lift and drags. These outputs are typically expressed as flmctionals of field variables associated with

a parametrized partial differential equation which describes the physical behavior of the cmnponent or

system. The parameters, which we shall denote inputs, serve to identify a particular "configuration"

of the component: these inputs may represent design or decision variables, such as geometry -- for

example, in optimization studies; control variables, such as actuator power -- for example in real-

time applications; or characterization variables, such as physical properties -- for example in inverse

problems. We thus arrive at an implicit input-output relationship, evaluation of which demands solution

of the underlying partial differential equation.

Our goal is the development of computational methods that permit rapid and reliable evahmtion

of this partial-differential-equation-induced input-output relationship in the limit of many queries --

that is, in the design, optimization, control, and characterization contexts. The "many query" limit has

certainly received considerable attention: from "fast loads" or multiple right-hand side notions (e.g., [7,

9]) to matrix perturbation theories (e.g., [1, 28]) to continuation methods (e.g., [2, 23]). Our particular

approach is based on the reduced-basis method, first introduced in the late 1970s for nonlinear structural

analysis {3, 19], and subsequently developed more broadly in the 1980s and 1990s [5, 6, 10, 21, 22, 24].

The reduced-basis method recognizes that the field variable is not, in fact, some arbitrary member

of the infinite-dimensional solution space associated with the partial differential equation; rather, it

resides, or "evolves," on a much lower-dimensional manifold induced by the parametric dependence.

The reduced-basis approach as earlier articulated is local in parameter space in both practice and

theory. To wit, Lagrangian or Taylor approximation spaces for the low-dimensional manifold are

typically defined relative to a particular parameter point; and the associated a priori convergence theory
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relies olt asymptotic arguments ill sufficiently small neighborhoods [10]. As a result, tile computational

ilnf)rovemcnts .... relative to conventional (say) finite element approximation .... are often quite modest

[22]. Our work differs fi'om these earlier efforts in several important ways: first, we develop (in some

cases, provably) global approximation spaces; second, we introduce rigorous a posteriori error estimators;

and third, we exploit off-line/on-lir_e computational decompositions (see [5] for an earlier application

o[ this strategy within the reduced -basis context). These three ingredients allow us for the restricted

but important class of "parameter-afflne" problems --- to reliably decouple the generation and projection

stages of reduced..-basis approxilnation, thereby effecting computational economics of several orders of

ntagnitude.

In this expository review paper we focus on these new ingredients. In Section 2 we introduce an

abstract problem fornmlation and several illustrative instantiations. In Section 3 we describe, for coer-

cive symmetric problems and "conlpliant" outputs, the reduced-basis approximation; and in Section 4

we present the associated a postcriori error estimation procedures. In Section 5 we consider the exten-

sion of our approach to noneompliant outputs and nonsymmetric operators; eigcnvalue problems; and,

more briefly, noncoercive operators, parabolic equations, and non-at'line problems. A description of the

system architecture in which these numerical objects reside may be found in [26].

2 Problem Statement

2.1 Abstract Formulation

We consider a suitably regular domain ft C IR a, d = 1, 2, or 3, and associated function space X c

tt1(17), whe,'e Hi(g2) = {v E L2(Ft), Vv E (L2(_)))d}, and L2(f2) is the space of square integrable

functions over fL The inner product and norm associated with X are given by (-, ")x and II'ltx = (', .)_/2,

respectively. We also define a p_u'ameter set 7) E ItZP, a particular point in which will be denoted #.

Note that f_ does not depend on the parameter.

We then introduce a bilinear fornl a: X × X x "_ --+ JR, and linear forms f: X --_ IR, g: X -+ IlL.

We shall assume that a is continuous, a(w,v;#) < _/(#) Ilwltx II_llx <- _o IIv0iix il_,IIx, vt, e 1);

furthernmre, in Sections 3 and 4, we assume that a is coercive,

0 < ao < c_(#) = inf a(w,w;#) V# E l), (1)

and symmetric, a(w, v; t*) = a(v, w; tz), Vw, v E X, V/_ E D. We also require that our linear forms f and

g be bounded; in Sections a and 4 we additionally assume a "compliant" output, f(v) = g(v), gv E_ X.

We shall also make certain assmnptions on the parametric dependence of a, f, and g. In particular,

we shall suppose that, for some finite (preferably small) integer Q, a may be expressed as

Q

q=l

for solne aq: 19 -_ _-( and aq: X x X -_ IR, q = i,.,., Q, This "separability," or "affine," assumption

on the parameter dependence is crucial to computational efficiency; however, certain relaxations are

possible -- see Section 5.a.a. For simplicity of exposition, we assume that f and g do not depend on #;

in actual practice, affine dependence is readily admitted.

Our abstract problem statement is then: for any # E 79, find s(#) E R given by

s(.) = e(u(,)), (3)

where u(/a) E X is the solution of

a(_(u),v;_) : :(_), v _ e x. (4)

In the language of the introduction, a is our partial differential equation (in weak form), # is our

parameter, u(#) is our field variable, and s(#) is our output. For simplicity of exposition, we may on

occasion suppress the explicit dependence on It.
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2.2 Particular Instantiations

We indicate here a few instantiations of the abstract fornmlation; these will serve to illustrate the

methods (for coercive, symmetric problems) of Sect.io_s 3 and 4.

2.2.1 A Thermal Fin
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Figure 1: Two- and Three-Dimensional Thermal Fins.

In this example we eonsidcr the two- and three-dimensional thermal fins shown in Figure 1; these

examples may be (interactively) accessed on our web site 1. The fins consist of a vertical central "post"

of conductivity k0 and four horizontal "subfins" of conductivity _ci, i = 1,... ,4. The fins conduct

heat from a prescribed uniform flux source _" at the root f'_oot through the post and large-surface-

area subfins to the surrounding flowing air; the latter is characterized by a sink temperature 50 and

prescribed heat transfer coefficient h. The physical model is simple conduction: the temperature field

in the fin, _., satisfies

4

where _i is that part of the domain with conductivity _i and 0gt denotes the boundary of (_.

We now (i) nondimensionalize the weak equations (5), and (ii) apply a continuous piecewise-affine

transformation fl'om _t to a fixed (t_-independent) reference domain f2 [151. The abstract problem

statelnent (4) is then recovered for t_ = {k_, k_, kS, k4, Bi, L, t}, _D = [0.1,10.0] 4 x [0.01,1.0] x

[2.0, 3.0] x [0.1 x 0.5], and P = 7; here k_,..., k 4 are the thermal eonductivities of the "subfins" (see

Figure 1) relative to the thermal conductivity of the fin base; Bi is a nondimensional form of the heat

transfer coefficient; and, L, t are the length and thickness of each of the "subfins" relative to the length

of the fin root f'_oot. It is readily verified that a is continuous, coercive, and symmetric; and that the

"affine" assumption (2) obtains for Q = 16 (two-dimensional case) and Q = 25 (three-dimensional case).

Note that the geometric variations are reflected, via the mapping, in the _Tq(#).

For our output of interest, s(#), we consider the average temperature of the root of the fin nondi-

mensionalized relative to _u _0 and the length of the fin root. This output may be expressed ms

tFIN2D: http://augustine.ndt.edu/fin2d/fin2d.pdf and F,,3D: http://augustine.mit.edu/fin3d_l/fin3d_l.Pdf



2 PROBLE,VI STATEMENT 4

s(p) = _'(,(/,)), where f(v) = fr ..... v. It is readily shown that this output flmctional is bounded and

also "compliant": ['(c,) = f(v), Vv E X.

2.2.2 A Truss Structure

e° //_/r__x@'/_x_zf_1)7/_:::_A_N---'TAN-----TAN--'-7k--'--Ti_--_i--_O)] // ..................... a X[_//-

Figure 2: A Truss Structure

We consider a prismatic microtruss structure [8, 27] shown ill Figure 2; this example may be (interac-

lively) accessed on our web site _. The truss consists of a frame (upper and lower faces, in dark gray)

and a core (trusses and middle sheet, in light gray). The structure transmits a force per unit depth

/v uniformly distributed over the tip of the middle sheet f'a through the truss system to the fixed left

wall I"a. The physical model is simple plane strain (two-dimensional) linear elasticity: the displacement

field ui, i = 1,2, satisfies

O_--2-iE. - Ofi--_k ( t_ )

where _ is the truss domain, E, jkl is tile elasticity tensor, and 2 refers to the set of functions in H j ({_)

which vauish on ['0- We assume summation over repeated indices.

We now (i) nondimensionalize the weak equations (6), and (ii) apply a continuous piecewise-a[fine

transformation fl'om _ to a fixed (t_-indcpendant) reference domain ft. The abstract problem state-

ment (4) is then recovered for # = {tf, tt, H, 0}, 79 = [0.08, 1.0] x [0.2, 2.0] x [4.0, 10.0] x [30.0 °, 60.0°],

and P = 4; tmre *f and tt are the thicknesses of tim frame and trusses (normalized relative to {_),

respectively; H is tile total height of the microtruss (normalized relative to t¢); and 0 is the aJlgle be-

tween the trusses and the faces. The Poisson's ratio, v = 0.3, and the frame and core Young's rnoduli,

Ef = 75 GPa and Ec = 200 GPa, respectively, m'e held fixed. It is readily verified that a is continuous,

coercive, and synnnetric; and that the "attlne" assmnption (2) obtains for Q = 44.

Our outputs of interest are (i) the average downward deflection (compliance) at the core tip, F3,

nondimensionalized by _'/F'I; and (ii) the average normal stress across the critical (yield) section

denoted F[ in Figure 2. These compliance a_M noncompliance outputs can be expressed as sl(#) =

£l(u(_)) and s2(#) = g2(u(#)), respectively, where gl(v) = -fpa v2, and

1 /o OXi r, Ouke_(_)= V__... -gi2_j"_'j_'o0_-7

tue bounded linear functionals; here Xi is any suitably smooth function in H*(f_ s) such that Xifii = 1

on F_ and Xifii = 0 on F_, where fi is the unit normal. Note that sl(#) is a compliant output, whereas

s2(#) is "noneompliant."

2TRuss: http://auguBtine .mit. edu/simple_truss/simpl__tr_ss, pdf
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3 Reduced-Basis Approach

We recall that in this section, as well as in Section 4, we. assume that a is continuous, coercive, synmmtric,

and affine in/* -- see (2); and that g(v) = f(v), which we denote. "e.ontpliance."

3.1 Reduced-Basis Approximation

We first introduce a sample in parameter space, SN = {P4,...,#N}, where #i E D, i = 1,..., N; see

Section 3.2.2 for a brief discussion of point distribution. We then define our Lagrangiml [22] reduced

b_usis approximation space as IVN -- span {_,_ 7_ u(iz,_), n = 1,..., N}, where u(t_n) E X is the solution

to (4) for tt = > .... In actual practice, u(tt,_) is replaced by an appropriate finite element approximation

on a suitably fine truth mesh; we shall discuss the _soeiated computational implications in Section 3.3.

Our reduced- basis approximation is then: for any # E 23, find sf(tt) = g(UN(lt)), where _.tN(t0 E I,VN
is the solution of

a(uN(_),v;fd = e(v), V _, < WN. (r)

Non-Galerkin projections are briefly described in Section 5.3.1.

3.2 A Priori Convergence Theory

3.2.1 Optimality

We consider here the convergence rate of UN(tZ) ---+u(#) and sN(/x) ---+ s(#) as N _ co. 'Ib begin, it is

standard to demonstrate optimality of uN(_t) in the sense that

i[u(/._) -- tgN(//)IIX (/7(/*) inf I[*z(¢*) -- WNIIX . (8)

(We note that, in the coercive case, stability of our ("conforming") discrete approximation is not an issue;

the noncoercive case is decidedly more delicate (see Section 5.3.1).) Furthermore, for our compliance

output,

s(#) =SN(#)+e(U--UN)=SN(#)+a(u,U--UN;#)=SN(I_)+a(U--UN,U--UN;#) (9)

fl'om symmetry and Clalerkin orthogonMity. It follows that s(/x) - aN (/*) converges as the square of the

error in the best approximation and, flom coercivity, that sN (/_) is a lower bound for s(t @

3.2.2 Best Approximation

It now remains to bound the dependence of the error in the best approximation as a function of N. At

present, the theory is restricted to the case in which P = 1, 7P = [0,/-amp×I, and

a(w, v; 1*) = ao(w, v) + #al (w, v), (10)

where a0 is continuous, coercive, and symmetric, and al is continuous, positive semi-definite (at (w, w) >_

0, Vw E X), and symmetric. This model problem (10) is rather broadly relevant, for example to variable

orthotropic conductivity, variable rectilinear geometry, variable piecewise-constant conductivity, and

variable Robin boundary conditions.

We now suppose that the tz,_, r_ = 1,..., N, are logarithmically distributed in the sense that

,_-1 In (X/h,,,,x + 1) n=l,...,N, (11)In (_ .,_ + l) = N---_-1

where A is an upper bound for the maximum eigenvalue of al relative to a0. (Note X is perforce bounded

thanks to our assumption of continuity and coercivity; the possibility of a continuous spectrum does

not, in practice, pose any problems.) We can then prove [18] that, for N > Ncdt -z e ln(X # ..... + 1),

inf II'_(_)-_N(a0llx < (l+Izmax_)Nu(0)[lx exp _-_-) V/_ED. (12)wN C=V/N --
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x ls(_)-<_,(#)l/s(#)
1_0- ]_-_i-_ i-_=:_-_

20 1.29 x 10 a

30 5.37 x 10 -4

40 8.00 x 10 -s

50 3.97 x 10 -5

60 1.34 x t0 -5

70 8.10 x 10 -6

80 2.56 x 10 -6

9.36x lO-a I 2,76 t

4.25×lO- r z68 I
s.30×10-_ I 2.s6 t
2.97x 10-4 I 2.72 I

1.27×10-' { 2.54 I
7.72×10- 1 2.53 I
2.24× lo- 1 2.59 I

Table 1: Error, error bouud (Method I), and effectivity as a function of N, at a particular representative

point l* E D, for the two-dimensional thermal fill problem (compliant output).

We observe exponential convergence, unifornfly (globally) for all # in "D, with only very weak (loga-

rithmic) dependence on tim range of the parameter (/, ..... ). {Note the constants in (12) _,re for the

particular case in which (., ')x = a0(., .).)

The proof exploits a parameter-space (non-polynomial) interpolant as a surrogate for tlm Galerkin

approximation. As a result, the bound is not always "sharp": we observe many cases in which the

Oalerkin projection is considerably better than the associated interpolant; optimality (8) chooses to

"illuminate" only certain points #,, automatically selecting a best "sub-approximation" amongst all

(combinatorially many) possibilities -- we thus see why reduced-basis state-space approximation of

s(#) via u(10 is preferred to simple parameter-space interpolation of s(/*) ("eommcting the dots") via

(p,,,s(p,,)) pairs. We note, however, that the logarithmic point distribution (11) implicated by our

interpolant based arguments is not simply an artifact of the proof: in nmnerous numerical tests, the

logarithmic distribution performs considerably (and in many cases, provably) better than other more

obvious candidates, in particular for large ranges of the parameter. Fortunately, the convergence rate

is not too sensitive to point selection: the theory only requires a log "on the average" distribution [18];

and, in practice, _ need not be a sharp upper bound.

The result (12) is certainly tied to the particular form (10) and associated regularity of u(#). How-

ever, we do observe similar exponential behavior for more general operators; and, most importantly, the

exponential convergence rate degrades only very slowly with increasing pm'ameter dimension, P. We

present in Table 1 the error Is(#) - sN(Ix)l/s(#) as a function of N, at a partienlar representative point

# in D, for the two-dinlensional thermal fin probleln of Section 2.2.1; we present similar data in Ta-

ble 2 for the truss problem of Section 2.2.2. In both c_es, siiiee tensor-product grids are prohibitively

profligate as P increases, the /,,, are chosen "log-randomly" over D: we sample from a multivari_tte

uniform probability density on log(p). IVe observe that, for both the thermal fin (P = 7) and truss

(P = 4) p,oblems, the error is remarkably small even for very small N; and that, in both cases, very

rapid convergence obtains as N -_ oo. We do not yet have any theory for P > 1. But certainly the

Galerkin optimality play's a central role, automatically selecting "appropriate" scattered-data subsets

of SN and associated "good" weights so as to mitigate the curse of dimensionality as P increases; and

the log-random point distribution is also important -- for example, for the truss problem of Table 2, a

non-lo9aHthmic uniform random point distribution for SN yields errors which are larger by fact.ors of

20 and 10 for N = 30 and 80, respectively.

3.3 Computational Procedure

Tile theoretical and empirical results of Sections 3.1 and 3.2 suggest that N may, indeed, be chosen

very small. We now develop off-line/on-line computational procedures that exploit this dimension

reduction.
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,v Is(#)-._N(,)l/4,)
10 3.26 x 10 -_

20 2.56 x 10 '4

30 7.31 x 10 -5

40 1.91 x 10 -5

50 1.09 x 10 -5

60 4.10 x 10 -6

70 2.61 x 10 -6

80 1.19 x 10 -6

aN(_)/.q,) ,1N(#)
6.47 x 10 -_ 1.98

4.74 x 10 4 1.85

1.38 x 10 -4 1.89

3.59 x 10 -`5 1.88

2.08 x 10 -s 1.90

8.19 x 10 -6 2.00

5.22 x 10 -6 2.00

2.39 × 10 -6 2.00

Table 2: Error, error bound (Method II), and effectivity as a function of N, at a particular representative

point /t G D, for the truss problenl (compliant output).

We first express UN(#) as

N

*,N(_) = _ _N,(t,) 4_ = (uN(t,)) r _, (_3)
j=l

where uN(/t) G ]RN; we then choose for test flmctions v = (_, i = 1,..., N. InsErting these representa-

tions into (7) yields the desired algebraic equations for U__N(#) C IR N,

aN(//,) U N(/d, ) ----" _FFN, (14)

in terms of which the output can then be evaluated as Sg(#) = _Ft_ u__N(#). Here AN(#) 6 1KN×N is

the SPD matrix witil entries ANI,j(#) =- a(Q,(i;#), 1 _< i,j <_ N, and F N 6 _N is the "load" (and

"output") vector with entries FN_ _ f((i), i = 1,..., N.

or

We now invoke (2) to write

Q

AN _,j(_) = _((j, (,; #) = _ o_(_) a_(Cj, (J,
q=l

(15)

Q

q=1

where the A__N E 1RNxN are given by AqN i,j = aq(Q,(i), i < i,j < N, I < q <_ Q. The off-line/onqine

deeonlposition is now clear. In the off--line stage, we compute the u(tz,) and form the A_v and _FN: this

requires N (expensive) '"a" finite element solutions and O(QN 2) finite-element-vector inner products.

In the on-line stage, for any given new #, we first form A N from (15), then solve (14) for _uN(#) , and

finally evaluate sN(#) = F T u_N(/z): this requires O(QN 2) + O(_N a) operations and O(QN 2) storage.

Thus, as required, the incremental, or marginal, cost to evaluate sN(#) for any given new # -- ms

proposed in a design, optimization, or inverse-problem context -- is very small: first, because N is very

small, typically O(10) -- thanks to the good convergence properties of WN; and second, because (14)

can be very rapidly assembled and inverted -- thanks to the off-line/on-line decomposition (see [5] for

an earlier application of this strategy within the reduced-basis context). For the problems discussed

in this paper, the resulting computational savings relative to standard (well-designed) finite-element

approaches are significant -- at least O(10), typically O(100), and often O(1000) or more.

4 A Posteriori Error Estimation: Output Bounds

From Section 3 we know that, in thEory, we can obtain SN(#) very inexpensively: the on-line compu-

tational effort scales as O(_N a) + O(QN2); and N can, in theory, be chosen quite small. However, in
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pl_ctice,we do uot know how small N can be chosen: this will depend on the desired accuracy, the

selected output(s) of interest, and the particular problem in question; in some cases N = 5 may suI[ice,

while in other cases, N = 100 may still be insufficient. In the face of this uncertainty, either too many

or too few basis functions will be retained: the former results in computational inefficiency; the latter

in unacceptable uncertainty -- particularly egregious in the decision contexts in which reduced-basis

methods tylfically serve. We thus need a posteriori error estimators for SN. Snrprisingly, a poste'ri-

ori error estimation has received relatively little attention within the reduced basis kamework [19],

even though reduced-basis methods are particularly in need of accuracy assessment: the spaces are

,d hoc and pre-asymptotic, thus admitting relatively little intuition, "rules of thumb," or standard

approxin_ation notions.

Recall that, in this section, we continue to assume that a is coercive and synunetric, and that /' is

"COml)liant."

4.1 Method I

The approach described in this section is a particular instance of a general "variational" fl'amework for

a posteriori error estimation of outputs of interest, ttowever, the reduced-basis instantiation described

here differs significantly from earlier applications to finite element discretization error [16, 141 and

iLerativc solution error [20] both in the choice of (energy) relaxation and in the associated computational

artifice.

4.1.1 Formulation

We assume that we are given a positive flmction 9(#) : 7) ---, ]1-{+, and a continuous, coercive, symmetric

(p-independent) bilinear form _ : X x X ---*_(, such that

for some positive rcal constant %. We then find _(#) C X such that

g(.) a(_(.),v) = R(v;uN(.);t.,), Vv e X, (17)

where fora given w E X, R(v; w; 1_) = f(v) -a(w, v; t_) is the weak form of the residual. Our lower and

upper outl)ut estimators are then evaluated as

respectively, where

is the estimator gap.

SN(#) _ SN(_), and s+ (tz) -= SN(p) + AN(/,), (18)

AN(,) -- g(,)a(a(,),_(,)) (19)

4.1.2 Properties

We shall prove in this section that SN(#) _< s(#) < s+(#), and hence that Is(#) - sN(#)[ = s(#) -

SN(_) <_ AN(/_). Our lower and upper output estimators are thus lower and upper output bounds; and

our output estimator gap is thus an output bound gap -- a rigorous bound for the error in the output

o[ interest. It is also critical that AN(tL) be a relatively sharp bound for the true error: a poor (overly

large) bound will encourage us to refine an approximation which is, in fact, already adequate -- with

a corresponding (unnecessary) increase in off-line and on-line computational effort. We shall prove in

this section that AN(_) < __,_(s(#) - sN(_)), where 20 and a_0 are the N-independent a-continuity and

g(tL)a-eoercivity constants defined earlier. Onr two results of this section can thus be summarized as

1 < VN(_) <- Const, VN, (20)
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wh(,re

_,>_(_) _ _xN(I,) (21)
s(t,) - sN(t,)

is the effectivity, and Col:st is a constant independent of N. \Ve shall denote the left (bounding

property) and right (sharpness property) inequalities of (20) as the lower effectivity and upper effectivity

inequalities, respectively.

We first prove the lower effectivity inequality (Imunding property): SN(P) _< s(#) < s+(t,), VtL E D,

for .SN(p ) and s+.(t_) defined in (18). The lower bound property follows directly from Section 3.2.1. To

prove the : pper bound property, we first observe that R(v; UN;/z) = a(u(/*)--uN (/_), v;/z) = a(e(l_), v; I_),

where e(#) - u(p.) -UN(tL); we may thus rewrite (17) as g(l,t)h(_(la), v) = a(e(l,),v;/',) V v ¢ X. We

thus obtain

g0,)a(<e) = g(_)a(e - e,e - e) + 2g(_)a(e,e) - g(_)a(c,e)

= 90,)a(_ - e,_ - _) + (a(_, e;t') - ,a(/,)a(_,e)) + _(_,_.;_)

> _(_,_;j,) (92)

,<.ce g(_) a(_(_,) - _0_),_(;) - _(**))>- 0 a_d _(e(_),e(_,);_) - 0(_) a(_(_),e(_)) _>0 from (:S).
Invoking (9) and (22), we then obtain s(/*) - SNOL) = a(e(l_), e(/O;l_) <_ g(/_) a(_(/,), _(/0); and thus

,_(_)_<_(_) + g(_) a(e(,,),e(_)) - s_(_), _ dos:red.
We next l)rove the upper effectivity inequality (sharpness property):

'TN(_)-- AN(_) < _/o V N.
_(_)-sN(_) _-0

To begin, we appeal to a-continuity and g(#)&-coercivity to obtain

_(a(t_), a(_);t*) -< "to g(_)h(a0_) ' a0,)). (23)

_a0

But from the modified error equation (17) we know that .q(#)&(e(tt), e(l,)) = R(e(I,); #) = a(e(I,), 8(It); p,).

Invoking tim Cauchy-Schwartz inequality, we obtain

g(t_)a(_,_) a(e,e;.) < (,_(_,<.))'/_(a(e,e;_)) '/_ _< (_)'/_= _ (g(_) a(a, _))'/_ (_(_,e;_)):/_;

the desired result then directly follows fl'om (i9) and (9).

We now provide empirical evidence for (20). In particular, we present in Table 1 the bound gap and

effectivities for the thermal fin example. Clearly _N(#) is always greater than unity for any N, and

bounded -- indeed, quite close to unity --- as N -+ oo.

4.1.3 Computational Procedure

Finally, we turn to the computational artifice by which we can efficiently compute AN (/_) in the on-line

stage of our procedure. We again exploit the affine parameter dependence, but now in a less transparent

f_hion. To begin, we rewrite the "modified" error equation, (17), as

1 e(v)-_o_(.)_(_)_((_,_) , Vv _ x,
a(_(_),_) = _ _=_,=:

where we have appealed to our reduced-basis approximation (13) and the affine decomposition (2). It

is immediately clear from linear superposition that we can express _(/*) as

_(_)= 7_ _0+ _(,)_.(,)_._ , (_4)
q=l j=l
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where _zo (_ X satidics fi(_z0, v) = ((v), V v c=-X, and _q E X,j = 1,.. N, q -- 1,. Q, satisfies
3 ') "'_

fi(_J,v) -- -a'_(Q,v), V v e X. Inserting (247 into out' expression for the upper bound, s+(/_) =
sx(#) + g(/z)a(_(t,), e(tO), we obtain

,( ,, ,,,5 )O" q oq t qqr

q=l j=l q=l q_=l j=l jP=I

where co - 5(_o, _z0), A q -- h(,_0, _.]), and F_J; = a(S], _q;). (25)

The off-line/on-line decomposition should now be clear. In the off-line stage we compute 50 and

,t Fqq'av j = 1, N, q = 1,...,Q, and then form c0,Aj, and jy: this requires QN + 1 (expensive) "a"~j_ ...)

finite element solutions, and O(Q2N 2) finite-element-vector ilmer products. In the on litre stage, for

any given new tL, we evaluate s + as expressed in (25): this requires O(Q2N 2) operations and O(Q2N 2)
qq'

storage (for co, A_, and Fjj,). As for the computation of SN(#), the marginal cost for the computation

of s}(tO for any given new _ is quite small --- in particular, it is independent of' the dimension of the

truth finite element approximation space X.

There are a variety of ways in which the off-line/on--line decomposition and output error bounds

can be exploited. A particularly attractive mode incorporates the error bounds into an on-fine adaptive

process, in which we successively approximate SN(#) on a sequence of approximation spaces WN_ C

IYN, N_ = No2 ¢ --- for example, WN_ may contain the N_ sample points of SN closest to the new # of

interest - until Alv_ is less than a specified error tolerance. This procedure both minimizes the on-fine

eomputatioual effort and reduces conditioning problems -- while simultaneously ensuring accuracy and

certainty.

The essential advantage of the approach described in this section is the guarantee of rigorous bonnds.

There are, however, certain disadvantages. The first set of disadvantages relates to the choice of 9(_z) and

a. In many cases, simple inspection suffices: for example, in our thermal fin problem of Section 2.2.1,

g(_t) Ininq =1 ..... O _q(/_) and 5(w,v) O= = _q=l aq(w, v) yields the very good effectivities summarized

in Table 1. In other cases, however, there is no self-evident (or readily computed [17]) good choice: for

example, for the truss problem of Section 2.2.2, the existence of almost-pure rotations renders 9(#) very

small relative to 7(p), with corresponding detriment to r/N(IL). The second set of disadvantages relates

to the computational expense -- the O(Q) off-line and the O(Q 2) on-line scaling induced by (24) and

(25), respectively. Both of these disadvantages are eliminated in the "Method II" to be discussed in

the next section; however "Method II" only provides asymptotic bounds as N --* oo. The choice thus

depends on the relative importance of absolute certainty and computational efficiency.

4.2 Method II

As already indicated, Method I has certain limitations; we disenss here a Method II which addresses

these limitations albeit at the loss of complete certainty.

4.2.1 Formulation

To begin, we set M > N, and introduce a parameter sample SM = {_1,... ,/AM} and associated

reduced-basis approximation space WM = span {¢m -_ v(#,,), rn = 1,..., M} ; for both theoretical and

practical reasons we require SN C SM aid therefore WN C WM. The procedure is very simple: we first

find "a^.t(tt) e WM such that a(uM(#),v;#) = f(v),V v • WM; we then evaluate SM(l*) = g(UM(tO);

and, finally, we compute our upper and lower output estimators as

%M(') = SN(U), +SN,M(_) = _U(_) + "N,M(U), (26)

where AN.M(F0 , the estimator bound gap, is given by

AN,M(.) = } (SM(U) - sN(u)) (27)
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for some -r E (0, 1). 'File effectivity of the approxinlation is defined as

AN,M(#)

,1N,,,t(_) - s(_) - s_._.(.)

For our purposes here, we shall consider M = 2N.

(28)

4.2.2 Properties

As for Method I, we would like to prove the effectivity inequality 1 < 7_N,2N (It) <_ Const, V N. ttowever,

we will tufty be able to demonstrate an asymptotic form of this inequality. Furthernmre, the latter shall

require --- and we shall make -- the hypothesis that

._(#) - -_2N(_) --+0, as N -. oo. (2g)
_N,_N(#) =--4#) -- sN(.)

We note that the assumption (29) is certainly plausible: if our a priori bound of (12) in fact reflects

asymptotic behavior, thcn s(#) - sN(#) _ cle -c_N, s(#) - s2N(#) _ cle -2__N, and hence eN,2N(#)

e -c_N, as desired.

We first prove the lower effectivity inequality (bounding property): 8N,2N(# ) _ 8(#) _ 9_V,2N(,//,), _'4

N --4 oo. To demonstrate the lower bound we again appeal to (9) and the coercivity of a; indeed, this

result (still) obtains for all N. To demonstrate the upper bound, we write

S/_r 2N(_)

\ /

:
We now recall that s(/_) - SN(tL) >_ O, and that 0 < _- < 1 -- that is, 1/r > 1; it then follows fl'om (31)

and our hypothesis (29) that there exists a finite N* such that

s+,2N(#) -- s(#) >_ 0, V N > N*. (32)

This concludes the proof: wc obtain asymptotic bounds.

We now prove the upper effectivity inequality (sharpness property). From the definitions of _N,'2N (#),

AN,2N(#) and EN,2N(t_), we directly obtain

1 s2N(tt) -- sN(#) 1 (S2N(lt) -- s(#)) -- (SN(#) -- s(tt)) (33)
_IN,_N(_) = _ s(_) - ,_N(_) = _ (4#) - _N(_))

= I(1--EN,_N(_)).
(34)

It is readily shown that _TN,2N(#) is bounded from abovc by 1/w for Ell N: we know from (9) that

SN,2N(_) is strictly non-negative. It can also readily be shown that _N,2N(#) is non-negative: since

WN C W2N, it follows from (8) (for (., ")x = a(., .;#)) and (9) that s(#) >_ s_N(t z) >_ sN(#), and hcncc

SN,2N(#) <_ 1. We thus conclude that 0 < 7}N,2N(#) <_ 1/_- for all N. Furthermore, from our hypothesis

on sN,2N(#), (29), we know that r/gmv(t_ ) will tend to 1/T as N increases.

The essential approximation enabler is exponential convergence: we obtain bounds even for rather

small N and relatively large T. We thus achieve both "near" certainty and good effectivities. We

demonstrate this claim in Table 2, in which we present the bound gap and effectivity for our truss

example of Section 2.2.2; the results tabulated correspond to the choice _- = 1/2. We clearly obtaifl

bounds for all N; and we observe that 7_N,2N(/_) does, indeed, rather quickly approach 1/_-.
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4.2.3 Computational Procedure

Since the error bounds are based enthcly on evaluation of the output, we can directly adapt the off-

line/on-line procedure of Section 3.3. Note that the calculation of tile output approximation sN(l_)

and tile output bounds are now integrated: AN(U ) and if-N(#) (yielding SN(#)) are a sub-matrix and

sub-vector of A2N(P) and F_N(# ) (yielding S2N(#), AN2.N(P), and s_,2N(p)), respectively, hi the

off line stage, we compute the u(>,,) and form the A_N and __F_N:this requires 2N (expensive) "a"

tinite element solutions, and O(4QN 2) finite-element-vector inner products. In the on-line stage, fin.

any given new/z, we first form _AN(p), _g and __A2N(p), F2N , then solve for uN(#) and U2N(_), and

finally evaluate s_.,N(p): this requires O(4QN _) + O(_N a) operations and O(4QN 2) storage. The

on-line effort for this Method II predictor/error estimator procedure (based on sN(#) and s_N(l_)) will

thus require eightfold more operations than the "predictor-only" procedure of Section 3.

Method II is in some sense very nai've: we simply replace the true output s(p) with a filter

approxinmtion surrogate s2N(]_). (There are more obscure ways to describe the method -- in terms of a

reduced-ba.sis approximation for the error - however there is little to be gained fi'om these alternative

interpretations.) TILe essential computation enabler is again exponential convergence, which permits

us to choose M = 2N --- hence controlling the additional computationM effort attributable to error

estimation - while simultaneously ensuring that eN,2N(#) tends rapidly to zero. Exponential conver-

gence also ensures that the cost to compute both SN(#) and s2/v(#) is "negligible." In actual practice,

since S_N(#) is available, we can of course take S_N(tL), rather than SN(#), as our output prediction;

this greatly improves not only accuracy, but also certainty -- AN,2N(#) is almost surely a bound ['or

s(tz) - s_.N (_), albeit an exponentially conservative bound as N tends to infinity.

5 Extensions

5.1 Noncompliant Outputs and Nonsymmetric Operators

In Sections 3 and 4 we formulate the reduced-basis method and associated error estimation procedure

for the case of compliant outputs, t(v) = f(v), Vv E X. We briefly summarize here the formulation

and theory for more general linear bounded output functi0nals; moreover, the assumption of symmetry

(but not yet coercivity) is relaxed, permitting treatment of a wider class of problems .... a representative

example is the convection-diffusion equation, in which the presence of the convective term renders the

operator nonsylnmetric. We first present the reduced-basis approximation, now involving a dual or

adjoint problem; we then formulate the associated a posteriori error estimators; and we conclude with

a few illustrative results.

As a preliminary, we first generalize the abstract formulation of Section 2.1. As before, we define the

"primal" problem as in (4), however we of course no longer require symmetry. But we also introduce

an associated adjoint or "dual" problem: for any # E X, find _b(#) E X such that

a(v, ¢(#); _,) = -e(v), v v e x; (35)

recall that e(v) is our output functional.

5.1.1 Reduced-Basis Approximation

To develop the reduced-basis space, we first choose -- randomly or log-randomly as described in Sec-

tion 3.2 -- a sample set in parameter space, SN/2 = {_1,...,#N/2}, where /_i G D, i = 1,...,N/2

(N even); we next define an "integrated" Lagrangian reduced-basis approximation space, WN =

span {(u(_,_), ¢(U,,)), n = 1,..., N/2}.

For any p E 79, our reduced basis approximation is then obtained by standard Galerkin projection

onto WN (though for highly nonsymmetric operators minimum residual and Petrov-Galerkin projections

are attractive -- stabler -- alternatives). To wit, for the primal problem, we find uN(#) E WN such

that a(UN(#), v; p) = f(v), k/V G WN; and for the adjoint problem, we define (though, unless otherwise
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indicated, do not compute) _)N(/Z) ¢ WN such that a(v,_N(t_); tL) = --f(v), Vv C IVN. The reduced-

basis output approxinmtion is then calculated from st,,(tL) = g(UN (tt)).

T_rning now to the a prior'i theory, it follows from standard arguments that UN(IX) and fON(p) are

"optimal" in the sense that

11'4/0 - UN(/0 IIx

t1¢00 - ON(_)lls

_(i,) _ i.f tl_(**) - _,t,,llx,< 1+ o:(p)] _,JNetVN

_r(_)_ inf IIf'00--_NIIx.5 1+ --_j ,,,.ew.

The best approximation analysis is then similar to that presented iu Section 3.2. As regards our output,

we now have

I_(_)--SN0_)I = le(_(_))-e(=N(_,))t = la(_--'*N,_; _)1= la(u--UN,¢--¢N;tOI <_"rOlI"--_'NIIxtI_--#_NIIx

(36)
from Galerkin orthogouality, the definition of the primal and the adjoint problems, and the Cauchy-

Schwartz inequality. We now understand why we inehtde the _b(#n) in WN: to ensure that ]]T/,(tt) -

!bN(J.0j]x is small. We thus recover the "square" effect in the convergence rate of the output, albeit

(and unlike the symmetric case) at the expense of some additional computational effort -- the inclusion

of the '_b(tt,_ ) in WN; typically, even for the very rapidly convergent reduced-basis ai)proximation , the

"fixed error-minimum cost" criterion favors the adjoint enrichment.

For simplicity of exposition (and to a certain extent, implementation), we present here the "inte-

grated" primal-dual approximation space. However, there are significant computational and condition-

ing adwmtages associated with a "non-integrated" approach, in which we introduce separate primal

(u(#,O) and dual (_.,(l*,_)) approximation spaces for u(t0 and _b(/_), respectively. Note in tim "non-

integrated" case we arc obliged to compute _I_N(/_), since to preserve the output error "square effect"

we must modify our predictor with a residual correction, f(_bN(#)) - a(uN(#), _N(#);/_) [17]. Both the

"integrated" and "non-integrated" approaclms admit an off-line/on-line decomposition similar to that

described in Section a.3 for the compliant, symmetric problem; a.s before, the on-line complexity and

storage are independent of the dimension of the very fine ("truth") finite element approximation.

5.1.2 Method I A Posteriori Error Estimators

We extend here the method developed in Section 4.1.2 to the more general case of noncompliant and

nonsymmetric problems. We begin with the formulation.

We first find _P_(#) E X such that

g(_) a(e._'O,), _) = R'r(_;uN(.);.), V. e x,

where RP'(v;w;t0 -= f(v) - a(w,v;#), V v 6 X; and edu(l.t) e X such that

00.)a( #_ 0.), _) = _du(_; _N 0.); .), v. e x,

where Rm'(v; w; It) _ -g(v) - a(v, w; #), V v < X. We then define

sN(t_) = SN(l_) - _&(e"(#),ed_(/_)), and (37)

AN(. ) = g(Jt) [l_(_pr(t_), _pr(lt))]½ [&(_du(/Lt), _du(.))] ½ (38)

2

Finally, we evaluate our lower and upper estimators as s_c(p.) = gN(;Z) 4- AN(It). Note that, as before,

9(P) mM g still satisfy (16); and that, furthernmre, (16) will only involve the symmetric part of a. We

define the effectivity as

AN(V) " (39)
_N(_) = Is(.)- _N(_)I'
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note that s(#) - SN(tt) now has no definite sign.

We uow prove that ore' error estimators are bounds (the lower effectivity inequality): SN(g) _<

s(p) << s_,(p), V N. To begin, we define _±(p) = _m(#) :F _._du(ix), and note that, from the eoercivity

of 5,

_(#)_(_' - _, w - _±) = _(_,)6(_,'", _') + _(___2)_(_4_) - _'J(_)_(_' _'') ->o, (40)

why're e_'"(#) = '.(_) - UN(#), ¢_"(IX) = ¢(_) - V'N(#), and _ is a positive re,d ,mmber. t_'om the
definition of _7_(#) and _]m(_t), _du(#), we can express the. "cross-term"

_(#)a(a_:,_'') = R_'"(¢"";_N;_)T !S_<'"(_'>';'_N;V)-- _(e%_%_)-T !_(_,,, c_,,;ix)
h;

= _(_..,_,.;#) ± _1(_(#) - ._N(_)), (41)
h:

sillce /_P'(cPr;'ttN; ],) = a('a, eP"; ]/,) -- a('/tN, CPi*; #) = a(o pr, CPr; IX), ]_d'tl (ePr; ,_N;#) = a(cPr, "//3; IX) --

a(el'", -@N;#) = a(eP",edu;#), and C(p) - g(UN) = --a(u--uN,_b;#) = --a(u-- UN,_b-_bN;tz) (by

Galerkin orthogouality) = -a(e p', ed"; IX). We then substitute (41) into (40) to obtain

i(_(ix) - <,_(_)) 5_-,_ (a(e_'",eP";,) - g(#)a(eP",ePG)+ ---_ate ,e __<__a(_:_'_:L)'

since/_ > 0 and a(eP"(lt), eP"(#); IX) -g(#)g(eP"(ft), ¢pr(ix)) _ 0 froH] (16),

Expanding _ (Ix) = _pr(Ix) ::_ l_du (Ix) then gives

or

_E IS(_I)--(SN(Ix)-- ___/,(_l)r _du))) ,:(__ _g4(_)_(_pr _pr)_]_ _g(Ix) _,(_du (_du). . (42)

We now choose tc(tt)

so as to nrinimize the right-hand side (42); we then obtain

Is(v) - _N(IX)I< AN(Ix), (4a)

and hence SN(/_ ) _< s(#) _< s_(#).

We now turn to the upper effectivity inequality (sharpness property). If the primal and dual errors

are a-orthogonal, or become increasingly orthogonal as N increases, then the effectivity will ]tot, in

fact, be bounded as N --+ oo. However, if we make the (plausible) hypothesis tiiat Ix(ix) - SN(#)l _>

C_NePr(#)ilxiled"(_)llx , then it is simple to demonstrate that

7_ (44)
_(v) <- _c_-L-J_

In particular, it is an easy matter to demonstrate that gUa(#)(5 (_P_(#), ePr(ix))) 1/2 _ _lle"'(#)ltx

(note we lose a factor of 71/2 relative to the symmetric case); similarly, 9112(IX) (& (_du(/,), _du(p)))l/2
_[I du

tie (IX)IIx. The desired result then directly follows fl'om the definition of Ate(#) and our hypothesis

ou I_(ix)- sN(_)t.
Finally, turning to computational issues, we note that the off-line/on-line decomposition described

in Section 4.1 for compliant symmetric problems directly extends to the noncompliant, nonsymmetric

case -- except that we must compute the norm of both the primal and dual "modified errors," with a

concomitant doubling of computational effort.
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5.1.3 Method II A Posteriori Error Estimators

We discuss here tile extension of Method II of Section 4.2 to noncompliant outputs and nonsymmetric

operators,

To begin, we set M > N, M even, and introduce a parameter sample SM/2 = {lq, ..., la.a¢-/2} and as-

sociated "integrated" reduced-basis approximation space I'VM = span {u(V,,,), g'(l_,,,), m = 1,..., M/2}.

VVe first lind ual(#) C I'I:M such that a(u,_l(,u), v; #) = f(v), Vv C WaN we then evaluate sM(IO =

C(u_(t_)); aud finally, we coinpute our upper and lower output estimators as

1 1 A ,

1 [stvl(#) - sN(/l)l, (46)aN,a_(#) =

for r E (0, 1). The effectivity of the approximation is defined as

AN'M(/Z) (47)
'TN,M(#)-- 14.) - _N(,)I

\Ve shall again only consider M = 2N.

As in Section 4.2, we would like to prove that I _< rllv,2N(#) <_ Const for sufficiently large N; and,

in Section 4.2, we nmst again make the hypothesis (29). We first consider the lower effectivity inequality

(bounding property), and prove that

Ill particular, simple algebraic manipulations yield

{1 S2N(#) > sN(#)
1 [sN(#)-- S2N(/*)[ X -- , (49)

{_(1--ENaN)--I S2N(#)>SN(,O
I IsN0*)- s2N(#)lx - (_0)

The desired result then directly follows from our hypothesis on ¢N,2N, (29), and tile range of r.

The proof for the upper effectivity inequality (sharpness property) parallels the derivation of Sec-

tion 4.2.2. In particular, we write

1 8 1r[ 2N - sNI - s -
_ TIs_ s+ sNI (al)

v_,2N(#) = Is- sNI Is- s_f

= -_l_-e_,_sl; (52)
T

flom our hypothesis (29) we may thus conclude that r/_,_N(#) --_ _ as N _ oe. Note in the noncom-

pliant, nonsymmetric case we can make no stronger statement.

We demonstrate our effectivity claims in Table 3, in which we present the error, bound gap, and

effectivity for the noncompliant output (s_(/_), average stress) of the truss example of Section 2.2.2;

the results tabulated correspond to the choice r = 1/2. We clearly obtain bounds for all N; and the

effectivity rather quickly approaches 1/r (for N > 120, rlN,_N remains fixed at 1/r = 2.0).

5.2 Eigenvalue Problems

We next consider the extension of our approach to symmetric positive definite eigenvalue problelns.

The eigenvalues of appropriately defined partial-differential-equation eigenproblems convey critical in-

formation about a physical system; in linear elasticity, the critical buckling load; in dynamic analysis

of structures, the resonant modes; in conduction heat transfer, the equilibrium timescales. Solution
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I._(,)- _.-(:.)f/.(,)
2.35 × 10 -2

41801] 1.74 × 10 -4

60 5.59 x 10 -s

1.44 x 10 -5

7.45 × 10 -6

4.67 × 10 -2

3.19 × 10 -4

1.06 x 10 -4

2.73 × 10 -5

1.40 × 10 -5

77N,2:¢(/0

1.99

1.83

1.90

1.89

1.88

Table 3: Error, error bound (Method II), and effectivity as a function of N, at a particular representative

point/L E "D, for the truss problem (noncompliant output).

of large-scale eigenvalue problems is computationally intensive: the reduced-b_is method is thus very
attractive.

The abstract statement of our eigenvalue problem is: find (u_(_), A,(#)) C X x IR, i-- 1..... such
that

a(ui(t*), v;/L) = )_i(#)m('ui(#), v; #), gv C X, and m(ui(t_), ui(t_)) = 1. (53)

Here a is the continuous, coercive, symmetric form introduced earlier, and m is (say) the L 2 inner

product over _2. The aSSulnptious on a and rn imply the eigenvalues /_i(/_) will be real and positive.

We order the eigenvalues (and corresponding eigenfunetions u_) such that 0 < AI(#) < A2(#) _< ... ; we

shall assunm that ,kl(#) and ,\2(#) are distinct. We suppose that our output of interest is the minimum

eigenvalue,

_(.) = a_(u); (54)

other outputs may also be considered.

Following [11], we present here a reduced-basis predictor and a Method I error estimator for sym-

metric positive-definite eigcnvalue problems; we also briefly describe the simpler Method II approach.

5.2.1 Reduced-Basis Approximation

We sample -- randomly or log-randomly -- our design space D to create the parameter sample SN/2 =

{/q,... ,#N/2}; we then introduce the reduced-basis space WN = span{ul(#l), u2(/_l),..., 'al(#N/2) ,

•a._,(/LN/_)}, where we recall that at(#) and u2(l_) are the eigenfunetions associated with the first (small-

est) and second eigenvalues ),1(#) and ,k2(#), respectively. Note that WN has good approximation

properties both for the frst and second lowest eigenfunctions, and hence eigenvalues; this is required

by the Method I error estimator to be presented below. Our reduced-order approximation is then: find

(aN ,(#), .\Ni(/t)) • I_I:N × _'_, i = 1 .... , N, such that

(t('/_N/(//,),Y;[£) _- _Ni(]A)77_(UNi(_),Y;_), VV • WN, and m(uNi(#),'UNi(]z)) = 1; (55)

the output approximation is then sN(/_) AN t(#).

The forntulation admits an on-line/off-line decomposition [11] very similar to the approach described

for equilibrium problems in Section 3.

5.2.2 Method I A Posteviori Error Estimators

As before, we assume that we are given a positive function 9(#) : D --, IR+ and a continuous, coercive,

symmetric bilinear form (i(w, v) : X x X _ _, that satisfy the inequality (16). We then find _(#) • X

such that

g(_)a(_(.), _) = [_ l"_(UN 10'),v;_) -- a(uN l(.),v;_)], Vv • X, (56)

in which the right-hand side is the eigenprobleln equivalent of the residual. We then evaluate our

estimators as

s+(/J,) = ,_N I(U), 8_/(_) = aN 1(/2) -- AN(l/.),



5 EXTENSIONS 17

1. s× / 7.19× I  .65 f
6.20× 10 -4 | 3.19x 10-3 I 5.17 I

1.72×1o-' 1.55×lO-3 j 9.44 J
3.47 x 10 -5

Table 4: Error, error bound (Method I), and effectivitics _ a function of N, at a particul_r representative

point/* E I), for the thermal fin eigenproblen.

where 5(_t) = 1 - _ and r E (0, 1). The effectivity is defined as 71N(# ) -- zxNO,)

We now consider the lower and upper effectivity inequalities. As regards the lower effectivity in-

equality (bounding property), we of course obtain s+(t_) > A_(tt), VN. The difficult result is the lower

bound: it can be proven [11] that there exists an N*(SN/2,#) such that s_(#) < AI(_L), VN > N*.

In practice, N" -- 1, due to tile good (theoretically motivated) choice for c_(#); tlmre is thus very little

uncertainty in our (asymptotic) bounds. We also prove in [11] a result related to the upper effectiv-

it), inequality (sharpness property); in, practice, very good effectivities are obtained. To demonstrate

these claims we consider the eigenvalue problem associated with (the homogenous version) of our two-

dimensional thermal fin example of Section 2.2.1. We present in Table 5.2.2 the error, error bonnd, and

effectivity _ a function of N at a particular point ]__C "D. We observe rapid convergence, bounds for

all N, and good effectivities.

Finally, we note that out" output estimator admits an off-line/on-line decomposition shnilar to

that for equilibrium problems; the additional terms in (56) are readily treated through our afflne

expansion/linear snperposition procedure.

5.2.3 Method II A Posteriori Error Estimators

For Mcthod II, we no longer require an estimate for the second eigenvalue. We may thus dcfine SN =

{[_tl,...,_ZN}, W N = span{ul(pl),i = 1,...,N}, and (for /VI = 2N) S2N = {/L:,...,p2N} D SN,

WaN = span{'u:(tz_), i = 1,..., 2N} D IYN. The reduced basis approximation now takes tile form (53),

yielding sm(#)= AN 1(_) and (for N -_ 2N) S2N(#) = ,k2N 1(t0. Our estimators are then giwm by

sN,2N+(_,) = ).N:(t*), S_,2N='XN:(_)--:N,_N(.),

A,.,,,_(,.) = _-(_(,_) - _.,N(,.)) (57)

for _- _ (0, 1). The effectivity r]N,2/V(_ ) is defined as for Method [.

For the lower effectivity inequality (bounding property), we of course retain s_,_N(p ) > A: (_), VN.

\¥e also readily derive SN,2N(_ ) = A_ - (AN _ --A_)(_(1 --:N,_N) -- 1); under our hypothesis (29), we thus

obtain asymptotic bounds as N --* oo. For the upper effectivity inequality (sharpness property), we

directly obtain rIN,2N = _ (1- eN,aN). By variational argmnents it is readily shown that 0 < SN,2N _< 1:

VN. Additionally, under hypothesis (29), we deduce thatwe thus conclude that 0 < r/N,_N <_ 7,

?]N,2N _ 1 as N --, _o.
7-

5.3 Further Generalizations

[n this section we briefly describe several additional extensions of the methodology. In each case we

focus on the essential new ingredient; further details (in most cases) may be found in the referenced

literature.
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5.3.1 Noncoercive Linear Operators

The archetypical noncoercive linear equation is tile Hehnholtz, or reduced-wave, equation; many (e.g.,

inverse scattering) applications of this equation arise, for example, in acoustics and elcctromagnetics.

The essential new mathematical ingredient is the loss of coercivity of a. In particular, well posedness

is now ensured only by the inf-sup condition: there exists positive J30, _(/*), such that

a(,w,v; #)
0 < _0 < _(_) = inf sup V._2). (uS)

Two nnmerical difiqeulties arise due to this "weaker" stability condition.

The first difficulty is preservation of the inf-sup stability condition for finite dimensional approxima-

tion spaces, rib wit, although in the coercive ease restriction to the space WN actually increases staloility,

in the noncoercive case restriction to the space WN can easily decrease stability: tim relevant supre.miz-

ers may not be adequately represented. Loss of stability can, in turn, lead to poor approximations -- the

infsup parameter enters in the denominator of the a priori convergence result. The second numerical

difficulty is estimation of the inf-sup paraanete.r, which for noncoercive problems plays the role of g(#)

in Method I a posteriori error estimation techniques. In particular, fl(#) can not typically be deduced

analytically, and thus must be evaluated (via an eigenvalue formulation) as part of the reduced-basis

approximation. Our resolution of both these difficulties involves two elements [17]: first, we consider

projections other than standard Galerkin; and second, we consider "enriched" approximation spaces.

In one approach [17], we pursue a mininmm-residual projection: the (low-dimensional) infimizing

space contains both the solution u(#) and also the inf-sup infimizer at the #n sample points; and the

(high-dimensional) supremizing space is taken to be X. Stability is ensured and rigorous (sharp) error

bounds are obtained -- though technically the bounds are only asymptotic due to the approximation of

the inf-sup parameter; and, despite the presence of X, the on--line complexity remains independent of

the dimension of X -- as in Section 3.a,we exploit affine parameter dependence and linear superposition

to precompute the necessary inversions. In a second suite of much simpler and more general approaches

(see [171 for one example in the symmetric case), we exploit minimum-residual or Petrov-Galerkin pro-

jec¢ions with infimizer supremizer enriched, but still very low-dimensional, infimizing and supremizing

spaces. Plausible but not yet completely rigorous m'guments, and empirical evidence, suggest that

stability is ensured and rigorous asymptotic (and shaa'p) error bounds are obtained.

In [17] we focus entirely on Method I a posteeiori error estimator procedures; but Method II tech-

niques are also appropriate. In particular, Method II approaches do not require accurate estimation of

the inf-sup parameter; we thus need be concerned only with stability in designing our reduced-basis

spaces.

5.3.2 Parabolic Partial Differential Equations

The next extension considered is the treatment of parabolic partial differential equations of the form

m(ut, v; #) = a(u, v; #); typical examples are time-dependent problems such as unsteady heat conduction

-- the "heat" or "diffusion" cquation. Tim essential new ingredient is the presence of the time variable,

t.

The reduced-basis approximation and error estimator procedures are similar to those for noncompli-

ant nonsymmetric problems, except that we now include the time variable as an additional parameter.

Thus, as in certain other time-domain model-order-reduction methods [4, 25], the basis functions are

%napshots" of the solution at selected time instants; however, in our case, we construct an ensemble of

such series corresponding to different points in the non-time parameter domain 2). For rapid conver-

gence of the output approximation, the solutions to an adjoint problem -- which evolves backward in

time -- nmst also be included in the reduced-basis space.

For the temporal discretization method, many possible choices are available. The most appropriate

method -- although not tim only choice -- is the discontinuous Galerkin method [13]. The varia-

tional origin of the discontinuous Galerkin approach leads naturally to rigorous output bounds for

Method I a posteriori error estimators; the Method II approach is also directly applicable. Under our
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affine assulnption, off line/on-line decompositions can be readily crafted; the complexity of tile on line

stage (calculation of the output predictor and _sociated bound gap) is, as before, independent of tile

dimension of X.

5.3.3 Locally Non--AWane Parameter Dependence

An important restriction of our methods is tile assumption of affine parameter dependence. Although

many property, boundary condition, load, and even geometry variations can indeed be expressed in the

required form (2) for reasonably small Q, there are many problems - for example, general bomldary

shape variations -- which do not admit such a representation. One simple approach to the treatment

of this more dill]cult class of non-a_fine problems is (i) in the off--line stage, ,store the (',_ - u(/_,_), and

(ii) in the on-line stage, directly evaluate the reduced-basis stiffness matrix _ a(Q,_i, #). Unfortu-

nately, the operation count (respectively, storage) for the on line stage will now scale as O(N 2 dim(X))

(respectively, O(Ndiin(X)), where dim(X) is the dimension of the truth (very fine) finite element

approximation space: the resulting method may no longer be competitive with advanced iterative tech-

niques; and, in any event, "real-time" response nmy be compromised.

We prefer an approach which is slightly less general but potentially much more efficient. In partic-

ular, we note that in many cases -- for example, boundary geometry modification --- the non afllne

parametric dependence can be restricted to a small subdomain of f_, fl,ir. We can then express our

bilinear form a as an afflne/non--affine sum,

a(w, v; t') = _(w, v;#) + a. (_, _;_). (._9)

tIere a,, define, d over f_I -- the majority of the domain -- is affinely dependent on #; and at,, defined

over f_l[ -- a small portion of the domain -- is not affinely dependent on #. It immediately follows that

the reduced-basis stiffness matrix can be expressed as the sum of two stiffness matrices corresl)onding

to contril)utions from al and aH respectively; that the stiffness matrix associated with ai admits the

usual on-line/off-line deconrposition described in Section 3.3; and that the stiffness matrix associated

with art requires storage (and inner product evaluation) only of ('lint, (_i restricted to _2zI). The

non-affine contribution to the on- line computational complexity thus scales only as O(N _ dim(Xln,,)),

where dim(X Ifl_) refers (in practice) to the number of finite-element nodes located within f/t, -- often

extremely small. We thus recover a method that is (almost) independent of dim(X), though clearly the

on-line code will be more complicated than in the purely affine case.

In the above we focus on approximation. As regards a posteriori error estimagion, the non-affine

dependence of a (even locally) precludes the precomputation and linear superposition strategy required

by Method I (unless domain decomposition concepts are exploited [12]); however, Method II directly

extends to the locally non-afilne case.
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