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Introduction

Gilbert Harman presented an earlier version of the material in this book as
the 2005 Jean Nicod Lectures in Paris and presented an earlier version of
Chapter 1 at the 2005 Rutgers Epistemology Conference.

The book arises from an introductory course on Learning Theory and
Epistemology we have been teaching jointly in Electrical Engineering and
Philosophy at Princeton University. This low-level undergraduate course
serves as an introduction to aspects of philosophy, computer science, engi-
neering, statistics and cognitive science. It is open to all students and has
no specific prerequisites other than some analytical skills and intellectual
curiosity. Although much of the material is technical, we have found that
the main points are both accessible to and appreciated by a broad range
of students. In each class, our students have included freshmen through
seniors, with majors from the sciences, engineering, humanities, and social
sciences. We acknowledge with thanks a Curriculum Development Grant
for this course from the 250th Anniversary Fund for Innovation in Under-
graduate Education from Princeton University and are grateful to the many
students who have discussed the content of the course with us.

We are indebted to conversations with Vladimir Vapnik and to comments
on earlier versions from Alvin Goldman, Rajeev Kulkarni, Daniel Osherson,
Joel Predd, James Pryor, Gillian Russell.
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Chapter 1

The Problem of Induction

In this chapter we interpret the philosophical problem of induction as a
problem about the reliability of inductive inferences. We begin with a tra-
ditional way of raising this problem via comparison between induction and
deduction, a comparison we firmly reject. This leads to a series of apparent
digressions. We explain why deductive logic is not a theory of inference.
We describe a proposal to assess inductive methods by trying to bring them
into “reflective equilibrium” with particular opinions. We explain how that
proposal fits with a kind of “general foundationalism” in epistemology. We
then note a worry that, although the proposal may fit ordinary practice,
there are reasons to worry that the results of following it are at least some-
times fragile and unreliable. This returns us to our theme: our interest in
assessing the reliability of inductive methods. We mention ways in which
this interest might be added to reflective equilibrium approaches, especially
those that seek a “wide” reflective equilibrium. We end the chapter with
the proposal to look to statistical learning theory as providing a basis for
discussing the reliability of inferences.

1.1 The Problem

What is the problem of induction? A version of the problem is sometimes
motivated via a comparison between rules of induction and rules of deduc-
tion. Valid deductive rules are necessarily truth preserving, while inductive
rules are not.

For example, here is a valid deductive rule:

(D) From a premise of the form “All F are G,” the corresponding conclu-
sion follows of the form, “The next F will be G.”

1



2 Reliable Reasoning

The rule (D) is illustrated in the following argument:

(DA) All apples have seeds.
So, the next apple will have seeds.

This argument is valid in the sense that there is no possible way in which its
premise can be true without the corresponding conclusion also being true.

A possible inductive rule might go something like this:

(I) From considerations of the form, “Many F have been found to be G”
and “Until now, no F have been found not to be G,” the corresponding
conclusion can be inferred of the form, “The next F will be G.”

The rule (I) might be illustrated in the following “inductive argument.”

(IA) Many apples have been found to have seeds.
Until now, no apples have been found not to have seeds.
So, the next apple will have seeds.

The “argument” (IA) is not valid in the way that the deductive argument
(DA) is valid. The “premises” of the inductive “argument” (IA) could be
true even though its “conclusion” is not true. It is possible that all apples
examined until now have had seeds and yet the next apple will not have
seeds.

That possibility does not impugn the validity of the deductive rule (D),
because if the next apple does not have seeds that means that the first
premise of the deductive argument (DA) is false. It won’t be true that all
apples have seeds. It is not possible that all apples have seeds and the next
apple does not have seeds. But it is possible that all apples examined until
now have had seeds and yet the next apple does not have seeds.

Deduction therefore has a kind of perfect conditional reliability that in-
duction does not. In light of that consideration, one problem of induction
is the problem of saying in what way inductive rules might be reliable.

This issue about the reliability of induction is not the same as the issue
of whether it is possible to produce a non-circular justification of induction.
That other issue arises when one considers how to justify one or another
inductive rule. It may seem that the only possible justification would go
something like this.

Induction has been pretty reliable in the past.
So, induction will be pretty reliable in the future.



Induction 3

Any such justification would seem to be circular because of using an induc-
tive principle to justify an inductive principle. (Perhaps we can justify one
inductive principle in terms of another, but it would seem that ultimately
there will be an inductive principle for which we can supply no non-circular
justification.)

Similarly, it might be argued that there is no non-circular justification
of deduction, that any justification of a deductive rule must itself use de-
duction, that even if we can justify one deductive principle in terms of one
or more others, ultimately there will be some deductive rule for which we
can supply no non-circular justification. Perhaps, though, it is possible to
provide a non-circular inductive justification of deduction!1

In any event, our problem of induction is not the issue of non-circular
justification. To a first approximation, our problem is this: A deductive rule
like (D) is perfectly reliable in the sense that, necessarily, it never leads from
true premises to a false conclusion. An inductive rule like (I) is not perfectly
reliable in that sense. There are instances of (I) with true “premises” but
false “conclusions.” Our problem of induction, then, is to explain what sort
of reliability an inductive rule might have and to specify inductive rules that
have that sort of reliability.

It might be suggested that we can measure the reliability of a rule like (I)
by the percentage of instances with true premises that have true conclusions.
But the rule has infinitely many instances with true premises, infinitely
many of which have false conclusions and infinitely many of which have
true conclusions. Given infinitely many cases of each sort it is not clearly
defined what the percentage is of instances with true conclusions. We might
consider only inductive arguments of the form that people have actually
made or will make, presumably a finite number, in which case reliability
might be measured by the percentage of actual inferences of this sort with
true premises that also have true conclusions. But this would not provide a
measure of the reliability of inductive rules that people have not and never
will use, which might be more or less reliable than rules people actually
use. So, we might consider the percentage of inferences of the relevant form
with true premises that would also have true conclusions if people were
to make inferences of that form. However, it isn’t clear how to evaluate
such a counter-factual criterion. A better idea is to consider the statistical
probability that inferences of that form with true premises would also have
true conclusions.

But before we discuss this appeal to statistical probability we need to

1We are indebted to Alvin Goldman for mentioning this possibility.
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discuss an oversimplification in the somewhat standard way in which we
have stated this problem of induction.

1.2 Inference and Implication

Following tradition, we have been writing as if there were two kinds of rea-
soning, deductive and inductive, with two kinds of arguments, deductive and
inductive. That traditional idea is confused, and correcting the confusion
complicates the way the issue of inductive reliability is to be formulated.

In the traditional view, reasoning can be modeled by a formal proof or
argument or argument sketch. One starts by accepting certain premises,
one then accepts intermediate conclusions that follow from the premises or
earlier intermediate conclusions in accordance with certain rules of inference.
One ends by accepting new conclusions that one has inferred directly or
indirectly from one’s original premises.

In the traditional view, a deductive logic is a theory of reasoning. De-
ductive logic is concerned with deductive rules of inference like (D). Since we
have a good deductive logic, it has been suggested that we need an inductive
logic that specifies inductive rules of inference like (I).

The trouble is that this traditional picture of the relation between deduc-
tion and induction conflates two quite different things, a theory of reasoning
and a theory of what follows from what.

An obvious difficulty with the traditional picture is its implication that
reasoning is always a matter of inferring new things from what one starts out
believing. On the contrary, reasoning often involves abandoning things one
starts out believing. For example, one discovers an inconsistency in one’s
beliefs and one reasons about which to give up. Or one starts by accepting
a particular datum that one later rejects as an “outlier.” More generally,
one regularly modifies previous opinions in the light of new information.

A related problem with the traditional picture is its treatment of deduc-
tive principles like (D) as rules of inference. In fact they are rules about
what follows from what. Recall what (D) says:

(D) From premises of the form “all F are G” and “a is F” the correspond-
ing conclusion of the form “a is G” follows.

(D) says that a certain conclusion follows from certain premises. It is not
a rule of inference. It does not say, for example, that if one believes “All
F are G” and also believes “a is F” one may or must infer “a is G.” That
putative rule of inference is not generally correct, whereas the rule about
what follows from what holds necessarily and universally.
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The alleged rule of inference is not generally correct because, for example,
one might already believe “a is not G” or have good reason to believe it. In
that case, it is not generally true that one may or must also infer and come
to believe “a is G” Perhaps one should instead stop believing “All F are G”
or “a is F .” Perhaps one should put all one’s energy into trying to figure out
the best response to this problem, which may involve getting more data. Or
perhaps one should go have lunch and work out how to resolve this problem
later!

From inconsistent beliefs, everything follows. But it is not the case that
from inconsistent beliefs one can infer everything.

Deductive logic is a theory of what follows from what, not a theory of
reasoning. It is a theory of deductive consequence. Deductive rules like (D)
are absolutely universal rules, not default rules, they apply to any subject
matter at all, and are not specifically principles about a certain psychological
process. Principles of reasoning are specifically principles about a particular
psychological process, namely reasoning. If there is a principle of reasoning
that corresponds to (D), it holds only as a default principle, “other things
being equal.”

Deductive arguments have premises and conclusions. Reasoning does
not in the same way have premises and conclusions. If you want to say
that the “premises” of inductive reasoning are the beliefs from which you
reason, it is important to note that some of those beliefs may be given up in
the course of your reasoning. A logical proof or “argument” is an abstract
structure of propositions.2 Reasoning is a psychological process.

Sometimes in reasoning, you do construct a more or less formal proof or
argument. But you do not normally construct the argument by first thinking
the premises, then the intermediate steps, and finally the conclusion. You
do not generally construct the argument from premises to conclusion. Often
you work backwards from the desired conclusion. Or you start in the middle
and work forward towards the conclusion of the argument and backward
towards the premises.

Sometimes you reason to the best explanation of some data, where your
explanation consists in an explanatory argument. In such a case, the con-
clusion of the explanatory argument represents the “premises” of your rea-
soning, the data to be explained, and the “conclusion” of your reasoning is
an explanatory premise of your argument.

It is a category mistake to treat deduction and induction as two versions

2Of course, there are other senses of the word argument for example to refer to a
dispute among two or more people.
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of the same category, because deduction and induction are of very differ-
ent categories. Deductive arguments are abstract structures of propositions.
Inductive reasoning is a process of change in view. There are deductive ar-
guments, but it is a category mistake to speak of deductive reasoning except
in the sense of reasoning about deductions. There is inductive reasoning, but
it is a category mistake to speak of inductive arguments. There is deductive
logic, but it is a category mistake to speak of inductive logic.

You might object that there is a perfectly standard terminology used by
some logicians according to which certain deductive rules are called “rules
of inference.” How could we object to this terminology? Our answer is
that this is like saying that there is a perfectly standard terminology used
by some gamblers according to which the so-called “gambler’s fallacy” is a
legitimate principle about probability. “That’s just how they use the term
probable!” The gambler’s fallacy is a real fallacy, not just a terminological
difference. It can have terrible results. In the same way, to call deductive
rules “rules of inference” is a real fallacy, not just a terminological matter.
It lies behind attempts to develop pseudo logics such as relevance logics or
inductive logics that are thought better at capturing ordinary reasoning than
classical deductive logic does, as if deductive logic offers a partial theory of
ordinary reasoning. It makes logic courses difficult for students who do not
see how the deductive rules are rules of inference in any ordinary sense. It is
just wrong for philosophers and logicians to continue carelessly to use this
“terminology,” given the disastrous effects it has had and continues to have
on education and logical research.

We are not arguing that there is no relation between deductive logic and
inductive reasoning. Our limited point here is that deductive rules are rules
about what follows from what, not rules about what can be inferred from
what. Maybe, as has often been suggested, it is an important principle of
reasoning that, roughly speaking, one should avoid believing inconsistent
things, where logic provides an account of one sort of consistency. Whether
or not there is such a principle and how to make it more precise and accurate
is an interesting question that is itself not settled within deductive logic,
however.

Similar remarks apply to the thought that principles of inductive reason-
ing have to do with rational or subjective degrees of belief , where consistency
then includes not violating the axioms of the probability calculus. One sort
of theory of probability is an abstract mathematical subject. How it is to be
applied to reasoning is not part of the mathematics. The same point holds
for decision theories that appeal to utilities as well as probabilities. These
theories offer extended accounts of consistency or “coherence” in one’s be-
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lief but leave open in what way such consistency or coherence is relevant to
reasoning.

Various theories of belief-revision are sometimes described as logics, not
just because there is a use of the term “logic” to refer to methodology but
because these theories of belief revision have certain formal aspects. As will
become clear in what follows, we certainly have no objection to the attempt
to provide formal or mathematical theories or models of reasoning of this
sort. We very much want to develop models that are, on the one hand,
psychologically plausible or implementable in a machine and are, on the
other hand, such that it is possible to know something useful about their
reliability.

Anyway, to repeat the point of this section: it is a mistake to describe
the problem of inductive reliability by comparison with deductive reliability.
Deductive rules are rules about what follows from what; they are not rules
about what can be inferred from what.

1.3 Reflective Equilibrium

Induction is a kind of reasoned change in view in which the relevant change
can include subtraction as well as addition. Can anything specific be said
about how people actually do inductive reasoning? And can anything spe-
cific be said about the reliability of their inductive reasoning?

One obvious point is that actual reasoning tends to be “conservative” in
the sense that the number of new beliefs and methods added and old beliefs
and methods given up in any given instance of reasoned change in view will
be quite small in comparison with the number of beliefs and methods that
stay the same. The default is not to change.

At least two things can lead us to make reasoned changes in our beliefs—
changes that are the result of reasoning. First, we may want to answer a
question on which we currently have no opinion; reasoning from our present
beliefs can then lead us to add one or more new beliefs. Second, we may
find that some of our beliefs are inconsistent with or in tension with others;
reasoning from our presently conflicting beliefs can then lead us to abandon
some of those beliefs.

In making changes of either sort, we try to pursue positive coherence and
to avoid incoherence . That is, given an interest in adding beliefs that would
answer a particular question, we favor additions that positively cohere with
things we already accept because, for example, the additions are implied by
things we already accept or because the addition helps to explain things we
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already accept. Furthermore, we try to avoid incoherence in our beliefs due
to contradictions or other sorts of conflict.

Thagard (1989, 2000) has developed a “constraint satisfaction” model of
coherence based reasoning using artificial neural networks, a model which
has proved fruitful in research in human decision-making (Holyoak and Si-
mon, 1999; Simon et al., 2001; Simon and Holyoak, 2002; Read, Snow, and
Simon, 2003; Simon, 2004). We will say more about this model below.

The coherence based conception of reasoning plays a role in what Good-
man (1953) says about “justification.” He is concerned with a methodolog-
ical issue: How can one assess one’s own opinions and possibly improve
them?3

Goodman says one can test particular conclusions by seeing how they
fit with general principles one accepts, and one can test general principles
by considering how they fit with particular conclusions one accepts. If one’s
general principles conflict with one’s particular judgments, one should adjust
principles and particular judgments until they cohere with each other. One
is then justified in accepting the resulting principles and judgments at least
for the moment. Goodman sees no other way to assess one’s particular
judgments and general principles from within.

John Rawls (1971) refers approvingly to Goodman’s discussion and says
that the method of justification we have involves modifying general prin-
ciples and particular judgments to better accord with each other with the
aim of arriving at what he calls a “reflective equilibrium” in which general
principles fit considered judgments about cases and judgments about cases
fit the general principles.

Although Karl Popper (1934, 1979) idiosyncratically denies beliefs are
ever “justified” or even that there are inductive “reasons” for belief, he too
advocates a similar methodology. He advocates adopting a critical view
towards our current theories, trying to find evidence that tells against them
and in favor of alternatives. But one should abandon a theory that has
worked well only when one has found a better theory that can explain all or
most of what one’s prior theory explained and better survives criticism.

The reflective equilibrium method is conservative in the sense that it
assumes that each of our present beliefs and methods has a kind of initial
default justification ; our continuing to accept a given belief or method
is justified in the absence of some special challenge to it from our other

3There are other nonmethodological conceptions of justification, which are not tied in
this way to methodology, for example certain reliabilist conceptions, as in Goldman 1986,
1999, 2002.
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beliefs and methods. In this view, all of one’s current beliefs and methods
represent default “foundations” justification, where the foundations are
understood to be the starting points for justification and justification is
given a methodological interpretation.

In the reflective equilibrium view of this sort of justification, the founda-
tions are quite general. In contrast, what we might call special foundations
theories are methodological theories which suppose that the default starting
points for this sort of justification are more restricted. In the strictest special
foundations theories (Descartes 1641) the foundations are limited to what is
completely obvious and indubitable at the present time. Such strict founda-
tions theories give rise to various traditional epistemological problems—the
problem of justifying beliefs based on the testimony of others, the problem of
justifying beliefs in other minds, the problem of justifying beliefs in the exis-
tence of objects in the external world, the problem of justifying beliefs about
the future based on past evidence, and the problem of justifying reliance on
memory.

In this sort of foundations theory of justification, the extent to which
one’s beliefs and methods are justified depends on how narrow the foun-
dations are. Very narrow foundations imply that very little is justified and
general skepticism results; one must abandon almost everything one believes.
Such an unwelcome result can be avoided by expanding the foundations, for
example, to allow that perceptual beliefs about the environment are foun-
dational. In such an expanded foundationalism, there is no longer the same
sort of epistemological problem about the external world. A certain type
of inductive reasoning might be treated as a foundational method, in which
case there is no longer an epistemological problem of induction. Similar
proposals have been made about our ordinary reliance on memory and tes-
timony. For example, Burge (1993) and Foley (1994) , might be interpreted
as taking reliance on testimony to be a foundational method, a suggestion
that gets rid of the otherwise intractable methodological problem of justify-
ing reliance on testimony.

As foundations are widened, foundations theories tend more and more
to resemble conservative general foundation theories which treat everything
one accepts as foundational and thus avoid the traditional methodological
problems.

Furthermore, the very process of widening foundations in this way seems
to be based on an implicit acceptance of the reflective equilibrium idea. The
process occurs because the original idea of strict foundations conflicts with
the particular nonskeptical judgments people find themselves committed to
in ordinary life!



10 Reliable Reasoning

1.4 Worries about Reflective Equilibrium

Suppose certain inductive methods survive as we adjust our views and meth-
ods in such a way as to attain reflective equilibrium. Why should we think
that this shows those methods are particularly reliable?

Goodman and Rawls say that the sort of adjustment of general principle
to particular judgment is exactly how we in fact go about testing and justi-
fying our views. But why should we assume that our ordinary methods of
justification are reliable? Stich and Nisbett (1980) observe in discussing this
exact issue that there is considerable evidence that our ordinary reasoning
practices are affected by “heuristics and biases” (Tversky and Kahneman,
1974), which can and often do produce clearly unreliable results.

To be sure, the fact that we can tell that these results are unreliable
might indicate only that people are ordinarily not in reflective equilibrium.
A similar response might be made to Stich and Nisbett’s suggestion that
the gambler’s fallacy might well survive ordinary reflective equilibrium. The
gambler’s fallacy is a fallacy only when it is inconsistent with other beliefs of
the gambler having to do with probabilistic independence of certain events.
Goodman and Rawls might deny that beliefs could be in reflective equilib-
rium if they were inconsistent in a way that reflection could reveal.

Stich and Nisbett argue that in determining what methods it is rea-
sonable to use, we cannot rely on ordinary opinion even if it is reflective
equilibrium. They say we need instead to take expert opinion into account.
But how do we determine who the experts are? And why should we trust
them anyway?

A possibly more serious worry about ordinary reflective equilibrium is
that it appears to exhibit an unwelcome fragility that undermines its claim
to reliability.

We mentioned earlier that Thagard (1989, 2000) develops models of the
method of reflective equilibrium using connectionist constraint satisfaction
. These models exhibit this worrisome fragility.

The models contain networks of nodes representing particular proposi-
tions. A node receives positive excitation to the extent that it is believed
and negative excitation to the extent that it is disbelieved. There are two
sorts of links among nodes, positive and negative. Positive links connect
nodes with others that they explain or imply or stand in some sort of evi-
dential relation to, so that as one of the nodes becomes more excited, the
node’s excitation increases the excitation of the other nodes and, as one such
node becomes less excited or receives negative excitation, that decreases the
excitation of the other nodes.
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Figure 1.1: Necker Cube

Negative links connect nodes that conflict with each other so that as one
such node receives more excitation, the others receive less and vice versa.
Excitation, positive and negative, cycles round and round the network until
it eventually settles into a relatively steady state. Nodes in the steady state
that have a positive excitation above a certain threshold represent beliefs
and nodes in the final state that have a negative excitation beyond a certain
threshold represent things that are disbelieved. Nodes in the final state with
intermediate excitation values represent things that are neither believed nor
disbelieved. The resulting state of the network represents a system of beliefs
in some sort of equilibrium.

It has often been noted that a connectionist network provides a possible
model of certain sorts of Gestalt perception (Feldman, 1981). Consider a
Necker cube (Figure 1.1).

A given vertex might be perceived as part of a near surface or as part of
a farther back surface. This aspect of the perception of a Necker cube can
be modeled by using nodes in a connectionist network to represent vertices
and by setting up positive links among the four vertices of each surface and
negative links between vertices of the different surfaces, where the degree of
excitation of a vertex represents how near it is. As excitation on a given
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vertex increases, that increases the excitation on the three other vertices of
that face and drives down the excitation of the vertices on the other face.
The result is that one tends to see the figure with one or the other face in
front and the other in back. One tends not to see the figure as some sort of
mixture or as indeterminate as to which face is in front.

Thagard has used his constraint satisfaction connectionist network to
model the reasoning of jurors trying to assess the guilt of someone in a trial
(Thagard 1989). The model makes certain predictions. For example, a juror
might begin with a view about the reliability of a certain sort of eye-witness
identification, a view about whether posting a message on a computer bul-
letin board is more like writing something in a newspaper or more like saying
something in a telephone conversation, and so forth. Suppose the case being
decided depends in part on an assessment of such matters. Then Thagard’s
model predicts that a juror’s general confidence in this type of eye-witness
identification should increase if the juror judges that in this case the testi-
mony was correct and should decrease if the juror judges that in this case
the testimony was not correct, the model predicts a similar effect on the
juror’s judgment about what posting on a computer network is more similar
to, and so forth. The model also predicts that, because of these effects, the
juror’s resulting reflective equilibrium will lead to the juror’s being quite
confident in the verdict he or she reaches.

Experiments involving simulated trials have confirmed this prediction
of Thagard’s model (Simon 2004). In these experiments, subjects are first
asked their opinions about certain principles of evidence about certain sorts
of eyewitness identifications, resemblances, etc. Then they are given mate-
rial about difficult cases involving such considerations to think about. Fi-
nally, the subjects’ final verdicts and their confidence in their verdicts and
in the various principles of evidence are recorded.

One result is that, as predicted, although subjects may divide in their
judgment of guilt at the end, with some saying the defendant is guilty and
others denying this, subjects are very confident in their judgments and in
the considerations that support them. Furthermore, also as predicted, there
are also changes in subjects’ judgments about the value of that sort of eye-
witness identification, about whether posting on a computer bulletin board
is more like writing in a newspaper or having a private conversation, and so
forth.

The model implies that judgments in hard cases are sometimes fragile
and unreliable under certain conditions. When there is conflicting evidence,
there is considerable tension among relevant considerations, just as there is
a certain sort of tension among the nodes representing vertices in the Necker
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cube problem. If some nodes acquire even slightly increased or decreased
excitation, the relevant inhibitory and excitatory connections can lead to
changes in the excitation of other nodes in a kind of chain reaction or snow-
balling of considerations leading to a clear verdict, one way or the other,
depending on the initial slight push, just as happens in one’s perception of
a Necker cube.

After the Gestalt shift has occurred, however, the case seems quite clear
to the juror because of ways the juror’s confidence has shifted in response
to the positive and negative connections between nodes.

One upshot of this is that the slight errors in a trial that look like “harm-
less errors” can have a profound effect that cannot be corrected later by
telling the juror to ignore something. By then the ignored evidence may
have affected the excitation of various other items in such a way that the
damage cannot be undone. Similarly, the fact that the prosecution goes first
may make a difference by affecting how later material is evaluated.

This fragility of reflective equilibrium casts doubt about using the method
of reflective equilibrium to arrive at reliable opinions.

This sort of problem has been noted in discussions of Rawls’ claim that
justification of views about justice consists in getting one’s judgments into
reflective equilibrium. It is sometimes suggested that the problem might be
met by trying to find a “wide” rather than a “narrow” reflective equilibrium,
where that involves not only seeing how one’s current views fit together but
also considering various other views and the arguments that might be given
for them and one must be careful to try to avoid the sorts of effects that
arise from the order in which one gets evidence or thinks about an issue
(Daniels, 1979). One needs to consider how things would have appeared to
one if one had gotten evidence and thought about issues in a different order,
for example. In this way one tries to find a robust reflective equilibrium, one
that is not sensitive to small changes in one’s starting point or the order in
which one considers various considerations.

Experimenters have shown that if subjects acting as jurors are instructed
to try for this sort of wide robust reflective equilibrium, they are less subject
to the sorts of effects that occur when they are not (Simon, 2004).

Does this mean that inductive methods acceptable to wide robust reflec-
tive equilibrium are reliable? Maybe, but why should we think so? Once
we come to doubt the reliability of methods acceptable to narrow reflective
equilibrium, why should we believe in the reliability of inductive methods
accepted in wide robust reflective equilibrium? At this point, it does not
seem adequate to be content to say that this is just how we justify things
and leave it at that.



14 Reliable Reasoning

1.5 Reliability

Thagard (1988, Chapter 7) argues for an extension of the method of wide
robust reflective equilibrium that also takes into account consideration of
what one takes to be the best examples of reasoning in the history of science
as well as one’s understanding of the goals of inquiry. These goals might
well include finding reliable inductive methods.

But how do we tell what methods good reasoners use and how can we
assess the reliability of these methods as compared with other, possibly
better, methods?

Given a number of possible reasoning methods, one way to proceed is to
consider a variety of reasoning problems that actually arise in practice, to
find out what is recommended in each case by each of the methods, and to
see which method ends up giving better results. Bishop and Trout (2005,
pp. 13-14.) mention such examples as predicting the success of medical in-
terventions, predicting criminal recidivism, predicting tomorrow’s weather,
predicting academic performance, predicting loan and credit risk, predicting
the quality of a French wine vintage. For some examples of this sort it has
been possible to obtain information about the comparative reliability of ex-
pert predictions as compared with each other and with certain simple linear
models based on only some of the data available to the experts. As Bishop
and Trout observe, in many areas, certain simple linear models provide more
reliable predictions than experts.

So, one way to proceed is empirically to study how well various inductive
methods do in real life. Such a study might be part of one kind of wide
reflective equilibrium. But it is also useful to approach the question of
inductive reliability in a deeper more theoretical way through statistical
learning theory.

Statistical Learning Theory has an empirical aspect, a mathematical
aspect, and a philosophical or conceptual aspect. Its empirical aspect is
reflected in its application to the development of useful techniques for “ma-
chine learning.” Its philosophical or conceptual aspect consists in the elab-
oration of certain ways of conceiving of inductive inference—certain infer-
ential or learning paradigms. Its mathematical aspect consists in various
results concerning those paradigms. The interplay between these aspects
connects these results to practice and to a variety of assumptions or presup-
positions that one might make in thinking about the reliability of inductive
methods.

Of course, what can be proved depends on the assumptions made. To
repeat, we are not suggesting that there is a deductive or mathematical
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justification of induction. Our point is that certain conceptual developments
in statistical learning theory, which have proved to be practically useful
in developing learning algorithms, are also philosophically interesting and
psychologically suggestive.

To take a problem studied extensively in statistical learning theory, sup-
pose we want a method for reaching conclusions about the next F on the
basis of observing prior F s. We want the results of the method to be correct,
or correct most of the time. We are interested in finding a usable method
that does as well as possible.

1.6 A Look Ahead

For example, suppose that we are interested in finding an inductive method
that will use data to select a rule from a certain set C of rules for classifying
new cases on the basis of their observed characteristics. Ideally, we want the
method to select the best rule from C, the rule that makes the least error
on new cases, the rule that minimizes expected error on new cases.

In other words, suppose that all the rules in C have a certain “expected
error” on new cases. We want a method for finding the rule with the least
expected error, given enough data.

But what does it mean to talk about the “expected error” of a rule from
C. We might identify the expected error with the (unknown) frequency of
actual errors we will make using the rule. But as we mentioned earlier, we
will want to consider the expected error for rules we don’t use, where there is
no frequency of actual errors. So perhaps we need to consider the frequency
of errors we would make if we used the rule, which is perhaps to say that
the expected error of a rule is the (unknown) probability of errors using that
rule.

But where does that probability come from? We are concerned with the
actual reliability of one or another rule, which presumably cannot be iden-
tified with our degree of belief in the rule or even with any sort of epistemic
probability. We suggest that claims about actual reliability presuppose a
possibly unknown objective background statistical probability rather than
any sort of evidential probability.

Now, without getting into deep philosophical issues about the nature of
probability, let us say that we believe it makes sense to speak of statistical
probability only in relation to a level of analysis of a system as a certain
sort of “chance set-up,” to use Hacking’s (1965) useful terminology. It may
be that a process involving a roulette wheel can be described as a chance
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set-up at one level of analysis, as a deterministic process at a deeper level,
and as a chance set-up again, at an even deeper level. Our present point
is that the relevant sort of reliability has application only with reference to
a level of analysis of a situation as a chance set-up in which the relevant
statistical probabilities make sense. There are important issues about the
interpretation of this sort of probability that we will not discuss here, except
to say that this kind of probability plays an important role in various con-
temporary subjects studied in engineering, computer science, and statistics,
including statistical learning theory.

Earlier we said we were interested in finding an inductive method for
using data to select a rule from a certain set C of rules for classifying new
cases on the basis of their observed characteristics. The rules in C will be
rules for estimating the classification of an item given observed characteris-
tics. We want to find a rule from C whose expected error as measured by
that background probability distribution is as low as possible.

Any conclusion about inductive reliability of the sort with which we are
concerned presupposes such a background probability distribution. To seek
a method that is reliable in this way is to seek a method that is reliable in
relation to that probability distribution. Without the assumption of such an
unknown background statistical probability distribution, it does not make
sense to talk about this sort of reliability.

The next question is this. How can we use data to choose a good rule
from C? One obvious idea is to select a rule from C with the least error
on the data. Then we use that rule in order to classify new data. This is
basically the method of enumerative induction. Our question then is, “How
good is this version of enumerative induction for choosing a rule from C?”

Clearly, it depends on what rules are in the set C from which a rule is
to be chosen. If all possible rules are in that set, then there will be many
rules that have the least error on the data but which give different advice
about new cases. So, we won’t be able to choose a good rule for classifying
the new cases.

More generally, any inductive method must have some sort of inductive
bias. It must prefer some rules over others. It must be biased in favor of
some rules and against others. If the method is the sort of enumerative
induction which selects a rule from C with the least error on the data, there
has to be a restriction on what rules are in C. Otherwise, we will never be
able to use data in that particular way to select rules for classifying new
cases.

Notice furthermore that restricting the rules in C will sometimes allow
enumerative induction to select a rule that is not completely in accord with
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the data. Accepting such a rule is not to accept that the data are com-
pletely correct. So, enumerative induction can involve giving up something
previously accepted.4

Of course, restricting the rules in C runs the risk of not including the
best of all possible rules, the rule with the least expected error on new cases.
That is a problem with this sort of enumerative induction because there is
no way to use such enumerative induction without restricting the rules in
C.

There are other possible inductive methods for choosing rules—methods
that do not just choose the rule with the least error on the data. One
such method balances data-coverage against something else, such as the
simplicity of a given rule. In that case, the idea is to choose a rule that has
the best combination of data-coverage and simplicity as measured in one or
another way. We will say a little about that idea in a moment, but now let
us concentrate on what is needed for the sort of enumerative induction that
simply chooses the rule in C with the least error on the data. The present
point is that such simple enumerative induction cannot include all possible
rules in C.

So now consider the question of how the rules in C might be restricted if
enumerative induction in this sense is to be guaranteed to work, given enough
evidence, no matter what the background statistical probability distribution.

The answer to this question is one of the great discoveries of statistical
learning theory—the discovery of the importance of the Vapnik-Chervonenkis
dimension, or VC-dimension, of a set of rules. The VC-dimension is a mea-
sure of the “richness” of the set of rules and it is inversely related to the
degree of falsifiability of the set.5 Roughly speaking, Vapnik and Cher-
vonenkis’ (1968) fundamental result is that enumerative induction in the
relevant sense can be shown to work, given enough data, no matter what
the background statistical probability distribution, iff the set C has finite
VC-dimension. We describe this result in more detail in our second chapter.

As we mentioned, enumerative induction in this sense is not the only
possible inductive method. But it is a method that applies to many examples
of machine learning, including perceptron learning and feed-forward neural

4Also, if new data are obtained, the rule enumerative induction selects can change,
which is another way in which it may involve giving up something previously accepted.

5More precisely, the VC-dimension of a set of rules C is the maximum number of data
points that can be arranged so that C “shatters” those points. C shatters N data points
iff for every one of the 2N ways of assigning values to each of those points there is a rule
in C that is in accord with that assignment. Vapnik connects the role of VC-dimension
with Popper’s (1934) discussion of the importance of falsifiability in science.
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net learning.
The other method we mentioned, in which data-coverage is balanced

against something else, allows for choosing among a set of rules with infi-
nite VC-dimension. Here it can be shown that the right thing to measure
against data-coverage is not simplicity conceived in any usual way, such as
the number of parameters used to specify a particular member of a class of
rules. We will discuss this in our third chapter.

Vapnik (1979; 1998; 2000) describes a method of inference that (e.g.,
in Vapnik 2000, p. 293) he calls “transduction,” a method that in a certain
sense infers directly from data to the classification of new cases as they come
up. Under certain conditions, transduction gives considerably better results
than those obtained from methods that use data to infer a rule that is then
used to classify new cases (Joachims 1999, Vapnik 2000, Weston et al. 2003,
Goutte et al. 2004). We will discuss this in our fourth chapter.

Our point for now is that the problem of induction as we have described
it—the problem of finding reliable inductive methods—can be fruitfully in-
vestigated, and is being fruitfully investigated in statistical learning theory
(Vapnik, 1998; Kulkarni et al., 1998, Hastie et al., 2001).6

1.7 Conclusion

Let us sum up. The problem of induction as we have been understanding it
is the problem about the reliability of inductive inference. The problem is
sometimes motivated by comparing induction with deduction, a comparison
that we have argued rests on confusing issues about what follows from what
with issues about what can be inferred from what. Deduction has to do
with what follows from what, induction has to do with what can be inferred
from what.

Some have suggested that the only real problem is to try to specify how
we actually do inductive reasoning. In this view issues about reliability are to
be answered by adjusting one’s methods and beliefs so that they fit together
in a reflective equilibrium. While there is evidence that people do reason
by adjusting their opinions in the way suggested, there is also considerable
evidence that the results are fragile and unreliable, and it is hard to be in
reflective equilibrium if you cannot believe your methods of reasoning are

6Our recognition of this connection between one form of the philosophical problem
of induction and the subject of statistical learning theory led us to plan and teach an
introductory level course at Princeton in “Learning Theory and Epistemology,” Electrical
Engineering 218/Philosophy 218.
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reliable. Furthermore, there is empirical evidence that people often reason
in ways that are less reliable than very simple alternative methods. Given
that reasoning often involves giving up things previously believed, it may
seem unclear how even to specify the desired type of reliability.

However, it does turn out to be possible to specify methods for doing one
sort of enumerative induction and to address questions about their reliability
that can be and have been studied empirically and also theoretically in
statistical learning theory, a theory that has results about other possible
inductive methods as well.
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Chapter 2

Induction and VC-Dimension

2.1 Introduction

In our first chapter we described one problem of induction as the problem
of assessing the reliability of various sorts of inductive inference. Although
this problem might be motivated by comparing induction with deduction, we
suggested that such a comparison arises from a confusion about the relation
between inference and logic.

Some philosophers have suggested that the only real problem is to spec-
ify how one actually reasons inductively. In this view, worries about induc-
tive reliability can only be answered by adjusting one’s methods and beliefs
so that they fit together in a “reflective equilibrium.” But, while there is
evidence that people do reason by modifying their opinions in the way sug-
gested, it appears that the results can be fragile and unreliable, and it is
hard to be in reflective equilibrium if you cannot believe your methods of
reasoning are reliable. But how else can one assess the reliability of one’s
inductive methods? Indeed, given that reasoning often involves giving up
things previously believed, we suggested that it may seem unclear how to
even specify the desired type of reliability. But we also noted that there are
ways to proceed. One is to consider prediction problems of a type that often
arise where it is possible to assess how well different methods would have
done in the cases that have actually arise. Another approach, complemen-
tary to the first, is more conceptual or theoretical.

For example, as we observed last time, it is possible to specify a class
of methods for doing a kind of enumerative induction and to address ques-
tions about the worst case reliability of these methods, questions that have
answers in statistical learning theory, a theory that provides results about

21
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other possible inductive methods as well.
In this chapter, we sketch an account of one of the important results

mentioned last time and note an apparent resemblance between a key aspect
of that result and what we take to be an important theme in Karl Popper’s
philosophy of science.

2.2 Pattern Recognition

The problem of inductive reliability can be seen as a problem in learning
theory. It is the problem of finding reliable ways to learn from data. For
example, how can one find and assess inductive methods for using data to
arrive at reliable rules for classifying new cases or for estimating the value
of a function for new arguments.

In thinking about this problem, two kinds of methods or rules must
be carefully distinguished. Rules of classification or function estimation
must be carefully distinguished from inductive methods for finding such
rules. Where rules of classification or function estimation are rules for using
observed features of items to classify them or to estimate the value of a
function with those features as arguments, inductive methods for finding
such rules are methods for using data to select such rules of classification or
function estimation.

In the previous chapter we discussed a particular method, enumerative
induction. In this chapter, we will say more about enumerative induction
methods for learning rules of classification and for estimating the values of
functions. In our next chapter we discuss some other methods for using data
to arrive at rules of classification or function estimation.

In our fourth and final chapter we will go beyond these sorts of inductive
methods to discuss methods of transduction that do not (in a certain sense)
first use data to arrive at rules of classification or function estimation that
are then used to classify new cases or estimate values of a function for new
cases as they arise. These methods use information about what new cases
have actually come up in deciding what to say about the new cases. But
in this second chapter and the next third chapter we will be concerned only
with inductive methods for coming up with rules of classification or function
estimation.

An inductive method is a principle for finding a pattern in the data that
can then be used to classify new cases or to estimate the value of a function
for new arguments. So, the problem of finding a good inductive method
is sometimes called a pattern recognition problem (Bongard, 1970; Duda,
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Hart, and Stork, 2001).

2.2.1 Pattern Classfication

In a pattern classification problem, we seek to come up with a rule for using
observable features of objects in order to classify them, where each feature
can take several possible values, which can be represented by real numbers.
For purposes of medical diagnosis, values of the features could represent
the results of certain medical tests. For recognition of written addresses on
envelopes, the relevant area of an envelope could be represented by a grid of
M ×N pixels, with a feature value for each pixel representing the intensity
of light at the pixel, so there would be M × N different features. For face
recognition from color photographs using a grid of M × N pixels, feature
values could include representations of each of the RGB values of each pixel
(the intensities of red, green, and blue components of the color of the pixel),
so there would be 3×M ×N features.

Each observable feature can be treated as a dimension in a D-dimensional
feature space. If there is a single feature, F , the feature space is one-
dimensional, a line. A point in the feature space has a single F coordinate
representing the value of that feature. If there are two features, F1 and
F2, the feature space is the two-dimensional plane and each point has two
coordinates, an F1 coordinate and a F2 coordinate, indicating the values of
those two features. If there are three features, F1, F2, and F3, a point in
the three-dimensional feature space has an F1 coordinate, representing the
value of feature F1, an F2 coordinate, representing the value of feature F2,
and an F3 coordinate, representing the value of feature F3.

In the case of the M×N color pixels, there are 3×M×N dimensions to
this space. Each point in this large feature space has 3×M×N coordinates.
Each such point represents a particular possible picture, a particular way of
assigning feature values to the color pixels.

Data for learning can then be represented by labeled points in the feature
space. The coordinates of each such point represent an object with the
corresponding feature values. The label indicates the correct classification
of that object, perhaps as judged by some expert.

A possible new case to be categorized is then represented by an unlabeled
point, the inductive task being to interpolate or extrapolate labelings from
already labeled data points to the unlabeled point (Figure 2.1).
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?
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Figure 2.1: Feature Space: Red dots label points that are categorized as
YESes; white dots label points that are categorized as NOs. The point at
the question mark is unlabeled.

2.2.2 Function Estimation

A related problem is the problem of using data for function estimation. We
can think of this problem as like a categorization problem, where each of the
D arguments of a function as features in a D dimensional feature space and
where the value of the function for specified arguments is the correct labeling
of the relevant point in feature space. However, there are two important
differences between categorization and function estimation. One difference is
that categorization involves applying one of a small finite number of possible
categories (for example, two—YES and NO), while the possible values of
a real-valued function are normally nondenumerably infinite. The other
difference is that in a categorization problem, it does not in general make
sense to consider the distance between a wrong answer and the right answer,
while this does make sense for function estimation.

A function estimation problem can be considered a “curve fitting prob-
lem” if the value of the function of D arguments is represented as a curve
in D + 1 dimensional space. To take a very simple example (Figure 2.2),
assume that there is an unknown function f(x) of one argument x and the
task is to use data to estimate the function. Each datum can be represented
as a point in the plane, where the x coordinate represents the value of the
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Figure 2.2: Curve Fitting

argument and the y coordinate represents the value of the function accord-
ing to that particular datum. The task is to estimate the function by fitting
a curve to the data.

2.3 Background Probability Distribution

In general, in classification problems there will not be a perfect correlation
between observed features and the best classifications an objects with those
features. For one thing, there may be noise or errors in measurement in the
observed features. Furthermore, the relation between features and classifi-
cation may be at best merely probabilistic even apart from issues of noise.
For example, suppose the task is to recognize whether a person is currently
happy, given only a picture of the expression on his or her face. It may very
well be true that a person with with a certain visual expression is sometimes
happy and sometimes sad, so that the relation between the features revealed
in that picture and the correct classification of the person as happy or sad
is only probabilistic.

Similarly, as illustrated in Figure 2.2, function estimation must allow
for noise in the data, as well as the possibility that the functions depend on
other factors than those being studied, so again the relation between a given
set of arguments and the value of a given function is only probabilistic.

We have already suggested that questions about the reliability of induc-
tive conclusions presuppose that there is a possibly unknown background
statistical probability distribution. Discussions of the reliability of a rule of
classification presuppose that there is a statistical probabilistic connection
between observable features and correct classification. And discussions of
the reliability of a rule of function estimation presuppose that there is a
statistical probabilistic connection between observable arguments and the
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value of the function.
So, we assume that there is a background probability distribution P

which (among other things) defines the conditional probabilities that an item
is correctly classified as an A given that it has certain observed features,
P (A|F1&F2&F3& . . .). Or we assume that the background probability P
defines in this way the conditional probabilities that value of a given function
is A given the observation of arguments whose values are F1&F2&F3& . . ..1

In other words, we assume that the data represent a random sample
arising from the background probability distribution and we assume that
new cases that are encountered are also randomly produced by that distri-
bution. We do not assume that we know what that distribution is. We do
not assume it is a normal distribution or that its mean, standard deviation,
etc. is known. In other words, this is a problem in “nonparametric statis-
tics,” because nothing is assumed about the parameters of the background
probability distribution.

The only assumptions made about the background probability distribu-
tion are (1) that the probability of the occurrence of an item with certain
features and classification is independent of the occurrence of other items
and (2) the same distribution governs the occurrence of each item. One fa-
miliar example of an assumption of probabilistic independence and identical
distribution is the assumption that the probability that a tossed coin will
come up heads is independent of the results of other tosses and that the
probability of heads for each toss is the same. (Given a theory based on an
assumption of such probabilistic independence and identical distribution, it
may be possible to extend the theory by relaxing the assumptions of inde-
pendence and identical distribution, but we will not consider such extensions
in this book.)

The gambler’s fallacy , mentioned briefly in the previous chapter, rests
on a confusion about probabilistically independent events. After a tossed
coin has come up heads four times in a row, the gambler’s fallacy leads to
the thought that the probability of heads on the next toss is considerably
greater than one half “because heads is due.”

This thought may rest on the following reasoning:

The coin is fair, so it should come up heads about half the time in
a long enough string of tosses. In particular, it is quite probable
that heads will come up between four and six times in ten tosses.
Since heads has not come up in the first four tosses, it needs to

1In many contexts, conditional probability densities are required, rather than simple
conditional probabilities. See, for example, Duda, Hart, and Stork, 2001.
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come up at least four times in the next six. So the probability
of getting heads on the next toss is at least 4/6.

This reasoning is mistaken. Given that the results of tosses of the coin
are probabilistically independent and that the coin is fair, the probability
of heads on the next toss is still 1/2. It is still true that in the long run,
the frequency of heads should be about 1/2, despite the initial run of four
tails. The impact of any finite number of initial results will be dwarfed by
the impact of the rest of the idealized long run. The “long run” is infinitely
long and so much longer than any merely finite beginning. Any infinite
series with about half heads and half tails will continue to have about half
heads and half tails even if any large finite number of tails are added to the
beginning.

2.4 Reliability of Rules of Classification and Function
Estimation

2.4.1 Reliability of a Classification Rule

We have discussed the distinction between rules of classification and a method
for finding those rules. We have discussed how items to be classified might be
represented as points in a feature space and how data might be represented
as labeled points in a feature space. We have noted that the reliability of a
rule of classification depends on a possibly unknown background statistical
probability distribution. And we have noted that we might be able to make
only minimal assumptions about that background probability distribution,
namely, the assumption of probabilistic independence and identical distri-
bution (although as we have mentioned, this assumption can be relaxed in
various ways).

We can now distinguish two questions.

1. With respect to the (unknown) background probability distribution
what is a best rule of classification?

2. If the background probability distribution is unknown, under what
conditions can data be used to find a best (or good enough) rule of
classification.

One possible answer to the first question is that the best rule is the one
that minimizes expected frequency of error, where the expected frequency
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of error is determined by the probability (according to the unknown back-
ground probability distribution) that a use of the rule will lead to an error.

That answer assumes all errors are equally bad. If certain sorts of errors
are worse than others, that can be taken that into account. It could happen,
for example, in medical testing, where false positives might be be less serious
than false negatives. We might then assign different weights or costs to
different sorts of errors and then treat the best rule as the one that minimizes
expected cost.

The best rule is standardly called the “Bayes Rule” (e.g., Hastie et al.,
2001, p. 21). Given the (unknown) background probability distribution, the
Bayes Rule is the rule that for each set of features chooses the classification
with the smallest expected cost, given that set of features. In the special case
in which all errors are equally bad, the Bayes Rule is the rule that chooses, for
each set of features, the classification with greatest conditional probability
given that set of features, which results in the smallest probability of error.
(For simplicity in what follows we will treat all errors as equally bad and
take the best rule to be the rule that simply minimizes expected error.)

2.4.2 Reliability of a Rule of Function Estimation

Recall that, in addition to having to allow for noise in the data, function
estimation must also allow for the possibility that the function in question
depends on additional arguments beyond those we are considering. So, given
values of those arguments, there will be various possible values of the func-
tion whose probabilities (or probability densities) are determined by the un-
known background probability distribution. On a particular occasion when
those are the values of the arguments, the function will have a particular
value. The amount of error on that occasion of a particular estimate of the
value of the function for those values of the arguments might be measure
either by the absolute value of the difference between the estimate and the
value of the function on that occasion or by the square of that difference.
More generally, the expected error of that estimate with respect to those
arguments is the sum of the possible amounts of error of the rule for those
arguments weighted by the probability of those errors.2 A rule or estimate
for the whole function, covering all possible arguments has an expected error
equal to the sum of its expected errors for various values of its arguments
weighted by the probability of needing to estimate the value of the func-
tion for those values of its arguments.3 In this way, any rule of function

2Or an integral using probability densities rather than probabilities. We omit details.
3Again, normally this would be an integral rather than a sum.
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estimation has an expected error determined by the background probability
function. The Bayes Rule for estimating a function is then the best rule,
that is, the rule for estimating that function with the lowest expected error
in general.

2.5 Inductive Learning

Is there an inductive method that will lead to the acceptance of the Bayes
Rule, given enough data?

One way to proceed would be to try to use data first to discover or
at least approximate the background probability distribution and then use
that probability distribution to determine the Bayes rule. But as we shall
see that turns out to be impractical. Indeed, there is no practical way of
finding the Bayes Rule, given enough data, that will work no matter what
the background probability distribution.

Setting our sights somewhat lower, we can consider the following induc-
tive learning question: “To what extent can we use data to find a rule of
classification or function estimation estimation with performance that is as
good as (or comparable to) the performance of the Bayes Rule?”

The third chapter describes a positive answer to this last question. There
is a sense in which we can use data to find a rules with performance that is
as good as the performance of the Bayes Rule.

But in order to explain that answer, it will be useful to spend the rest
of this chapter considering the performance of the method of enumerative
induction that we began to discuss last time. In the first chapter we gave an
example of enumerative induction to a rule of categorization. Enumerative
induction might also be used to find a rule of function estimation. Recall
that enumerative induction is a method for using data to choose a rule from
a restricted set of rules C: choose the (or some) rule with minimium error
on the data for rules in C.

The idea behind enumerative induction is, first, to use a rule’s “empirical
risk”, its rate of error on the data as an estimate of its expected error on
new cases and then, second, to choose a rule from C whose empirical error
on the data is least.

It is possible that several rules from C are tied for having the same
minimal error on the data. In that case, we will say that enumerative
induction endorses all of the tied rules.

As we mentioned in the first chapter, this method is useful only if there
are significant limits on the rules included in C. If all possible rules are
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included, then the rules that minimize error on the data will endorse all
possible judgments for items with features that do not show up in the data—
all possible interpolations and extrapolations to other cases.

On the other hand, as we also mentioned last time, if there are significant
limits on the rules in C, then C might not contain the Bayes Rule, the rule
with the least expected error. In fact, C might not contain any rule with
expected error comparable to the minimal expected error of the Bayes rule.
The best rules in C might well have significantly greater expected error than
the Bayes Rule.

Still, there will be a certain minimum expected error for rules in C. Then
the goal of enumerative induction will be to find a rule with expected error
that is near that minimum value. Or, since no method can be expected to
find such a rule without a sufficient amount of data, the goal will be to find
such a rule given a sufficient amount of data. Actually, even that goal is
too ambitious in comparison with the goal of probably finding such a rule.
That is to say, a realistic goal is that, with probability approaching 1, given
more and more data, the expected error of a rule endorsed by enumerative
induction at each stage will approach the minimum value of expected error
for rules in C.

2.5.1 Linear Classification and Estimation Rules

Let us consider an example of enumerative induction to a classification rule.
Recall that we are thinking of the observable features of objects as repre-
sented in a feature space. Let us suppose that we are interested in a very
simple YES/NO classification of some sort. The features might be the re-
sults of D different medical tests. The classification of the person with those
results might be either YES, has “metrocis” (an imaginary illness) or NO,
does not have metrocis. The feature space has D dimensions, one for the
result of each test. In this case any classification rule determines a set of
points for which the classification is YES according to that rule. The re-
maining points are classified NO by the rule. So, instead of thinking of rules
as linguistic or symbolic expressions, we can think about the corresponding
sets of points in feature space (Figure 2.3), perhaps certain scattered areas
or volumes or hypervolumes of the space—“hypervolumes,” because the di-
mensions of the feature space will typically be greater than three dimensions.

Linear classification rules are a very simple case which divide the feature
space into two parts separated by a line or hyperplane, with YES on one
side and NO on the other. If there are two medical tests with results F1
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YES

NO

F1

F2

Figure 2.3: Rules as Sets of Points in Feature Space

and F2, then one possible classification rule would classify the patient as
having metrocis if the F1 + 2F2 > 6 and otherwise classify the patient as
not having metrocis. That is a linear classification rule in the sense that the
rule distinguishes the YESes from the NOs by the straight line intersecting
the F2 axis at (0, 3) and the F1 axis at (6, 0) (Figure 2.4).

YES

NO

F1

F2

Figure 2.4: Linear Classification: Metrocis

For any given data, it is easy to find a linear classification rule with
minimum error on the data. But of course such rules are limited in what
they can represent. They cannot for example represent an XOR rule in
a 2-dimensional feature space, where features can have either positive or
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negative values. An XOR rule classifies as a YES those and only those
points for which the product of X and Y is negative. Points classified as
NO are those for which the produce is positive (because both X and Y are
positive or because both are negative). Clearly, it is not possible to separate
the YES (red) and NO (white) points in Figure 2.5 using a straight line.

F1

F2

Figure 2.5: XOR Representation Problem for Linear Rules

Of course there are other sorts of classification rules besides linear rules.
For example there are the inner circular rules as represented by the insides
of circles or hyperspheres in the space. A rule of this sort categorizes all
points inside a particular circle or hypersphere as YES and all other points
as NO. There are the outer circular rules, represented by the outsides of
circles or hyperspheres. There are circular rules consisting in both inner
and outer circular rules. There are box rules that include both inner box
rules and outer box rules. There are quadrant rules that include the rule for
XOR. For any set of sets of points in feature space, there is a corresponding
set of classification rules.

From this perspective there are many more classification rules than there
are linguistic or symbolic representations of classification rules.

It may seem that linear categorization rules will rarely be useful.4 But
linear estimation rules are often quite useful. We noted in our first chapter
a number of areas in which linear rules provide better estimates than people
can provide, even experts—predicting the success of medical interventions,
predicting criminal recidivism, predicting tomorrow’s weather, predicting
academic performance, predicting loan and credit risk, predicting the quality
of a French wine vintage, to mention only a few (from Bishop and Trout

4Linear categorization rules do play an important role in support vector machines, as
we will explain in our last chapter.
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2005, pp. 13-14).

2.6 Conditions for Satisfactory Enumerative Induction

As we have emphasized, enumerative induction only works given a limited
set C of rules. What we would like to know is what has to be true of the set
C of rules if enumerative induction is to work no matter what the unknown
background frequency distribution.

In other words, what has to be true of the set C in order to guarantee
that, with probability approaching 1, given more and more data, the ex-
pected error for the rules enumerative induction endorses at each stage will
approach the minimum value of expected error for rules in C?

You might wonder whether this sort of convergence isn’t guaranteed
by the statistical law of large numbers. That principle implies that with
probability approaching 1, the empirical error of any particular rule will
approach the expected error of that rule, given more and more data. But
this is not the same as what is wanted. The trouble is that, given infinitely
many rules, as more and more data are taken into account, the rules endorsed
by enumerative induction can change infinitely often. Even if the empirical
error for each rule approaches a limit, that does not imply anything about
the limit of the empirical error of the varying rule endorsed by enumerative
induction at each stage.

For example, C could contain a rule c0 whose expected error is 0.1 and, in
addition, an infinite series of rules c1, c2, . . . , cn, . . ., each of whose expected
error is 0.5 but such that the empirical error of the rule cn is 0 after n data
points. In that case, the empirical error of the varying rule endorsed by
enumerative induction at each stage will be 0, but the expected error of the
rules made available will always be 0.5. So, the empirical error of the rules
endorsed at each stage will not approach the minimum value of expected
error for rules in C, namely 0.1.

What is needed then is not just that the empirical error of each rule
should converge to its expected error but also that the empirical error of
the varying rules enumerative induction endorses should approach the value
of the expected error of that rule in the limit. If cn is a rule enumerative
induction endorses after n data points, then what is needed is that the em-
pirical error of the rule cn after n data points should approach the expected
error of cn in the limit. In that case, with probability approaching 1, given
more and more data, the expected error of the varying rules enumerative
induction endorses will approach in the limit the minimum value of expected



34 Reliable Reasoning

error for rules in C.
This will happen if (with probability approaching 1) the empirical error

of the rules in C converge uniformly to their expected error. If Rc is the
expected error of the rule c and R̂n

c is the empirical error of the rule c after n
data points, and max(|R̂n

c −Rc|) is the maximum value of the absolute value
of the difference between the empirical error of a rule in C and its expected
error, then the empirical error of the rules in C converges uniformly to their
expected error just in case max(|R̂n

c −Rc|) converges to 0.
What has to be true of the set of rules C for such uniform convergence?

Vapnik and Chervonenkis (1968) show (in effect) that this condition is met
for classification rules if and only if the set of classification rules C is not
too rich, where the richness of the set is measured by what has come to be
called its “VC dimension.” (Results with a similar flavor hold for estimation
rules with suitably modified notions of dimension, but we will here discuss
the result only for classification rules.)

Suppose that some set of N points in the feature space are shattered by
rules in C in the sense that, for any possible labeling of those points, some
rule in C perfectly fits the points so labeled. Then the VC dimension of the
set of rules C is at least N . More specifically, the VC dimension of a set of
rules C is the largest number N such that some set of N points in feature
space is shattered by rules in C. If a set of rules does not have a finite VC
dimension—because for any number N there is a set of N points shattered
by rules in C—then the set of rules C has an infinite VC dimension.

Notice that the definition of VC dimension refers to some set of N points
being shattered, not to all sets of N points being shattered. Consider the
set of all linear classifications of points in the plane where the YESes and
NOs are separated by a straight line. The VC dimension of this class of
classification rules is 3, because some set of 3 points in the plane can be
shattered by this class of rules and no set of 4 points can be shattered.
Three collinear points cannot be shattered by this class of rules, because
there is no such rule can classify the middle point as a YES and the outer
points as NOs. But three points that are not collinear can be shattered
because for example, any two can be separated from the third by a straight
line (Figure 2.6). So, the VC dimension of these linear separations is at
least 3. And no four points can be shattered by this class of rules, so the
VC dimension of these linear rules is exactly 3. (If any three of the four
points are collinear, the four points cannot be shattered. Otherwise, either
none of the points is within the triangle defined by the other three or one
of them is. Figure 2.7 indicates labelings that cannot be separated in those
two cases by linear rules.)
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Figure 2.6: Shattering 3 Points in the Plane

Figure 2.7: Not Shattering 4 Points

Some other examples: The VC dimension of the set of all linear sepa-
rations in N -dimensional spaces is N + 1. The VC dimension of the set of
all individual circles in the plane is 4. The VC dimension of the set of all
unions of circles in the plane is infinite.

OK, that is what VC dimension comes to. Vapnik and Chervonenkis
(1968) show, roughly, that enumerative induction is guaranteed to work
no matter what the background probability distribution if and only if the
classification rules in C have a finite VC dimension. More precisely:

no matter what the background probability distribution,
with probability approaching 1,
as more and more data are considered,
the expected error of the rules that enumerative induction en-

dorses
will approach the minimum expected error of rules in C,
if and only if
the rules in C have a finite VC dimension.

Half of this result is that, if the classification rules in C do not have a
finite VC dimension, then no matter how many data points are provided,
there will be probability distributions for which enumerative induction will
not select only rules with expected error close to the minimum for rules
in C. To see this, consider what can be expected after obtaining N items
of data and let K = 1, 000, 000 × N . Since the rules in C do not have a
finite VC dimension, there is a set of K points in the feature space that are
shattered by rules in C. Consider some probability distribution that assigns
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probability 1/K to each of some such set of K points shattered by rules in
C. Any subset of those points will of course also be shattered by those rules.

So, if C does not have a finite VC dimension, then for any N items of
data, there are probability distributions that guarantee that there are rules
in C fitting whatever data is obtained but giving all possible verdicts on all
other points that might come up, where the probability that one of these
other points comes up in any given case is very close to 1. (The probability
that one of the data points comes up again in any given case is 1/1, 000, 000.

This is true no matter how large N is. So it is not true that, with prob-
ability approaching 1, the expected error error of the rules that enumerative
induction leads to will approach the minimum expected error of rules in C
no matter what the background probability distribution.

The other half of Vapnik and Chervonenkis’ (1968) result is that if the
rules in C do have a finite VC dimension, then, with probability approaching
1, the expected error of the rules endorsed by enumerative induction will
approach the minimum expected error of rules in C no matter what the
background probability distribution. If the rules in C have VC dimension
V , there is a function m(V, ε, δ) that indicates the maximum amount of data
needed (no matter what the unknown background frequency distribution)
to ensure that the probability is less than δ that enumerative induction will
endorse a hypothesis with an expected error rate that exceeds the minimum
expected error rate for rules in C by more than ε.

Where there is such a function m(V, ε, δ) there is “probably approx-
imately correct” learning, or PAC learning (terminology due to Valiant,
1984). Where a smaller ε indicates a better approximation to the min-
imum error error for rules in C and where a smaller δ indicates a higher
probability that the rules endorsed will be within the desired approximation
to that minimum expected error.

2.7 Popper

There is an interesting relation between the role of VC dimension in this
result and the emphasis on falsifiability in Karl Popper’s writings in the
philosophy of science. Popper (1934) famously argues that the difference
between scientific hypotheses and metaphysical hypotheses is that scientific
hypotheses are “falsifiable” in a way that metaphysical hypotheses are not.
To say that a certain hypothesis is falsifiable is to say that there is possible

evidence that would not count as consistent with the hypothesis.
According to Popper, evidence cannot establish a scientific hypothesis,
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it can only “falsify” it. A scientific hypothesis is therefore a falsifiable con-
jecture. A useful scientific hypothesis is a falsifiable hypothesis that has
withstood empirical testing.

Recall that enumerative induction requires a choice of a set of rules C.
That choice involves a “conjecture” that the relevant rules are the rules
in C. If this conjecture is to count as scientific rather than metaphysical,
according to Popper, the class of rules C must be appropriately “falsifiable.”
We speculate that VC dimension provides a useful measure of this sort of
“falsifiability.” That is, we speculate that a set of rules C is falsifiable in
the relevant respect if and only if the set C has finite VC dimension.

Many discussions of Popper treat his notion of falsifiability as an all or
nothing matter, not a matter of degree. But in fact Popper does allow for
degrees of falsifiability (2002, sections 31-40). For example, he asserts that
a linear hypothesis is more falsifiable—easier to falsify—than a quadratic
hypothesis. This fits with VC theory, because the collection of linear clas-
sification rules has a lower VC dimension than the collection of quadratic
classification rules.

Popper assumes that the falsifiability of a class of hypotheses is a function
of the number of parameters used to pick out instances of the class. This
turns out not to be correct, as we will discuss in the next chapter.

Our point for now is that it is illuminating to compare the Vapnik-
Chervonenkis result for enumerative induction with Popper’s theory of fal-
sifiability.

2.8 Summary

In this chapter we have continued our treatment of the problem of induction
as a problem in statistical learning theory. We have distinguished inductive
classification from inductive function estimation. The inductive classifica-
tion problem is that of assessing inductive methods for using data to arrive
at a reliable rule for classifying new cases on the basis of certain values of
features of those new cases. We introduced the notion of an N -dimensional
feature space, each point in the feature space representing a certain set of
feature values. We assumed an unknown probability distribution that is
responsible for our encounter with objects and for the correlations between
feature values of objects and their correct classifications. The probability
distribution determines the best rule of classification, namely the Bayes Rule
that minimizes expected error.

For the special case of a YES/NO classification, we can identify a classi-
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fication rule with a set of points in feature space, perhaps certain scattered
areas or hypervolumes. For example, linear rules divide the space into two
regions separated by a line or plane or hyperplane.

The function estimation problem is that of assessing inductive methods
for using data about the value of the function for certain arguments to arrive
at a reliable estimate of the value function over its entire range.

Enumerative induction endorses that rule or those rules from a certain
set C of rules that minimize error on the data. If enumerative induction is
to be useful at all, there have to be significant limits on the rules included
in C. So C may fail to contain any rule with expected error comparable to
the Bayes Rule. So, we cannot expect enumerative induction to endorse a
rule with expected error close to the Bayes Rule. At best it will endorse a
rule with expected error close to the minimum for rules in C. And, in fact,
we have to settle for its probably endorsing a rule close to the minimum for
rules in C.

Vapnik and Chervonenkis (1968) show that for inductive classification,
no matter what the background probability distribution, with probability
approaching 1, as more and more data are considered, the expected error of
the rules that enumerative induction endorses will approach the minimum
expected error of rules in C, if and only if the rules in C have a finite VC
dimension. (A similar result holds for inductive function estimation.)

VC dimension is explained in terms of shattering. Rules in C shatter a
set of N data points if and only if for every possible labeling of the N points
with YESes and NOs, there is a rule in C that perfectly fits that labeling.

In other words, there is no way to label those N points in a way that
would falsify the claim that the rules in C are perfectly adequate. This
points to a possible relationship between the role of VC dimension in learn-
ing by enumerative induction and the role of falsifiability in Karl Popper’s
methodology, a relationship we will discuss further in the next chapter.



Chapter 3

Induction and “Simplicity”

3.1 Introduction

We are concerned with the reliability of inductive methods. So far we have
discussed versions of enumerative induction. In this chapter, we compare
enumerative induction with methods that take into account some ordering
of hypotheses, perhaps by simplicity. We compare different methods for
balancing data-coverage against an ordering of hypotheses in terms of sim-
plicity or some simplicity substitute. Then we consider how these ideas from
statistical learning theory might shed light on some philosophical issues. In
particular, we distinguish two ways to respond to Goodman’s (1965) “new
riddle of induction”, corresponding to these two kinds of inductive methods.
We discuss some of Karl Popper’s ideas about scientific method, trying to
distinguish what is right and what is wrong about these ideas. We consider
how the two sorts of induction discussed in this chapter might apply to first
language acquisition. And finally, we consider how an appeal to simplic-
ity or some similar ordering might provide a principled way to prefer one
hypothesis over another skeptical hypothesis that is empirically equivalent
with it.

3.2 Empirical Risk Minimization

In Chapter Two we described an important result (Vapnik and Chervo-
nenkis, 1968) about enumerative induction. In statistical learning theory
enumerative induction is called “empirical risk minimization,” because its
only criterion for choosing a rule from C is that the rule should be one of
the rules in C with the least empirical risk or error on the data. Vapnik and

39
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Chervonenkis show that the method of empirical risk minimization, when
used to select rules of classification, has the following property. If, and only
if, the VC dimension of C is finite, then no matter what the background
probability distribution, as more and more data are obtained, with proba-
bility approaching 1, enumerative induction leads to the acceptance of rules
whose expected error approaches the minimum expected error for rules in
C.1

Moreover, when C has finite VC dimension V we can specify a function,
m(V, ε, δ), which indicates an upper bound to the amount of data needed to
guarantee a certain probability (1− δ) of endorsing rules with an expected
error that approximates that minimum by coming within ε of the minimum.

Now, although this is a very nice result, it is also worrisome, because,
if C has finite VC dimension, the best rules in C can have an expected
error that is much greater than the best possible rule, the Bayes Rule. For
example, the Bayes rule might have an error rate close to 0 while the best
rule in C may have an error rate close to 1

2 , which is no better than random
guessing.

Recall our discussion of linear classification rules, which separate YESes
and NOs in a D-dimensional feature space with a line, a plane, or a hyper-
plane. These rules have VC dimension equal to D + 1, which is finite as
long as the feature space has finite dimension, which it normally does. But
linear rules are by themselves quite limited. Recall, for example, that an
XOR classification rule cannot be adequately represented by a classification
using a linear separation of YESes and NOs. Indeed, the best linear rule for
that classification can have a very high expected error.

To be sure, we can use a class of rules C with many more rules, in
addition to or instead of linear rules; we can do so as long as the the VC
dimension of C is finite. But no matter how high the VC dimension of C, if
it is finite there is no guarantee that the expected error of the best rules in
C will in the limit approach the expected error of the Bayes Rule, no matter
what the underlying probability distribution.

3.3 Universal Consistency

In order to guarantee that for any probability distribution the expected
error of the best classification rules in C will approach (with probability 1)

1As we mentioned, a similar result holds for enumerative induction used to select
rules of function estimation. For the moment, we concentrate on induction to rules of
classification.
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the expected error of the best rule of all, the Bayes Rule, it is necessary
that C should have infinite VC dimension. But then the nice result about
enumerative induction is not forthcoming. We will not be able to specify
a function m(∞, δ, ε) that would provide an upper bound to the amount of
data needed to guarantee a certain probability (1 − δ) of endorsing rules
whose expected error is within ε of the minimum expected error for rules in
C, which in this case will be the error rate of the Bayes Rule.

On the other hand there are other inductive methods for finding catego-
rization rules that do not have the sort of guarantee of uniform convergence
provided by the Vapnik-Chervonenkis result but do have a different desirable
property. In particular, it can be shown that certain methods are universally
consistent. A universally consistent method is one that, for any background
probability distribution, with probability approaching 1, as more and more
data are obtained, the expected error of rules endorsed by the method ap-
proaches in the limit the expected error of the best rule, the Bayes Rule.

Universal consistency does not imply uniform convergence, because there
may be no bound on the amount of data needed in order to ensure (with
probability approaching 1) that the expected error of the rules endorsed by
the method will be within ε of the expected error of the Bayes Rule. However,
no such guarantee can be provided for enumerative induction. Enumerative
induction is not guaranteed to lead to rules with error rate close to the Bayes
Rule. Universal consistency is clearly a desirable characteristic of a method.
It provides a convergence result in that the error rate of the rule endorsed
by a universally consistent method converges to the expected error of the
Bayes Rule. Although it does not guarantee a rate of convergence, it can be
shown that no method can provide a uniform rate of convergence.

3.3.1 Nearest Neighbor Rules

There is a kind of nearest neighbor rule that is universally consistent, al-
though the simplest such rule is not universally consistent.

Recall that data can be represented as labeled points in a feature space.
Suppose that a distance measure is defined on that space. Then the 1-
nearest neighbor method says to classify a new item as having the same
category as the nearest datum in the feature space. Any set of N data
items then serves to specify the corresponding rule of classification (Figure
3.1). As more and more data are obtained, the corresponding rule changes
to adapt to the labels on the new items. The 1-nearest neighbor rule is not
universally consistent, but it can be shown that in the limit the expected
error of the 1-nearest neighbor rule is no more than twice the expected error
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of the Bayes rule, which is quite good if the Bayes rule has a very small error
rate.

Figure 3.1: Nearest Neighbor Classification

It is possible to do better by using a variant of the 1-nearest neighbor
rule. For example, a k-nearest neighbor method says to classify a new item
by looking not just at the nearest datum in the feature space but to the k
nearest data and assigning to the new item the classification of a majority
of those k nearest data. This sometimes (not always) does better than a
1-nearest neighbor rule but is not yet universally consistent.

The key to getting a universally consistent nearest neighbor rule is to let
the number of neighbors used grow with N (the amount of data we have)
but not too quickly. That is we let k be a function of N , so this is called a
kN -nearest neighbor rule. We let kN → ∞ so that we use more and more
neighbors as the amount of training data increases. But we also make sure
that kN

N → 0, so that asymptotically the number of neighbors we use is a
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negligible fraction of the total amount of data. This ensures that we use
only neighbors that get closer and closer to the point in feature space that
we want to categorize. For example, we might let kN =

√
N to satisfy both

conditions.
It turns out that with any such kN (such that kN →∞ and kN/N → 0

are satisfied), in the limit as the amount of training data grows, the per-
formance of the kN -nearest neighbor rule approaches that of the optimal
Bayes decision rule, so this sort of kN nearest neighbor rule is universally
consistent.

Unfortunately, there will always be probability distributions for which
the convergence rate is arbitrarily slow. This is different from enumerative
induction using a class of rules C of finite VC dimension, where convergence
to the best error rate for classification rules in C is not arbitrarily slow and
we can specify a function specifying an upper bound on how much data is
needed to achieve a certain convergence, as we have indicated above. On
the other hand with enumerative induction the rules in C might not contain
the Bayes Rule and might not contain a rule with an error rate that is close
to the error rate of the Bayes’ Rule.

3.4 Structural Risk Minimization

We now want to discuss another kind of universally consistent method for
using data to select a rule of classification. This alternative to enumerative
induction trades off empirical adequacy with respect to data against another
factor, sometimes called “simplicity,” although that is not always the best
name for the other factor.

One example of this sort of method, “structural risk minimization,”
(Vapnik and Chervonenkis 1974) is defined in relation to a class of rules
that includes an infinite nesting of classes of rules of finite VC dimension.
More precisely, C = C1∪C2∪· · ·∪Cn∪· · ·, where C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · ·,
and where the VC dimension of Ci is strictly less than the VC dimension of
Cj when i < j. Any class C of this sort has infinite VC dimension.

Structural risk minimization endorses any rule that minimizes some given
function of the empirical error of the rule on the data and the VC-dimension
of the smallest class containing the rule. It might for example endorse any
rule that minimizes the sum of these two quantities.

It can be shown that there are many ways to choose these nested classes
and the trade-off between fit to data and VC dimension so that structural
risk minimization will be universally consistent by endorsing rules that with
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probability 1 have expected errors which in the limit approach the expected
error of the Bayes Rule.

3.5 Minimum Description Length

Structural risk minimization is one way to balance empirical adequacy with
respect to data against some ordering of rules or hypotheses. In that case
rules are members of nested classes of finite VC dimension and are ordered
by the VC dimension of the smallest class they belong to.

A different sort of ordering of rules uses the lengths of their shortest
representation in some specified system of representation, for example, the
shortest computer program of a certain sort that specifies the relevant label-
ing of points in the feature space (Rissanen 1978, Barron et al. 1998, Chaitin
1974, Akaike 1974, Blum and Blum 1975, Gold 1967, Solomonoff 1964).

The class of rules that are represented in this way has infinite VC dimen-
sion, so enumerative induction with its reliance on empirical risk minimiza-
tion alone will not be effective. But any such ordering of all representable
rules can be used by an inductive method that balances the empirical ad-
equacy of a rule on the data against its place in the ordering and some
methods of this sort will in the limit tend to endorse rules with expected
error approaching that of the Bayes Rule.

Notice, by the way, that if rules are ordered by minimum description
length, it will not be true for example that all linear rules y = ax+b have the
same place in the ordering, because the parameters a and b must be replaced
with descriptions of their values and, given a fixed system of representation,
different values of the parameters will be represented by longer or shorter
representations. For this reason, some linear rules will require considerably
longer representations than some quadratic rules, which will by this criterion
then be treated as “simpler” than those linear rules.

This second sort of ordering by length of representation differs from the
sort used in structural risk minimization in several respects. First, the num-
ber of descriptions of rules in a fixed system of representation is countably
infinite whereas the total number of, say, linear rules conceived as math-
ematical functions is uncountably infinite. So, more rules are taken into
consideration by the first approach than the second. Second, any given
rule in the second sort of ordering will have only finitely many rules ranked
ahead of it, whereas, if all linear rules are ranked ahead of all quadratic
rules, more than finitely many rules will be ranked ahead of any (nonde-
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generate) quadratic rule. This means that the second sort of ordering can
be converted into a well-ordering of rules (by ordering “alphabetically” all
rules whose shortest representations have the same length), whereas the first
sort of ordering cannot be converted into a well-ordering, because in a well-
ordering of items only a finite number of items are ordered between any two
items.

3.6 Function Estimation and Curve Fitting

We have discussed these two sorts of induction as aimed at coming up with
rules of classification. Similar results apply to function estimation or curve
fitting. Here we review our earlier discussion of function estimation and note
how structural risk minimization applies.

Recall that we can think of each of the D arguments of a function as
features in a D dimensional feature space, where the value of the function
for specified arguments on a particular occasion is the correct labeling of
the relevant point in feature space on that occasion. (We have to mention
particular occasions, because the function may depend on other arguments
as well as the one’s we have specified.) A rule estimating the function can
be represented as a curve in a D + 1 space.

We mentioned a very simple example where we are trying to estimate an
unknown function f that we take to depend on a single argument x and the
task is to use data to estimate the function, where the possibly noisy data
provide values of the function for certain values of the argument. We have
already discussed how any estimate of the function has an expected error
determined by the background probability distribution.

Each datum can be represented as a point in the plane, where the x
coordinate represents the value of the argument and the y coordinate rep-
resents the value of the function the datum provides for that value of the
argument. The task is to estimate the function for other points by fitting a
curve to the data.

Obviously, infinitely many curves go through all the data (Figure 3.2).
So there are at least two possible strategies. We can limit the curves to
a certain set C, such as the set of straight lines and choose that curve in
C with the least error on the data. Or we can allow many more curves
in C and use something like structural risk minimization to select a curve,
trying to minimize some function of the empirical error on the data and the
complexity of the curve.

We might measure complexity by the VC dimension of the class C, think-
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Figure 3.2: Curve Fitting

ing of these curves as the border between YES, too high, and NO, too low.
One might use simple enumerative induction to fit a curve to data points,

for example, a linear equation. Or one might balance empirical fit to data
against something else, as in structural risk minimization.

If the ordering against which empirical fit is balanced is supposed to
be an ordering in terms of simplicity, you might object that this wrongly
assumes that the world is simple. But to use simplicity in this way in
inductive reasoning is not to assume the world is simple. What is at issue
is comparative simplicity. Induction favors a simpler hypothesis over a less
simple hypothesis that fits the data equally well. Given enough data, that
preference can lead to the acceptance of very unsimple hypotheses.

3.7 Goodman’s New Riddle

The distinction between empirical risk minimization and structural risk min-
imization sheds light certain philosophical issues. For one thing, it sheds
light on different ways some philosophers have reacted to Nelson Good-
man’s “new riddle of induction” (Goodman, 1967). Goodman asks us to
suppose that we have observed a number of emeralds and found them to be
green and have not observed any emeralds that are not green. From this
we think we can infer that the next emerald we observe will be green and
even that all emeralds are green. But consider the predicate grue, which we
might understand to apply to all things we have so far observed just in case
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they are green and to all other things just in case they are blue and not
at all green.2 All the emeralds we have observed are grue and we have not
observed any emeralds that are not grue. So, it would seem that whatever
inductive reason we have to infer that the next emerald we observe will be
green, we have the same inductive reason to infer that the next emerald we
observe will be grue and so not green. But at most one of these inferences
can be correct, if there are emeralds unobserved so far.

Goodman argues that his example shows that only some hypotheses
can be inductively “confirmed” by their instances. He thinks that whether
a hypothesis is confirmable depends on the predicates used in stating it.
Confirmable hypotheses use only what he labels as “projectible” predicates.
He suggests that the philosophical riddle is to come up with an account
of which predicates are projectible and which are not. He says that his
example shows that green is a projectible predicate whereas grue is not. So,
induction allows us to infer that the next observed emerald will be green
but will not allow us to infer that the next observed emerald will be grue.

Notice that, so understood, Goodman’s riddle concerns what we have
been calling enumerative induction. If no limits are placed on the class C
of classification rules, then enumerative induction does not provide useful
advice about cases that go beyond the data. The riddle, so understood, is
to say what limits are to be placed on C. Goodman argues that C must be
limited to a certain specific class of rules, the confirmable rules, the rules
using only projectible predicates, where he seeks to identify those particular
predicates. He proposes that the projectible predicates are the “entrenched”
predicates, the predicates that have in the past been projected.

Goodman’s idea contrasts with the account of induction in statistical
learning theory which does not suppose that enumerative induction is pos-
sible only in relation to a certain particular class of hypotheses. The Vapnik
Chervonenkis result is that any class of hypotheses with finite VC dimension
can be used.

Goodman’s riddle has received extensive discussion by philosophers (some
collected in Stalker 1994, and Elgin 1997). While many authors suppose
that the solution to the new riddle of induction requires specifying some rel-
evant class of projectible hypotheses, others have argued instead that what
is needed is an account of “degrees of projectibility,” where for example in-
tuitively simpler hypotheses count as more projectible than intuitively more
complex hypotheses.

One observation about these two interpretations of the riddle is that

2We have modified his example slightly.
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the first, with its emphasis on restricting induction to a special class of
projectible hypothesis, involves identifying induction with enumerative in-
duction, conceived as empirical risk minimization, with the advantages and
disadvantages of considering only rules from a a class of rules with finite VC
dimension. The second interpretation, with its emphasis on degrees of pro-
jectibility, can allow consideration of rules from a class of rules with infinite
VC dimension. It can do this by abandoning simple enumerative induc-
tion in favor of structural risk minimization or some other way of balancing
data-coverage against simplicity or projectibility.

Ohilosophers discussing Goodman’s new riddle have not fully appreci-
ated that these two ways of approaching the new riddle of induction involve
different kinds of inductive methods, empirical risk minimization on the one
hand and methods that balance fit to data against something else on the
other hand.

One philosophically useful thing about the analysis of inductive reason-
ing in statistical learning theory is the way it sheds light on the difference
between these two interpretations of Goodman’s new riddle.

3.8 Popper on Simplicity

We now want to say something more about Popper’s (1934, 1979) discussion
of scientific method. We noted earlier that Popper argues that there is no
justification for any sort of inductive reasoning, but he does think there are
justified scientific methods.

In particular, he argues that a version of structural risk minimization
best captures actual scientific method (although of course he does not use
the term “structural risk minimization”). In his view, scientists accept a
certain ordering of classes of hypotheses, an ordering based on the number
of parameters needing to be specified to be able to pick out a particular
member of the class. So, for example, for function estimation with one
argument, linear hypotheses of the form y = ax + b have two parameters,
a and b, quadratic hypotheses of the form y = ax2 + bx + c have three
parameters, a, b, and c, and so forth. So, linear hypotheses are ordered
before quadratic hypotheses, and so forth.

Popper takes this ordering to be based on “falsifiability” in the sense
at least three data points are needed to “falsify” a claim that the relevant
function is linear, at least four are needed to “falsify” the claim that the
relevant function is quadratic, and so forth.

In Popper’s somewhat misleading terminology, data “falsify” a hypothe-
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sis by being inconsistent with it, so that the hypothesis has positive empirical
error on the data. He recognizes, however, that actual data do not show that
a hypothesis is false, because the data themselves might be noisy and so not
strictly speaking correct.

Popper takes the ordering of classes of hypotheses in terms of parameters
to be an ordering in terms of “simplicity” in one important sense of that
term. So, he takes it that scientists balance data-coverage against simplicity,
where simplicity is measured by “falsifiability” (Popper 1934, section 43).

We can distinguish several claims here.

(1) Hypothesis choice requires an ordering of nested classes of hypotheses.

(2) This ordering represents the degree of “falsifiability” of a given class
of hypotheses.

(3) Classes are ordered in accordance with the number of parameters
whose values need to be specified in order to pick out specific hy-
potheses.

(4) The ordering ranks simpler hypotheses before more complex hypothe-
ses.

Claim (1) is also part of structural risk minimization. Claim (2) is similar
to the appeal to VC dimension in structural risk minimization. As we will see
in a moment, claim (3) is inadequate and, interpreted as Popper interprets
it, it is incompatible with (2) and with structural risk minimization. Claim
(4) is at best terminological and may just be wrong.

Claim (3) is inadequate because there can be many ways to specify the
same class of hypotheses, using different numbers of parameters. For ex-
ample, linear hypotheses in the plane might be represented as instances of
abx + cd, with four parameters instead of two. Alternatively, notice that it
is possible to code a pair of real numbers a, b as a single real number c, so
that a and b can be recovered from c. That is, there are functions such that
f(a, b) = c, where f1(c) = a and f2(c) = b.3 Given such a coding, we can
represent linear hypotheses as f1(c)x+f2(c) using only the one parameter c.
In fact, for any class of hypotheses that can be represented using P param-
eters, there is another way to represent the same class of hypotheses using
only 1 parameter.

3For example, f might take the decimal representations of a and b and interleave them
to get c.
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Perhaps Popper means claim (3) to apply to some ordinary or preferred
way of representing classes in terms of parameters, so that the representa-
tions using the above coding functions do not count. But even if we use
Popper’s preferred representations, claim (3) conflicts with claim (2) and
with structural risk minimization.

Figure 3.3: Function Estimation using Sine Curves

To see this, consider the class of sine curves y = a sin(bx). No set of
n data points will serve to “falsify” the claim that the relevant function
is included in the class of sine curves (Figure 3.3). So the class of sine
curves has infinite “falsifiability” in Popper’s sense even though only two
parameters have to be specified to determine a particular member of the
set, using the sort of representation Popper envisioned. Popper himself did
not realize this and explicitly treats the class of sine curves as relatively
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simple in the relevant respect (1934, Section 44).

The class of sine curves can also be seen to have infinite VC dimension
if we think of the curves as rules for classifying points as “too high” or
“not too high.” Any set of n points in the plane with different nonzero x
coordinates can be shattered by curves from this set by making sure that
a is large enough to exceed the maximum distance of any data points from
the x axis and by making sure that b is large enough to ensure that the
frequency of the sine function is high enough to sweep among the points in
such a way as to cover all possible labelings of the points as above or below
the wanted curve.

The fact that the class of sine curves has infinite VC dimension and
infinite falsifiability in Popper’s sense, shows perhaps that the relevant or-
dering of hypotheses for scientific hypothesis acceptance is not a simplicity
ordering, at least if sine curves count as “simple”.

3.9 First Language Acquisition

To turn to a very different topic, we briefly consider how statistical learning
theory could be relevant to theories of first language acquisition. Chomsky
and many other linguists have argued human languages are basically the
same in structure, sharing certain principles of universal grammar, while
differing in vocabulary and in other respects. According to the principles
and parameters model, structural differences between languages can be rep-
resented in terms of certain parameters determining for example whether
the head of a phrase comes before or after its complements. Parameters
can have default or unmarked settings. A child acquiring a first language
uses the unmarked setting of a parameter unless presented with sufficient
evidence for the marked setting.

On the one hand, then, we might treat language acquisition as a special
case of enumerative induction (empirical risk minimization) with a limited
class C of hypotheses provided by universal grammar. On the other hand,
it might seem better to treat such language acquisition as a special case of
balancing fit to data against a preference for certain features in the language,
namely, the default or unmarked settings that are preferred in the absence
of counter-evidence.
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3.10 Empirically Equivalent Rules

Finally, we consider whether empirically equivalent hypotheses must always
be treated in the same way in statistical learning theory. In particular,
what about scientific hypotheses in comparison with empirically equivalent
skeptical hypotheses?

Suppose two hypotheses, H and D, are empirically equivalent. For ex-
ample, where H is some highly regarded scientific hypothesis, let D be the
corresponding demonic hypothesis that a powerful god-like demon has ar-
ranged that the data you get will be exactly as expected if H were true.
Could simplicity as analyzed in statistical learning theory provide a reason
to accept H rather than D?

One might suppose that the answer is “no”, because the kinds of analyses
provided by statistical learning theory concern how to minimize expected
errors and these hypotheses make exactly the same predictions. Indeed, if we
identify the hypotheses with their predictions, they are the same hypothesis.

But it isn’t obvious that hypotheses that make the same predictions
should be identified. The way a hypothesis is represented suggests what class
of hypotheses it belongs to for purposes of assessing simplicity. Different
representations suggest different classes. Even mathematically equivalent
hypotheses might be treated differently within statistical learning theory.
The class of linear hypotheses, f(x) = ax + b, is simpler than the class of
quadratic hypotheses, f(x) = ax2 + bx+ c, on various measures—number of
parameters, VC-dimension, etc. If the first parameter of a quadratic hypoth-
esis is 0, the hypothesis is mathematically equivalent to a linear hypothesis.
But its linear representation belongs to a simpler class than the quadratic
representation. So for purposes of choice of rule, there is reason to count
the linear representation as simpler than the quadratic representation.

Similarly, although H and D yield the same predictions, there is a sense
in which they are not contained in the same hypothesis classes. We might
say that H falls into a class of hypotheses with a better simplicity ranking
than D, perhaps because the class containing H has a lower VC-dimension
than the class containing D. The relevant class containing D might contain
any hypothesis of the form, “The data will be exactly as expected as if φ
were true,” where φ ranges over all possible scientific hypothesis. Since φ
has infinite VC-dimension, so does this class containing D. From this per-
spective, there is reason to prefer H over D even though they are empirically
equivalent.

So, we may have reason to think that we are not just living in the Matrix
(Wachowski and Wachowski 1999)!



Induction 53

3.11 Important Ideas from Statistical Learning Theory

Here are some of the ideas from statistical learning theory that we have
discussed so far that we believe are philosophically and methodologically
important.

Statistical learning theory provides a way of thinking about the reliability
of a rule of classification in terms of expected cost or expected error, where
that presupposes a background statistical probability distribution.

With respect to rules of classification, there is the notion of the Bayes
Rule, the most reliable rule, the rule with the least expected error or ex-
pected cost.

There is the idea that the goodness of an inductive method is to be
measured in terms of the reliability of the classification rules the method
comes up with.

There is the point that useful inductive methods require some inductive
bias, either as reflected in a restriction in the rules in C or as a preference
for some rules in C over others.

There is the idea of shattering, as capturing a kind of notion of falsifia-
bility, and the corresponding notion of VC dimension.

There is the contrast between uniform convergence of error rates and
universal consistency.

In the next chapter we will discuss some additional ideas from statisti-
cal learning theory and will consider their significance for psychology and
cognitive science as well as for philosophy.

3.12 Summary

In this lecture, we compared enumerative induction with methods that also
take into account some ordering of hypotheses. We discussed how these
methods apply to function-estimation and curve fitting. We compared two
different methods for balancing data-coverage against an ordering of hy-
potheses in terms of simplicity or some simplicity substitute. We noted that
there are two ways to respond to Goodman’s (1965) new riddle of induction,
corresponding to these two kinds of inductive method. We also discussed
some of Karl Popper’s ideas about scientific method, trying to distinguish
what is right and what is wrong about these ideas. We made some brief
remarks about language acquisition. Finally, we considered how appeal to
simplicity or some similar ordering might provide a principled way to prefer
one hypothesis over another skeptical hypothesis that is empirically equiva-
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lent with it.



Chapter 4

Neural Networks, Support
Vector Machines, and
Transduction

4.1 Introduction

In our three previous chapters we discussed methods of induction that ar-
rive at general rules of classification on the basis of empirical data. We
contrasted enumerative induction with nearest neighbor induction and with
methods of induction that balance empirical risk against some sort of order-
ing of hypotheses, including structural risk minimization in which classes of
hypotheses are ordered by their VC dimension. We compared results about
these methods with philosophical discussions by Nelson Goodman and Karl
Popper.

In this final chapter, we briefly sketch some applications of statistical
learning theory to machine learning, including perceptrons, feed forward
neural networks, and support vector machines. We consider whether sup-
port vector machines might provide a useful psychological model for human
categorization. We describe recent research on “transduction.” Where in-
duction uses labeled data to come up with rules of classification, transduc-
tion also uses the information that certain unlabeled new cases have come
up.

The theory of transduction suggests new models of how people some-
times reason. The hypothesis that people sometimes reason transductively
provides a possible explanation of some psychological data that have been
interpreted as showing that people are inconsistent or irrational. It also

55
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Figure 4.1: Perceptron

provides a possible account of a certain sort of “moral particularism.”

4.2 Machine Learning: Perceptrons

A rule of classification assigns a classification to each point in a certain fea-
ture space. Such a rule might be instantiated in a classification machine,
which takes as input a representation of a set of features and outputs a clas-
sification of an item with that set of features. Let us consider in particular
the simplest case in which the classification has two possible values, YES
and NO, which might be represented by outputting 1 or 0.

Learning machines use data in order to produce or turn themselves into
classification machines. Some learning machines begin with a more or less
randomly chosen classification machine which is then modified in the light
of the data. In cases, the data are used to “train” classification machines.

A perceptron (Figure 4.1) is a classification machine with D inputs, one
for each of the D observable features an object can have. The perceptron
takes a weighted sum of its inputs, and outputs 1 if this sum is greater than
a specified threshold and 0 if it is not.

The particular classification rule implemented by a perceptron is deter-
mined by a set of weights indicating the strength of the connection between
each input and the perceptron. There is a simple perceptron learning pro-
cedure. The perceptron is trained by using data to suggest changes of the
weights of the input connections. Before learning, the weights on the inputs
are assigned random values (positive and negative). For each datum, the
values of its features are input to the perceptron. If the perceptron out-
puts the correct classification of the datum, no change is made in the input
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weights. If the perceptron outputs the wrong classification, the weights on
the inputs are changed slightly in a particular way in order to make the
weighted sum of the inputs closer to the desired value. This procedure can
be repeated by going through the data as many times as needed.

If the data can all be correctly classified by some perceptron, this per-
ceptron learning procedure will eventually lead to a collection of input con-
nection weights that allows the perceptron to classify all the data correctly.
Once the data have been correctly classified, the weights are fixed and the
perceptron is used to classify new cases.

The qualification, “if the data can all be correctly classified by some
perceptron,” is a significant limitation on this result, because it is easy to
see that a perceptron can only represent linearly separable classifications.
Any given perceptron outputs a YES if and only if the inputs satisfy the
following condition, where the Fi represent the values of the features, the
wi represent the weights of those inputs, and T represents the threshold.

w1F1 + w2F2 + · · ·+ wDFD > T

The equation for the separation between the YESes and the NOs can be
expressed simply by changing the “>” to “=”:

w1F1 + w2F2 + · · ·+ wDFD = T

which is a linear equation, in D variables, representing a hyperplane in the
D dimensional feature space.

F

F

1

2

Figure 4.2: XOR of F1 and F2

You will recall that linearly separable classifications are very limited and
cannot for example represent the XOR classification (Figure 4.2). An XOR
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classifier with two inputs, F1 and F2 indicates YES or 1 if F1F2 ≤ 0 and
NO or 0 if F1F2 > 0. A perceptron classifier cannot serve as an XOR
classifier, because the YES region cannot be separated from the NO region
by a straight line.

It follows of course that, since there cannot be a perceptron classifier
that correctly represents XOR, data cannot be used to train a perceptron
classifier to represent XOR.

The VC dimension of rules represented by a perceptron classifier is D+1,
where D is the number of dimensions in the feature space (that is, the num-
ber of features whose values are points in the space). This is a finite number,
so the strong learning result mentioned in the second chapter applies. There
is a specifiable function that indicates how much data is needed to find a
rule with such and such a probability of an error rate that is within a cer-
tain approximation to the best rule linear rule. On the other hand, linear
classifiers have very limited representational power.

4.3 Feed Forward Neural Networks

FD

F5

F4

F3

F2

F1

...

...

...

?

Figure 4.3: A Feed Forward Network

Feed-forward neural networks address the problem of limited represen-
tational power by combining several layers of perceptrons, the outputs from
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Figure 4.4: Approximating a Convex Hyper-Volume

Figure 4.5: Intersecting Half-Spaces

earlier layers serving as inputs to the perceptrons in later layers (Figure 4.3).

For any rule of classification there is a three layer network that approxi-
mates it to whatever degree of approximation is desired, given enough nodes
per layer.

To see that this is so, recall that any rule of classification is equivalent
to a specification of those points in feature space that are to be classified as
YESes (or 1s). Those points are contained in the union of (convex) hyper-
volumes of the feature space. Each such hyper-volume can be approximated
by a (convex) volume with hyperplanes as sides (Figure 4.4). A different per-
ceptron can be used to capture each of the hyperplane classifications (Figure
4.5). The outputs of these perceptrons can then be sent to a downstream
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AND perceptron that captures the hyper-volume by outputting 1 iff all of
its inputs are 1. The same thing is done for each of the other hyper-volumes.
Their outputs are sent to a final OR perceptron that outputs 1 iff at least
one of its inputs is 1 (Figure 4.6). The whole system then approximates the
intended rule of classification.

We have been supposing that a perceptron outputs a 1 iff the weighted
sum of its inputs exceeds a certain threshold. This is a sharp threshold
in the sense that, a slight change in the weighted sum of the inputs can
make a dramatic change in what is output by the perceptron. For learning
using a feed-forward network of perceptrons, it is useful to replace the sharp
threshold of the perceptrons with a more continuous (S-shaped) threshold.
Then, for example, a learning rule using back propagation of error often
works well in practice. We will not try to explain this further here. Instead
we turn to a different response to the XOR problem.

4.4 Support Vector Machines

Support vector machines (SVMs) provide an alternative response to the
limitations of perceptrons (Vapnik 1998, Part II; 2000, pp. 139ff. Hastie et
al., 2001, pp. 371-389). Instead of adding additional layers to the network,
SVMs begin by mapping the data into a higher-dimensional space in which
the data can be linearly separated. So, for example, the data in the XOR
problem might be mapped into a three dimensional space in such a way
that each point F1, F2 is mapped onto F1, F2, F3, where F3 = F1F2. The
transformed data points are linearly separable in that 3-space by the plane
perpendicular to the F3 axis at F3 = 0, i.e., the plane defined by the F1 and
F2 axes, because the YES items are below that place and the NO items are
above it (Figure 4.7).

Usually, in practice, many different hyperplanes separate the data in the
transformed higher-dimensional space. The data points that touch the space
occupied by the separating hyperplanes are called “support vectors”.

In one SVM approach, the hyperplane that maximally separates the data
(as represented by its distance from the set of “support vectors”) is chosen
to separate the YESes from the NOs.

The equation of the chosen maximally separating hyperplane can then
be used to find the corresponding equation in the original feature space to
separate the YESes from NOs in that space.

In the XOR example, if the chosen rule in the transformed space is
that YESes are those points for which F3 < 0, then, recalling that the
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F1

F2

F3

Figure 4.7: Mapping 2D XOR into 3D. The arrows point to where points in
the F1 F2 plane are mapped to 3-space.

transformation from the original feature space set F3 = F1F2 we get the
result that the YESes are those points for which F1F2 < 0.

Different support vector machines use different mappings from the orig-
inal feature space to a higher dimensional space. The larger space will
normally contain dimensions for all the original features along with further
dimensions representing various products of the features with each other
and themselves. For example, starting with just two features F1 and F2,
there could be three other features F3 = F1F2, F4 = F 2

1 and F5 = F 2
1 F2.

Linear separations in the larger space then correspond to algebraic rules in
the original feature space. The rules represented by any such support vector
machine will have finite VC dimension, because the VC dimension of linear
separations in a finite dimensional space is finite.

It is possible to envision a support vector machine that maps the orig-
inal feature space to an infinite dimensional space with dimensions for all
possible products of the original features with themselves and each other.
Every algebraic rule is represented by a linear separation in that infinite
dimensional space.

Of course the VC dimension of the linear separations in an infinite di-
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mensional space is infinite. But if all cases of interest are confined to a
hypersphere with a finite radius and can be separated with a hyperslab of a
certain thickness or “margin,” the relevant VC dimension is finite (Vapnik
2000, pp. 132-133).

Feed forward neural networks can be seen as a special case of the idea
of mapping the original feature space into another in which the data can be
linearly separated. The earlier parts of the network map the original feature
space into another which is linearly separated by the final unit (Vapnik 2000,
p. 3).

4.5 Psychology and Support Vectors

Support vector machines represent categories through their support vectors,
which determine the borders of the category. It is interesting to consider to
what extent human categorization uses a similar representation.

There is considerable evidence that people represent categories in terms
of paradigm central exemplars, the paradigm dog or the paradigm bird, for
example, which would seem to be the opposite of the sort of representation
used by support vector machines.

But studies of “categorical perception” provide evidence that people are
indeed also sensitive to category boundaries. Differences among items of
different categories seem greater than differences among items of the same
category. As Harnad (1987) explains this:

An example of [categorical perception] is the color spectrum as
it is subdivided into color categories, or an acoustic continuum
called the second-formant transition as it is subdivided into the
stop-consonant categories /ba/, /da/ and /ga/. In both cases,
equal-sized physical differences between stimuli are perceived as
larger or smaller depending on whether the stimuli are in the
same category or different ones. Indeed, the effect is not only
quantitative but qualitative: A pair of greens of different shades
look more like one another than like a shade of yellow (which
may be no more different in wave length from one of the greens
than the other green is), and this difference is one of quality.
The same is true of /ba/’s and /da/’s.

In other words, people do sometimes make distinctions that have to do
with the edges of categories and not just their central exemplars. That is
predicted by the hypothesis that category representation is a kind of SVM
representation.
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This gets into issues about vague and possibly shifting boundaries (Graff
2000). What exactly do we represent. We don’t represent the edges of the
concept, because if we did there would be no vagueness. We represent certain
near borderline cases to which we take the concept to apply and perhaps
other cases to which we take it not to apply.

4.6 Transduction

The inductive learning methods we have considered so far all involve using
labeled data to find a rule that is then used to classify new cases as they
arise.

Furthermore, these methods all involve learning total classifications.
Nearest neighbor methods, perceptrons, multi-layer feed-forward networks,
and standard SVMs all yield rules that assign a classification to every pos-
sible set of features.

We could modify some of these methods to provide only partial classifica-
tions. For example, we could modify modify SVMs not to choose among the
various separating hyperplanes in the space between the support vectors.
The points in this between space would be left unclassified. The system
would still be an inductive method, since it would classify some, perhaps
many, new cases in accordance with a rule derived from labeled data, but
the rule would not be a total rule, since it would not characterize points in
the between space.1

Vapnik (1979, 1998, 2000) considers certain transductive methods for
classifying new cases that arise in the intervening space between support
vectors. These methods use information about what new cases have come
up to be classified and then select a subset of separations that (a) correctly
classify the data and (b) agree on their classifications of the new cases. In
one version, the selected separations also (c) disagree as much as possible
on the classifications of other possible cases.

An important related version of transduction uses not only the infor-
mation that certain new cases have come up to be classified but also the
information that there is a certain set U (“universum”) of examples that
are hard to classify. In this version, transduction selects the subset of linear
separations satisfying (a) and (b) but disagreeing as much as possible on the
classification of the hard cases in U .

Transduction performs considerably better than other methods in certain
difficult real-life situations involving high-dimensional feature spaces where

1This is perhaps like using wide margin SVM classifiers?



Induction 65

there is relatively little data (Joachims 1999, Weston et al. 2003, Goutte et
al. 2004).

4.7 Transduction and Induction

Vapnik (2000, p. 293) says that transduction does not involve first inferring
an inductive generalization which is then used for classification. On the other
hand, Harman (1965, 1967) argues that any such inference should always
be treated as a special case of inference to the best explanation where the
relevant sort of explanation appeals to a generalization. There is an apparent
conflict here, but on analysis the conflict appears to be terminological.

Transduction differs from the other inductive methods we have been
discussing in this way: the classification of new cases is not always based
on an inductive generalization from labeled data. So, transduction does not
involve that sort of inductive generalization. That is because transduction
makes use of the information that certain new cases have come up to be
assessed.

On the other hand, transduction does involve the implicit acceptance of
a non-total generalization P , corresponding to the selected subset of sepa-
rations in the transformed higher dimensional space. So, transduction does
involve inductive generalization in a wider sense, even if not inductive gen-
eralization from the labeled data.

It is true that, although the data include what new cases have come
up, the classifications C that transduction gives to these new cases are not
treated as data. When additional new cases arise, transduction applied to
the old plus the new cases can modify the classifications in C. It might
therefore be said that the principle P derived from accepting C is hostage
to the new cases in a way that inductive generalizations from labeled data
are not. But transduction treats the fact that certain new cases have come
up as data and new data always has the potentiality to change what rule
should be accepted.

In other words, there is a sense in which transduction does not involve
inductive generalization, because the relevant generalization is not arrived
at from the labeled data alone, and there is a sense in which transduction
does involve inductive generalization, because it does arrive at a general rule
based on labeled data plus information about what new cases have come up.

What is important and not merely terminological is that, under cer-
tain conditions, transduction gives considerably better results than those
obtained from methods that use labeled data to infer a rule which is then
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used to classify new cases (Joachims 1999, Vapnik 2000, Weston et al. 2003,
Goutte et al. 2004).

4.8 Do People Use Transduction?

It is an interesting question whether people ever use something like trans-
duction. As far as we know, psychologists have not addressed this question,
which is not surprising given that the theory of transduction is of such recent
origin.

It is true that people often categorize something without being able to
formulate a relevant principle of categorization. But that by itself is com-
patible with their judging on the basis of a general principle. They might be
using an unconscious or implicit principle. Suppose they reach conclusions
using something like feed forward neural networks. Such networks encode
principles in their connection weights and there is no reason to expect people
to have access to the relevant principles.

What evidence might bear on the question whether and when people
use transduction? Notice that how transduction will categorize a new case
can depend on what other new cases have come up. Feed forward neu-
ral networks and other inductive methods do not have this feature. But
as psychologists have amply documented, the way a person categorizes a
new case often does depend on what other new cases are to be categorized.
Psychologists often suggest this illustrates “irrationality” in human think-
ing, a “framing effect,” perhaps. But it may indicate instead that people
sometimes reason transductively.

Gladwell (2005) describes many cases in which people reach judgments
in “the blink of an eye,” judgments that do not seem to be derived from any
sort of general principle and that are quite sensitive to what they have been
thinking about immediately before making the judgment. It is possible that
these examples are instances of some sort of transduction.

Redelmeier and Shafir (1995) discuss the following sort of example.
Suppose that a certain painful condition can be alleviated by either of two
medicines, each of which has different side effects. If only one is available,
doctors tend to prescribe it for this condition. If both are available, doctors
tend to prescribe neither, presumably because they have difficulty deciding
between them. Redelmeier and Shafir treat this as an example of irrational-
ity, but perhaps it merely illustrates a feature of transductive inference,
namely, the categorization of an item depends on what other items are to
be categorized.
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Similarly, customers who come upon a display of six jams, are more apt
to decide to purchase one of the jams than are customers who come upon a
display of twenty four jams including those six (Iyengar and Lepper 2000).
The task of deciding between all twenty four jams is presumably too difficult
to be worth the cost. Schwartz (2004) discusses other examples. Again there
is the question whether such examples are the result of transduction.

Recall too that one promising transductive method includes in the data
that there is there is a set U of examples that are hard to classify. This
version of transduction selects the subset of linear separations that (a) cor-
rectly classify the data, (b) agree on their classifications of the new cases,
and (c) disagree as much as possible on the classification of the hard cases
in U .

Superior courts sometimes seem to reason in this way by trying to resolve
a case at hand in the narrowest possible way so as minimize the impact of
the decision on other hard cases. Of course, because of the role of precedent
in the law, these decisions differ from typical cases of transductive catego-
rization, which (as we have noted) sets no precedent, although the general
theory of transduction can be extended to cover this case also.

Courts will say that they do not want to rule on issues that have not
been argued before them. But, of course, given the doctrine of precedent,
they often do rule on issues that have not been specifically argued before
them. When courts say this, it is presumably because they have in mind a
certain class of hard cases U which they would rather not decide without
further argument. This makes sense from the point of view of the version of
transduction that considers the case in which there is such a set of examples
U and tries to choose a classification of the new cases that have come up that
minimally decides cases in U . (However, as remarked earlier, in the general
case conclusions arrived at via transduction are not treated as precedents
and may be abandoned as new cases arise.)

4.9 Moral Particularism

The theory of transduction might also be relevant to recent discussions of
at least one form of “moral particularism” as opposed to “moral general-
ism” (e.g., Dancy 1993, Sinnott-Armstrong 1999, Hooker and Little 2000,
Kihlbom 2002, Väyrynen, 2004).

An epistemic version of moral generalism holds that the acceptance of
a moral judgment is justified only if it is seen as an instance of a justified
general moral principle. A corresponding moral particularism holds that a
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moral judgment about a particular case can be justified without being seen
as an instance of a justified moral principle.

The issues between particularism and generalism are metaphysical, to
the extent that they concern the source of moral truths, and epistemic (or
psychological) to the extent that they concern the source of reasonable or
justified moral decisions and beliefs.

The metaphysical and epistemic issues are possibly connected. Meta-
physical moral particularism is often defended by appeal to such theses as
that for an act to be morally wrong is for it to be such as to be seen or
judged wrong by a competent moral judge (Wiggins 1998, McDowell 1998),
given that epistemic moral particularism applies to the competent moral
judge.

Harman (2005) argues that the theory of transduction supports a weak
form of epistemic moral particularism. We now have doubts about that
argument, but the issue is too complex for us to discuss here. In any event,
some reasoning that appears to support epistemic moral particularism may
involve moral transduction.

These brief remarks do not show that people actually reason transduc-
tively, but the possibility of such reasoning should be taken seriously.

4.10 Summary

In this book, we have argued that statistical learning theory is highly rele-
vant to issues in philosophy and psychology.

In our first chapter, we treated the problem of induction as the prob-
lem of assessing the reliability of inductive methods. While the problem
is sometimes motivated by comparing induction with deduction, we argued
that such a comparison rests on a confusion about the relation between in-
ference and logic. We noted suggestions that the only real problem is to
say how we actually reasoning inductively. We considered the idea that the
question of reliability can be answered by adjusting one’s methods and be-
liefs so that they fit together in a reflective equilibrium. We argued that,
while there is evidence that people do reason by adjusting their opinions
in the way suggested, there is considerable evidence that the results are
fragile and unreliable, and we pointed out that it is hard to be in reflective
equilibrium if you cannot believe your methods of reasoning are reliable.

Our second chapter described how statistical learning theory is concerned
with assessing inductive methods that use data to arrive at a reliable rules
for classifying new cases on the basis of certain values of features of those
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new cases. This approach to learning uses the notion of an D-dimensional
“feature space,” each point in the feature space representing a certain set
of feature values. The approach assumes that an unknown probability dis-
tribution is responsible for encounters with objects and for the correlations
between feature values of objects and their correct classifications. The prob-
ability distribution determines the best rule of classification, namely the
Bayes Rule that minimizes expected error.

For the special case of a YES/NO classification, we identified a classifi-
cation rule with a set of points in feature space, perhaps certain scattered
areas or hyper-volumes. For example, linear rules divide the space into two
regions separated by a line or plane or hyperplane.

Enumerative induction endorses that rule or those rules from a certain
set C of rules that minimize error on the data. If enumerative induction is
to be useful at all, there have to be significant limits on the rules included
in C. So C may fail to contain any rule with expected error comparable to
the Bayes Rule. So, we cannot expect enumerative induction to endorse a
rule with expected error close to the Bayes Rule. At best it will endorse a
rule with expected error close to the minimum for rules in C. And, in fact,
we have to settle for its probably endorsing a rule close to the minimum for
rules in C.

Vapnik and Chervonenkis (1968) show that no matter what the back-
ground probability distribution, with probability approaching 1, as more
and more data are considered, the expected error of the rules that enumer-
ative induction endorses will approach the minimum expected error of rules
in C, if and only if the rules in C have a finite VC dimension.

VC dimension is explained in terms of shattering. Rules in C shatter a
set of D data points if and only if for every possible labeling of the D points
with YESes and NOs, there is a rule in C that perfectly fits that labeling.

In other words, there is no way to label those D points in a way that
would falsify the claim that the rules in C are perfectly adequate. This
pointed to a possible relationship between the role of VC dimension in learn-
ing by enumerative induction and the role of falsifiability in Karl Popper’s
methodology, a relationship we discussed further in our third chapter.

In that third chapter, we compared enumerative induction with methods
that take into account some ordering of hypotheses, perhaps by simplicity.
We noted that there are two ways to respond to Goodman’s (1965) new rid-
dle of induction, corresponding to these two kinds of inductive method. We
discussed how these methods apply to function-estimation and curve fitting.
We compared two different methods for balancing data-coverage against an
ordering of hypotheses in terms of simplicity or some simplicity substitute.
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We also discussed some of Karl Popper’s ideas about falsifiability, simplicity,
and scientific method, trying to distinguish what is right and what is wrong
about those ideas. Finally, we considered how appeal to simplicity or some
similar ordering might provide a principled way to prefer one hypothesis
over another skeptical hypothesis that is empirically equivalent with it.

In this final chapter, we briefly sketched applications of statistical learn-
ing theory to perceptrons, feed-forward perceptron networks, and support
vector machines. We considered briefly whether support vector machines
might provide a useful psychological model for human categorization. Fi-
nally we discussed “transduction.” Where induction uses data to come up
with rules of classification, transduction uses data directly to classify new
cases as they arise without having used the data to come up with a rules of
classification. The theory of transduction suggests new models of how people
sometimes reason. The hypothesis that people sometimes reason transduc-
tively provides a possible explanation of some psychological data that have
been interpreted as showing that people are inconsistent or irrational. It
also provides a possible account of a certain sort of “moral particularism.”
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