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Abstract

Background: Following transmission, HIV-1 evolves into a diverse population, and next generation sequencing

enables us to detect variants occurring at low frequencies. Studying viral evolution at the level of whole genomes was

hitherto not possible because next generation sequencing delivers relatively short reads.

Results: We here provide a proof of principle that whole HIV-1 genomes can be reliably reconstructed from short

reads, and use this to study the selection of immune escape mutations at the level of whole genome haplotypes.

Using realistically simulated HIV-1 populations, we demonstrate that reconstruction of complete genome haplotypes

is feasible with high fidelity. We do not reconstruct all genetically distinct genomes, but each reconstructed haplotype

represents one or more of the quasispecies in the HIV-1 population. We then reconstruct 30 whole genome

haplotypes from published short sequence reads sampled longitudinally from a single HIV-1 infected patient. We

confirm the reliability of the reconstruction by validating our predicted haplotype genes with single genome

amplification sequences, and by comparing haplotype frequencies with observed epitope escape frequencies.

Conclusions: Phylogenetic analysis shows that the HIV-1 population undergoes selection driven evolution, with

successive replacement of the viral population by novel dominant strains. We demonstrate that immune escape

mutants evolve in a dependent manner with various mutations hitchhiking along with others. As a consequence of

this clonal interference, selection coefficients have to be estimated for complete haplotypes and not for individual

immune escapes.
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Genetic hitchhiking

Background
Inside every human host, HIV-1 embarks upon an arms

race to evade the host’s immune responses [1,2]. A sin-

gle (or a few) founder genetic lineage(s) establish the

infection in the CD4+ cells localized in the mucosa at

the port of entry [1,3-7]. HIV-1 then spreads to regional

lymph nodes where it comes in contact with a large

number of CD4+ T cells. Abundance of CD4+ T cells

allows rampant viral replication resulting in millions of
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viral particles per ml of plasma at peak viremia, occur-

ring ∼21–28 days post infection [3,8]. Interplay between

HIV-1, target cell availability, and the host’s immune sys-

tem during the acute phase of infection leads to a gradual

decline of the viral load, eventually leveling off to a “set

point” [2,5,9]. The decrease in the viral load following

peak viremia is attributed to CD4+ T cell depletion, the

immune responses of HIV-1 specific B cells, and cytotoxic

T cells (CTLs). A high mutation rate and a large popu-

lation size allow HIV-1 to rapidly evolve immune escape

mutants [10,11], and strong CTL selection pressures con-

fer fitness advantage to viral lineages that harbor CTL

escape mutations [3,12,13]. The efficacy and breadth of
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cognate CTL responses increases the within-host HIV-

1 diversity after peak viremia, and plays a major role

in HIV-1 evolution during the acute phase of infection

[5,9,14-19].

Longitudinally collected samples have been used to

study the evolution of escape mutations, which can

be used to estimate the selection pressure imposed by

the corresponding CTL response [11,20,21]. The rate of

escape is typically estimated using a logistic curve to

model the replacement of wildtype epitope by escape

variant [22]. Several escape mutations of the same epi-

tope may occur simultaneously in different viral lin-

eages, but such multiple escape pathways for a single

epitope are generally modeled as a single escape event

[12,17,18,23,24]. Escape mutations typically result in a

fitness cost to the virus, and along different escape path-

ways the virus may face a different selection pressure by

the CTLs [1,20,21,23,25]. Therefore, it was recommended

to consider different escape pathways within the same

epitope as separate escape events [23].

Escape mutations acquired in different epitopes are typ-

ically considered independent events. But in reality mul-

tiple epitopes may escape either in the same lineage, or

in different lineages of the same viral population [1,11].

Viral lineages containing multiple escape mutations are

expected to cause a selective sweep, reducing viral diver-

sity and driving other lineages to extinction. The concur-

rent presence of different escape mutations in different

viral lineages may result in competition between them

in their race towards fixation [23,26,27] via clonal inter-

ference [28,29]. Due to clonal interference, two beneficial

mutations residing in two different lineages out-compete

each other as well as the wild-type when one approaches

fixation. Additional beneficial mutations can be sequen-

tially acquired, ultimately resulting in escape mutations in

multiple epitopes [17,21,23,27]. As a result of clonal inter-

ference, epitope escape mutations may also drive several

non-epitopemutations, co-occurring in the same viral lin-

eage, to fixation via genetic hitchhiking [26,30,31]. Clonal

interference has recently been shown to play an impor-

tant role in the evolution of influenza [26,27]. One would

expect it to also influence the evolution of HIV-1, but as

yet there is no evidence for this.

To study the role of clonal interference and genetic

hitchhiking in HIV-1 evolution, one requires long, or

ideally complete, genome sequences with high coverage

from multiple time points. The availability of longitudi-

nally sampled single genome sequences is rather limited,

and next generation sequencing (NGS) is economically

a more feasible alternative for single genome sequencing

[1,7,32]. One large NGS dataset was generated by Henn

et al. [11], when they performed NGS on complete HIV-

1 genomes from 6 longitudinal samples in one patient

(subject 9213). NGS allowed Henn et al. [11] to study

the dynamics of immune escape mutations in individual

epitopes. However, due to the short sequencing read

lengths of about∼ 400 bp, Henn et al. [11] were not able to

distinguish whether multiple epitopes escape simultane-

ously in the same haplotype ,or independently in distinct

viral haplotypes. We here attempt to reconstruct whole

genome haplotypes from this data. This is challenging due

to two reasons [33,34]. First, a variety of sequencing and

PCR errors are incorporated in sequencing reads, which

require robust error correction techniques to identify the

true mutations [33,35,36]. A second problem concerns the

determination of contiguity of sequencing reads gener-

ated from a single viral genome haplotype. Differences in

prevalence of the genome haplotypes, genetic distances

between polymorphic sites, and the amount of sequenc-

ing errors, are important factors influencing the reliabil-

ity of haplotype reconstruction. A number of algorithms

have been developed for viral haplotype reconstruction

[33,34,37,38], and among them PredictHaplo has been

shown to perform at high precision in reconstructing gene

haplotypes at a high sequence divergence [34,39].

We here demonstrate that reconstruction of whole

genome HIV-1 haplotypes from NGS datasets is feasible

using a read clean-up step before haplotype prediction

with PredictHaplo. The reconstructed genome haplotypes

provide important insights into the evolutionary dynam-

ics of the viral quasispecies, as we show that the epi-

tope escape dynamics are influenced by the strength and

breadth of CTL selection, clonal interference, and genetic

drift.

Results and discussion
Testing the feasibility of haplotype reconstruction using

simulated datasets

Before reconstruction of HIV-1 whole genome haplotypes

from next generation sequencing reads, we first tested

the feasibility of the haplotype reconstruction pipeline

using in silico datasets. We generated six in silico HIV-1

populations with nucleotide diversities (1, 2, 4 and 10%)

[11,40,41] and frequency distributions (uniform or log-

normal, see Methods). For each dataset, ART_454 soft-

ware [42] was used to generate in silico next-generation

sequencing reads. Each simulated population consisted

of 9 master HIV-1 genomes that were 8800 bp long.

For the 4 data sets with uniform frequency distributions

(data sets U1, U2, U4 and U10, respectively), our pipeline

reconstructed 9 haplotypes from the short reads artifi-

cially generated from the true 9 in silico genomes (see

Methods). The reconstruction was accurate with a Ham-

ming distance of just 1 to 9 nucleotides from the true

genomes (Table 1).

The accuracy decreased when the population struc-

ture was changed to a log-normal frequency distribution

(data sets L1, L2, L4 and L10, respectively). For instance,
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Table 1 Haplotype reconstruction performance on simulated datasets

Dataset Nucleotide No. of haplotypes Mean Hamming MHD of top 4 Range Hamming

diversity reconstructed distance (MHD) haplotypes distance

U1 1 9 6 6 (6-6)

U2 2 9 4.33 2.25 (1-9)

U4 4 9 4.33 2 (2-9)

U10 10 9 4.66 2.25 (1-9)

L1 1 6 49.5 28.25 (11-93)

L2 2 5 46.2 23 (7-139)

L4 4 9 158.44 11 (1-427)

L10 10 7 283.85 65.25 (46-706)

LHV 1+ 9 20.66 13.5 (13-37)

Simulated datasets were named according to the frequency distribution of their population and their nucleotide diversity. Populations with uniform and log-normal

frequency distributions are labeled as U and L, respectively, followed by a number denoting the percentage nucleotide diversity between genomes. In all cases there

were 9 “true” genomes.

for the L4 dataset with 4% nucleotide diversity, the 9

reconstructed haplotypes had a Hamming distance of 1

to 427 nucleotides from the corresponding true genomes

(Table 1). Closer examination, however, revealed that the

four most prevalent (>4%) haplotypes were accurately

reconstructed, with Hamming distances of 1, 1, 19 and 23.

Additionally, most of the errors were limited to either the

start or end of the genomes, where the simulated cover-

age was low. Ignoring the initial and final 20 bases of the

haplotype sequences, the four most prevalent haplotypes

were identical to their closest true genomes.

Some regions of HIV-1 genome are know to have higher

mutation rate than others [43]. To model the variability

in mutation rate in HIV-1, we simulated a viral popu-

lation (LHV) with genomes containing 3 hypervariable

regions (see Methods). The 9 reconstructed genomes

from the LHV data set had a Hamming distance of 13

to 37 nucleotides from the corresponding true genomes

(Table 1), whereas the four most prevalent haplotypes

were reconstructed at a Hamming distance of 13, 13, 13

and 15. For all data sets, the predicted frequencies of

the reconstructed haplotypes matched those of the true

genomes (results not shown).

In reality, HIV-1 is known to have a complex popu-

lation structure involving multiple co-occurring quasis-

pecies [44]. To mimic this, we simulated a more complex

population (LQ4_i) consisting of 9 master HIV-1 genomes

corresponding to 9 quasispecies, each surrounded by a

varying number of closely related genomes (Table 2 and

Figure 1A; see Methods). This was simulated a 100 times,

and for each simulation a minimum of 5 and a maxi-

mum of 8 haplotypes were reconstructed (Table 2). The 4

most abundant haplotypes represented the 4 most preva-

lent quasispecies in the population, and these were more

accurately reconstructed than the low frequency haplo-

types. Most sequence errors were found in the initial and

final 50 bp of the reconstructed haplotypes, exclusion of

which resulted in a large reduction in the Hamming dis-

tance between the reconstructed haplotypes and the true

genomes, especially for the prevalent haplotypes (Table 2).

We now present a detailed analysis of LQ4_1, as a

representative example (the 9 other simulations were

similar). The five most prevalent haplotypes (haplo_0,

haplo_3, haplo_4, haplo_5 and haplo_6; see Figure 1)

were reconstructed at a Hamming distance of 8 to 46

nucleotides from their closest sequences (Table 2), and

were reconstructed as a “consensus genome” of their cor-

responding quasispecies (Additional file 1: Figure S1).

However, the most abundant quasispecies containing 50

simulated genomes, was reconstructed as two haplotypes,

i.e. haplo_0 and haplo_4, each “representing” 22 and

28 simulated genomes (Figure 1A). The remaining two

haplotypes (haplo_1 and haplo_2) were reconstructed as

consensus genomes of the five rare (frequencies <4%)

Table 2 Haplotype reconstruction of quasispecies datasets

Dataset No. of haplotypes Mean Hamming MHD of top 4 MHD of

reconstructed distance (MHD) haplotypes top 4: pruned

Mode Min Max

LQ4_1 to LQ4_100 6 5 8 75.76 13.63 4.94

Haplotype reconstructions from populations having a simulated viral quasispecies structure. Nine quasispecies were present in each simulated population and the

diversity between them was 4% (see Methods). The pruned haplotype genomes were created by excluding the initial and final 50 bp from the reconstructed

haplotypes to avoid errors due to low read coverage. A 100 simulations were performed.
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Figure 1 Accuracy of reconstructed haplotypes from simulated HIV-1 quasispecies (LQ4_1).We simulated HIV-1 population (LQ4_1; Table 2)

with 9 quasispecies consisting of 50, 24, 8, 4, 2, 2, 2, 2 and 1, sequences respectively. The genome sequences within each quasispecies contained at

most 0.1% nucleotide diversity (see Methods). (A) Seven reconstructed whole genome haplotypes (red) were aligned with the 95 simulated

genomes. Dark lines represent the branches of the phylogenetic tree (the dotted lines pointing outwards provide better visualization). (B) Average

Hamming distance within each quasispecies (black), and between the reconstructed haplotype and the quasispecies at minimum Hamming

distance (red). Because one haplotype can represent multiple quasispecies, we used the phylogenetic tree to determine the genomes represented

by a haplotype. Markers represent the mean Hamming distance and error bars represent 1 standard deviation. (C) The haplotype frequencies

(vertical axis) predicted from haplotype reconstruction pipeline are plotted against the true quasispecies frequencies (horizontal axis). The dominant

quasispecies was reconstructed as two haplotypes (Haplo_0 and Haplo_4) and summation of their predicted frequencies is indicated by an open

square. The haplotype Haplo_2 (predicted frequency of 7.55%) represents four low prevalence quasispecies: one quasispecies with true frequency

of 1.05% (orange circle) and three with true frequencies of 2.1% (see the overlapping points next to orange circle). The points lying on the dashed

diagonal line represent perfect haplotype frequency predictions.

quasispecies (Figure 1A). Variation in the Hamming dis-

tance between the reconstructed haplotype and genomes

of the corresponding quasispecies was comparable to the

intrinsic variationwithin the quasispecies (Figure 1B). The

dominant quasispecies were accurately reconstructed, but

the less frequent quasispecies were reconstructed at a

much higher Hamming distance (Figure 1B). Since hap-

lotypes are reconstructed as a consensus of each quasis-

pecies (Additional file 1: Figure S1), variations between

the reconstructed haplotypes and their true genome can
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at least partly be attributed to the viral quasispecies

population structure. The predicted prevalence of the

dominant haplotypes was comparable to the true fre-

quencies of the corresponding quasispecies (Figure 1C).

Summarizing, these simulations suggest that the haplo-

type reconstruction pipeline works with high fidelity for

complete HIV-1 genome haplotype reconstruction using

454 sequencing reads with realistic nucleotide diversities

of 1 to 10%, and genotype frequencies larger than 4%.

We have used PredictHaplo to reconstruct genome hap-

lotypes. Several other algorithms are available for haplo-

type reconstruction [34,37-39]. To test the performance of

these algorithms we also reconstructed haplotypes using

two other algorithms, QuRe and ShoRAH. For the in

silico HIV-1 data sets (given in Tables 1 and 2), each

containing 9 true genomes, ShoRAH reconstructed ≥187

haplotypes with a ≥117.80 mean Hamming distance for

each data set (Table 3). For the same in silico HIV-1 data

sets (Tables 1 and 2), QuRe reconstructed ≥21 haplo-

types with a ≥211.18 mean Hamming distance for each

data set (Table 3). Corroborating a previous study by

Schirmer et al. [34], we see that ShoRAH and QuRe

overestimate the number of haplotypes and have lower

precision to predict “true” haplotypes (Table 4). Predic-

tHaplo reconstructs haplotypes more reliably than both

ShoRAH and QuRe even if we only consider the four

most prevalent haplotypes (Tables 1, 2, and 3). Due to

the large number of spurious haplotypes predicted by

ShoRAH and QuRe, the predicted haplotype frequen-

cies do not match with the true frequencies (results not

shown), whereas the haplotype frequencies predicted by

PredictHaplo were accurate (as shown in Figure 1C). Note

that previous studies have shown that both QuRe and Pre-

dictHaplo reconstruct shorter haplotypes (length ∼1400

bp) at high precision [39]. Since the aim of our study was

not to benchmark algorithms but to study the evolution-

ary dynamics of immune escape mutations. We continue

with PredictHaplo as it produced the lowest number of

Table 4 Precision of haplotype reconstruction algorithms

Algorithm U2 U4 U10 L2 L4 L10 LQ4_1

PredictHaplo [53] 1 1 1 0.60 0.44 0 0.57

ShoRAH [38] 0.10 0.18 0.39 0 0 0 0

QuRe [37] 0 0 0.01 0 0 NA 0

We calculated the precision by taking the ratio between the number of

accurately reconstructed haplotypes over the total number of reconstructed

haplotypes. An haplotype was considered to be accurately reconstructed if the

Hamming distance to the “true” genome was ≤25. Recall values are not listed as

most of them are 0 for ShoRAH and QuRe.

spurious whole genome haplotypes, and accurately pre-

dicted the haplotype frequencies. The other algorithms

may prove more apt to address different questions.

Experimental validation of the reconstructed haplotypes

The same methodology is now applied to the NGS data

from a patient described in Henn et al. [11]. In brief, this

patient presented during acute infection with a viral load

of 9.3 × 106 copies/ml, and henceforth this is referred

to as day 0. Six longitudinal serum samples were col-

lected at day 0, 3, 59, 165, 476 and 1543 post pre-

sentation by Henn et al. [11]. The peak viral load was

observed at day 3. The first four samples represent the

acute phase dynamics, while the last two samples fall in

the chronic phase of infection. Deep sequencing (Roche

454 Genome Sequencer FLX Titanium) was performed

on each sample using four overlapping PCR amplicons

spanning the complete protein coding HIV-1 genome.

The average fold sequence coverage for the samples from

day 0, 3, 59, 165, 476 and 1543 was 667.7, 724.4, 750.5,

299.7, 227.6 and 540.7, respectively. CTL epitope escapes

restricted by subject’s HLA alleles (A01, A24, B38, B44

and Cw04) were studied using a local read analysis,

and confirmed using IFN-gamma ELISPOT assays. The

most dominant CTL responses at day 59 were directed

Table 3 Comparison of haplotype reconstruction algorithms

Dataset ShoRAH QuRe

No. of haplotypes MHD MHD: top 4 No. of haplotypes MHD MHD: top 4

reconstructed reconstructed

U2 187 117.80 0 104 228.66 168.50

U4 201 201.49 0 146 416.38 230.50

U10 200 315.515 1 86 607.10 83.75

L2 210 217.47 186 21 260.24 245.25

L4 205 577.97 336.25 48 565.29 510.75

L10 344 1182.13 886.25 NA NA NA

LQ4_1 200 220.485 60.75 27 211.18 103

Simulated viral populations given in Tables 1 and 2 were also analyzed by two alternative haplotype reconstruction algorithms, i.e., ShoRAH and QuRe [33,37,38]. All

datasets contained 9 “true” genomes. NA indicates that QuRe was terminated after two weeks of CPU run time (3.1 GHz 16 core Intel Xeon processor, 128GB RAM).
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against the Nef-RW8 and Vif-WI9 epitopes. To vali-

date the sequencing reads, Single Genome Amplification

(SGA) was performed for vif gene sequences from day 59.

The public availability of this data allowed us to test the

validity of our whole genome haplotype reconstruction

pipeline.

Validation of reconstructed haplotypes by SGA

As the first validation step, the 95 SGA vif sequences from

day 59 [11] were aligned with the 6 vif gene sequences

extracted from the whole genome haplotypes recon-

structed using the NGS data from day 59. Phylogenetic

analysis showed that five reconstructed vif sequences

were identical to 48 out of 95 SGA vif sequences

(Figure 2A). Of the remaining SGA sequences, 11 were

found in clades that were represented by at least one

reconstructed haplotype (e.g., B7, B42, B57, B81 and

B130 were represented by d59_1). 16 low frequency SGA

variants, depicted as singletons in Figure 2A, were rep-

resented by one haplotype (d59_2). Thus, 75 of the 95

observed SGA sequences were represented by 6 recon-

structed genome haplotypes. The remaining 20 SGA

sequences were prevalent at low frequencies, and were

not reconstructed as a unique haplotype. Even though

we reconstruct whole genome haplotypes, we apparently

detect haplotypes with mutations in just a few bases

within a region of 600 bp (spanning at least 2 reads),

confirming that global haplotypes accurately capture local

features.

Temporal variations in haplotype prevalence frequencies

Next to reconstructing the sequences, we should also

be able to predict the correct genotype frequencies of

the haplotypes. Due to transmission bottlenecks, HIV-

1 infection is typically established by a single (or a few)

genetic lineage(s) [1,4-6,23], and the HIV-1 population

does not exhibit much diversity until the peak viremia

[11]. One should therefore expect one (or a few) dominant

HIV-1 haplotype(s) before and around the time viremia

peaks. Around the peak viremia, immune selection leads

to diversification, i.e. a decrease in the frequency of the

dominant quasispecies, and an increase in frequency of

other quasispecies in the population [1,23]. Reconstruct-

ing the haplotypes from every sample, we found that the

Figure 2 Validation of reconstructed haplotypes from subject 9213. (A) Neighbor-joining phylogenetic tree generated from the global

alignment of the vif genes extracted from the 6 haplotypes reconstructed from the day 59 data (red) and the SGA vif gene sequences (black)

obtained from [11]. (B) The predicted haplotype frequencies for subject 9213 plotted for each sample (day 0, day 3, day 59, day 165, day 476, and

day 1543). Note that the variation in read coverage (667.7, 724.4, 750.5, 299.7, 227.6 and 540.7, respectively) does not seem to influence the number

of predicted haplotypes. (C) Comparison of the epitope frequencies estimated from reconstructed haplotypes and those from the local analysis of

sequencing reads described in [11]. Markers represent different days. Variants of each epitope are represented as different observations. Several

epitope variants with 100% read frequency and a 100% predicted frequency in reconstructed haplotypes appear as overlapping points in the upper

right corner on the diagonal. The overlapping points were not considered for the correlation analysis. The Spearman’s rank correlation coefficient

between predicted epitope frequencies extracted from complete genome haplotypes and the local read frequencies was ρ = 0.85 (p-value

< 10−15).
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number of reconstructed haplotypes varied from 3 to 8

(Figure 2B). Although the viral population at day 0 (i.e.,

before peak viremia) consisted of 4 haplotypes, only one

haplotype (d0_1) was present at a high frequency (∼87%),

confirming that this infection was established by a sin-

gle founder virus lineage. At day 3 (around peak viremia),

the same dominant haplotype (d3_0, identical to d0_1)

was present at a similar high frequency (∼83.6%). Diver-

sification led to a decrease in the frequency of dominant

haplotypes at day 59 and 165. Several haplotypes with

comparable frequencies were reconstructed for day 476

and 1543, indicating diversification and expansion of mul-

tiple lineages during the early chronic phase of infection

(Figure 2B). The reconstructed haplotypes thus suggest a

realistic scenario where the infection in subject 9213 was

started by a single haplotype, followed by an increase in

viral diversity resulting in the establishment of multiple

co-dominant viral quasispecies.

Validation of whole genome haplotypes using predicted

epitope frequencies

As a third validation, we compared the frequencies of the

CTL epitopes, obtained by summation of the predicted

frequencies of those haplotypes containing the CTL epi-

tope, with the observed read frequencies described in

Henn et al. [11]. The average nucleotide diversity between

whole genome haplotypes from the same sample was 128

nucleotides. As the epitope escape mutations comprise

only a small fraction of all the polymorphic sites used to

infer the whole genome haplotypes, this comparison is a

fairly independent validation. Since it is trivial that the epi-

topes containing no variation in a given sample will always

exhibit 100% read and haplotype frequencies, they were

not considered for the correlation analysis. The predicted

frequencies of the epitopes were accurate and tightly cor-

related with the observed frequencies (Spearman’s ρ =

0.85, p-value < 10−15) (Figure 2C). Some of the low

frequency epitope variants were not predicted by haplo-

type reconstruction, and they could either be sequencing

errors, or true variants not containing sufficient contigu-

ous reads to allow their reconstruction. The Nef RW8-

T5M, the Gag A01-R6K and the Gag A01-E3A escape

mutations, which were not detected by the local read anal-

ysis of Henn et al. [11], were predicted at≥6.5%, frequency

on the day 0, and 59 haplotypes (red, and black circles

on vertical axis, Figure 2C). Henn et al. [11] performed

several additional clean-up steps (read phasing, read pro-

filing, and removal of reads partially spanning an epitope),

which apparently discarded the reads containing these Nef

and Gag variants. Because the Nef RW8-T5M and the

Gag A01-R6K mutations were present at subsequent time

points [11], we think their detection by the pipeline is cor-

rect. To summarize, we can correctly predict the epitope

frequencies by reconstructing whole genome haplotypes.

Biological results

Phylogenetic analysis of reconstructed haplotypes

A hallmark of HIV-1 evolution during the acute phase of

infection is the selection by the immune system [1,45].

The successive replacement of viral haplotypes in the

phylogenetic trees in Figure 3 reveals that HIV-1 in sub-

ject 9213 also underwent a selection driven evolution.

The nef, and vif genes, which are targeted by dominant

CTL responses [11], and the env gene targeted by 3 sub-

dominant CTL responses [11], exhibit a strong temporal

phylogenetic signal of successive replacement of domi-

nant haplotypes (Figure 3A-C). Strong temporal selection

causes all day 1543 haplotypes to form a monophyletic

clade diverging from the clade containing the dominant

haplotype at day 476 (d476_1) (Figure 3A-C). Using codon

selection analysis we found that 11 codons in nef, 4 codons

in vif and 50 codons in env were under positive selection

(see Methods). The gag, and pol genes targeted by sub-

dominant CTL responses exhibit intermediate phyloge-

netic signals for temporal selection (Figure 3D and E). The

trees of the remaining genes (rev, tat, vpr, and vpu) did not

reveal immune selection driven evolution (Figure 3F-I).

Codon selection analysis showed that no codon was under

positive selection in tat, vpr, and vpu; whereas 1 codon in

rev was under positive selection (see Methods). The com-

plete genome phylogeny captured the temporal dynamics

exhibited by the genes under identified CTL selection, and

showed similar successive replacement of dominant hap-

lotypes (Figure 4). Thus, phylogenetic analysis indicates

temporal replacement of the dominant quasispecies, and

that this signal is most evident in the genes targeted by the

CTLs.

Clonal interference and epitope escape

Studying the 7 identified CTL epitopes in the whole

genome haplotypes reveals that the virus explores mul-

tiple escape pathways in most epitopes. Different com-

binations of escape mutations were found in different

haplotypes from the same population (Figure 5). The pres-

ence of different combinations of escape mutations in

each haplotype should confer different fitness advantages

to them resulting in clonal interference between the viral

haplotypes. This illustrates that the selective advantage of

escape mutations has to be considered in combination.

The population at day 59 contained 6 escape mutations

distributed over 4 different epitopes, 2 in Nef A24-RW8,

2 in Vif B38-WI9, 1 in Gag A01-GY9 and 1 in Env A01-

RY9 (Figure 5). Interestingly, haplotype d59_3 containing

2 of the CTL escape mutations disappeared before day

165, while d59_5, which was the dominant haplotype at

day 59 with only one escape mutation survived, and addi-

tionally evolved an anchor position escape mutation in

the Vif B38-WI9 epitope by day 165. Interestingly, hap-

lotype d165_3 contained 4 epitope escapes and was not
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Figure 3 Phylogenetic trees of the reconstructed HIV-1 genes extracted from genome haplotypes. The phylogenetic trees generated from

the nucleotide sequences of the (A) nef, (B) vif, (C) env, (D) pol, and (E) gag genes, that are targeted by one or more CTLs [11] exhibit a strong to

intermediate signal for temporal selection. The vpu (F), rev (G), tat (H), and vpr (I) genes exhibit weak or no signal for temporal selection in their

phylogenetic trees. The maximum likelihood (ML) phylogenetic trees were reconstructed with PHYML using the GTR nucleotide substitution model,

gamma distributed rate variation across sites and 6 substitution rate categories (see Methods for details). 100 bootstrap replicates were performed

and support values of >=90 are shown on the corresponding branch. Colors denote different temporal haplotypes: day 0 (grey), day 3 (red), day 59

(blue), day 165 (green), day 476 (purple) and day 1543 (teal). The dominant haplotype for each sample is highlighted by a colored box.
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Figure 4 Phylogenetic tree for complete genome haplotypes. A

whole genome nucleotide phylogenetic tree was generated using

the reconstructed haplotypes. The ML phylogenetic tree was made

with PHYML using the GTR nucleotide substitution model, gamma

distributed rate variation across sites and 9 substitution rate

categories (see Methods for details). 100 bootstrap replicates were

performed and support values of >=90 are shown on the

corresponding branch. Colors as in Figure 3.

selected over time, whereas haplotype d165_0 containing

two escape mutations was selected (Figure 5).

An epitope typically contains two anchor positions that

are essential for binding the MHC molecule. An epitope

with an anchor position escape therefore results in the

evasion from all potential CTL responses, as the epitope

is no longer presented by the MHCmolecule. This should

confer a higher fitness compared to non-anchor position

escapes which can be targeted by other CTL popula-

tions. This could explain why haplotype d165_0 with an

anchor position escape (I9V) for the dominant Vif epitope

was selected over haplotype d165_3 with the non-anchor

S8A escape (Figure 5). Additionally, the strength of CTL

selection may influence the fate of other epitope escape

mutations. The fixation of haplotype d165_0, containing

the escape mutations Vif B38-I9V and Nef A24-T5M from

two dominant CTL responses, could therefore explain

why the Gag A01-R6K and Env A01-I6V escape mutations

in the d165_2 haplotype disappeared from the popula-

tion (Figure 5). Thus, several factors like the strength

of each CTL response, breadth of CTL responses, and

genetic drift, together appear to determine the relative

fitness of a haplotype. Most importantly, beneficial epi-

tope escape mutations disappear due to higher relative

fitness of other haplotypes present in the viral population,

emphasizing that clonal interference plays an important

role in acquisition of epitope escape mutations by HIV-1.

Selection of haplotype genomes

Figure 6 depicts the temporal dynamics of the recon-

structed HIV-1 haplotype genomes. The dominant (black

circle) and other less abundant (gray squares) haplo-

types at each time point were connected to the preceding

haplotype with the minimal non-synonymous Hamming

distance (mentioned above each line in Figure 6). The

haplotypes were thus connected with the preceding haplo-

types based on their sequence similarity. In all six samples,

the dominant quasispecies seeded the subsequent dom-

inant quasispecies that was generally located at a lower

mutational distance, whereas the other less prevalent qua-

sispecies were located at a higher mutational distance

from the ancestral haplotype (Figure 6). The sequence of

the dominant haplotype did not change between day 0

and day 3, but differed from its predecessor at all sub-

sequent time points (Figure 6). The rate at which the

dominant haplotype is replaced by the subsequent haplo-

type (denoted by red dashed lines in Figure 6) decreased

over time from 0.17 to 0.005 per day (Figure 6, inset).

The rates of replacement calculated using whole genome

haplotypes better represent the evolution of HIV-1 under

immune selection than the set of escape rates estimated

on the basis of individual epitopes [11].

Genetic hitchhiking

As a consequence of clonal interference, the fixation of

genomes with high relative fitness due to the presence of

beneficial epitope escape mutations, may result in genetic

hitchhiking of other mutations present in the same hap-

lotype [26,30,31]. The linkage disequilibrium between the

nucleotide positions in HIV-1 are shown as a network

of sites that are genetically linked in the set of all 30

haplotype genome sequences (Figure 7). Different colors

represent different HIV-1 genes and triangles denote the

mutations in epitopes (Figure 7). There are two major

clusters of linked sites, one containing sites from the gag

gene only (cluster I), and another containing sites from

several genes (cluster II). In addition there are several clus-

ters containing less than 5 sites. Epitope escapes are typi-

cally linked with one or more sites in non-epitope regions

and these links could reflect compensatory mutations

(Figure 7). Interestingly, the two early epitope escapes

from the dominant CTL responses against Nef A24-RW8

(T5M genomic site: 8495, green arrow) and Vif B38-WI9

(genomic site: 4544 and 4547, blue and red arrow) were

linked only with very few other sites (Figure 7). In con-

trast, the late epitope escapes from sub-dominant CTL
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Figure 5 Epitope escapes in complete genome haplotypes. The escape mutations acquired in the seven epitopes identified by Henn et al. [11]

are given per reconstructed haplotype for each time point. Haplotypes reconstructed from each temporal sample are given in a descending order of

their frequencies. The dominant haplotype for each time point is depicted by the same colors as in Figure 3. Multiple escapes for the same epitope

are depicted by different colors. Escape mutations for each epitope are denoted by a 3-letter code with the first letter as the original epitope amino

acid, second letter as the position in the epitope and the third letter as the mutated amino acid. Mutations at anchor residues are highlighted.

responses like pol and env were genetically linked with

several sites (cluster II, Figure 7).

The difference in linkage profiles can be explained by

the homogeneity of the HIV-1 population at the start

of infection (Figure 2B). The effect of genetic hitchhik-

ing is clearly demonstrated by the large linkage cluster

comprised of links between sites from gag (red) to nef

(green) which probably have little or no functional link-

age (cluster II, Figure 7). The hitchhiking mutations can

be mildly advantageous or neutral [30], or may even

be potentially deleterious [31]. For example, 22 non-

synonymous mutations and 2 synonymous mutations

(probably neutral) in the env gene have hitchhiked with

1 beneficial env epitope escape mutation (purple cir-

cles in cluster II, Figure 7). Thus, several non-epitope

mutations hitchhike with immune escape mutations. The

presence of genetic hitchhiking leading to multiple co-

evolving genetic loci may influence the phylogenetic sig-

nal, especially if the number co-evolving loci is high. In

our analysis we find that the phylogenetic signal for env,

gag and pol genes, containing most of the genetically

linked sites, is supported by strong bootstrap values at the

late time point branches confirming that the topology is

robust.

The haplotype reconstruction pipeline, using a combi-

nation of read clean-up and PredictHaplo, highlighting

the importance of clonal interference and genetic hitch-

hiking. Our study provides the first evidence of clonal

interference in HIV-1 genomes, and is one of the few

demonstrating clonal interference in viral evolution. Our

results indicate that CTL selection is not the only driving

force shaping the evolution of escape mutations. Clonal

interference and the genetic background of escape muta-

tions both play an important role in viral evolution, and

should be considered to calculate CTL selection pressures

and HIV-1 escape rates [46]. Several studies have demon-

strated that different epitopes escape mutations evolve

in the same or in different epitopes and get fixated in

the population. However, this can be a result of either

genetic drift or selection or clonal interference. Using

whole genome haplotypes, we show that clonal interfer-

ence plays an essential role in the evolution and fixation of

escape mutations.

Our study extends the scope of analysis that can be

conducted using next-generation sequencing reads, and

unraveled novel within-host evolutionary dynamics. Our

pipeline is not limited by the sequencing technology,

and the longer reads obtained using existing sequencing
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Figure 6 Selection dynamics of complete genome haplotypes.

Dominant haplotypes for each sample are denoted by black circles,

and the less abundant haplotypes are denoted by grey squares. The

dominant and less abundant haplotypes are connected to those

haplotypes from the previous time point having the minimum

non-synonymous Hamming distance (mentioned above each edge).

The less prevalent haplotypes at day 1543 were closer to the

dominant haplotype at the same day compared to any haplotype

present at day 476, and thus are shown to have a predecessor at an

intermediate time. The rate of replacement by a haplotype genome is

represented by dashed lines: in red for dominant haplotypes, and in

blue for non-dominant haplotypes. Note that the horizontal axis has

no true time scale. Selection coefficients for dominant haplotypes are

shown in the inset. Selection coefficients for the dominant haplotype

genomes were calculated using the predicted haplotype frequency

at time t and its frequency at preceding time point t − 1 using the

method described in [22]. The mutant was considered to have a

prevalence of 3% at the preceding time point (because we cannot

reliably detect haplotypes below a 3% frequency).

technologies, or new sequencing technologies like MiSeq

(with 250 bp paired-end reads) and PacBio, can only

improve the quality of haplotype reconstruction. The

same approach can be applied to reconstruct haplotypes

from MiSeq datasets (with 250 bp paired-end reads) by

replacing the Roche specific read clean-up algorithm with

a Illumina specific read clean-up algorithm. Henn et al.

[11] provided assembled consensus sequences for each

temporal sample which we used as reference sequences

for our analysis. We performed the same analysis using

the HXB2 reference sequence and found that this resulted

in reduction of the number and quality of reconstructed

haplotypes. Thus, proper read correction and clean-up is

crucial for reconstructing global haplotypes.

A major drawback of this methodology may be that

we miss low frequency recombinants in the population.

Recombination during HIV-1 replication may facilitate

the accumulation of multiple epitope escapes in single

genomes. But during acute infection, the rate of recombi-

nation is known to be rather low [46-48], suggesting that

most epitope escape mutations are sequentially acquired

by the quasispecies [46]. Note that recombinant haplo-

types that become sufficiently prevalent in the population

will be detected as novel unique haplotypes. We simu-

lated a population containing two genomes (each present

at 44.5% frequency) taken from LHV simulations and gen-

erated a recombinant genome (present at 11% frequency).

Three haplotypes corresponding to 3 true genomes were

reconstructed at frequencies comparable to the true fre-

quencies. The reconstructed recombinant genome had

a Hamming distance of 25 from the true recombinant

genome and both the reconstructed parent genomes had

a Hamming distance of 20 from the true parent genomes,

confirming that our pipeline can reconstruct recombi-

nant genome prevalent in the population. Moreover, most

of the errors were found in the first and last 20 bases

similar to other control simulations (Table 2). Other simu-

lations with higher prevalence (33% and 55% frequency) of

recombinant genome lead to similar results. One possible

way to detect presence of recombinants in reconstructed

haplotypes would be to apply recombinant detection tools

like recombinant identification program (RIP) [49], and

SplitsTree [50]. Using RIP, we did not find any convincing

evidence of recombination between day 476 haplotypes

that might have given rise to any of the day 1543 haplo-

types.

Conclusions
We have shown that whole genome HIV-1 haplotypes can

be reconstructed from short 454-sequencing reads with

high fidelity. Reconstruction of genome haplotypes pro-

vides an opportunity to study the interaction between

epitope escapes. Several epitope escapes evolve in single

haplotypes, and different combinations of multiple epi-

tope escapes become prevalent in the viral population.

As a result of clonal interference, the fate of each escape

mutation, also depends upon the fitness of other immune

escape mutations prevalent in the viral population. The

long range linkage disequilibrium between genomic sites

suggests that clonal interference between HIV-1 genomes

results in the fixation of several non-epitopemutations via

genetic hitchhiking.

Methods
Simulated datasets generated for validation

To validate the haplotype reconstruction pipeline, we cre-

ated multiple simulated HIV-1 populations. For each of

these simulated datasets, we first generated 9 mutated

haplotype genomes from a reference HIV-1 genome (Gen-

Bank accession number: JQ403055) by randomly selecting

r sites such that n/2 ≤ r ≤ n, where n represents either 2,

4 or 10% sites of the total number of sites. Three data sets

U2, U4 and U10 (with varying nucleotide diversities of 2,

4 or 10%) were made with a uniform frequency distribu-

tion, i.e. all haplotypes were present at the same frequency
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Figure 7 Network of linked genomic sites. Genomic sites with significant linkage disequilibrium are plotted in the network as nodes. An edge

between two nodes represent that the two sites are linked. Sites belonging to different genes are shown in different colors: gag as red, pol as blue

with white fonts, vif as violet, vpr as dark green, tat as light blue, vpu as grey, env as purple and nef as light green. No linked sites were found for rev.

The legend shows the genomic position and colors assigned to the nine HIV-1 genes. Sites belonging to CTL epitope are shown as triangles. Green

arrow indicates the Nef A24-RW8 epitope escape, and blue and red arrows indicate Vif B38-WI9 epitope escapes. “I” corresponds to the large cluster

containing linked sites from the gag gene only, and “II” corresponds to the large cluster containing linked sites from several HIV-1 genes.

(1/9) in the population. Three other data sets were made

with a log-normal frequency distribution, with the same

nucleotide diversities: 2, 4 and 10% for L2, L4 and L10,

respectively. To implement a log-normal frequency distri-

bution, some haplotype genomes were duplicated multi-

ple times in the population to increase their frequencies.

Thus, a typical population with a log-normal distribution

consisted of 9 haplotypes present at the following copy

numbers: 20, 12, 4, 2, 1, 1, 1, 1, 1, respectively. This gen-

erated a quasispecies with 5 minority haplotypes present

at a frequency below 2.5%, and one dominant haplotype

with a prevalence exceeding > 45%. To model hetero-

geneity in mutation rate over HIV-1 genome, we added

3 hypervariable regions to genomes with 1% nucleotide

diversity in the LHV data set. In the hypervariable regions,

50% of nucleotides had 10% nucleotide diversity, while the

remaining sites had a 1% nucleotide diversity. We used a

log-normal frequency distribution, similar to the L1 data

set.

Additionally, we simulated 10 populations with a quasis-

pecies structure. For each “quasispecies data set” (LQ4_i),

we generated nine master genomes at a 4% diversity (sim-

ilar to those above). After creating the 9 master genomes,

we created mutated copies with at most 0.1% nucleotide

diversity from the corresponding master sequence. This

created a cloud of genomes around each master genome.

The frequency of the nine quasispecies were distributed

log-normally in the LQ4 dataset at the following copy

numbers: 50, 24, 8, 4, 2, 2, 2, 2, 1 (as shown in

Figure 1A).
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We used the ART_454 software [42] to simulate 454

sequencing errors and generate in silico reads with an

average coverage of 500 reads per base, mimicking the

average depth obtained in Henn et al. [11]. The in silico

reads obtained were analyzed using the haplotype recon-

struction pipeline. A lower average coverage of 200 reads

hardly changed the number of reconstructed haplotypes

(results not shown).

Longitudinal dataset used to study the within-host

dynamics of HIV-1 haplotypes

The 454 sequence reads from six datasets V4137, V4136,

V4139, V4140, V4676 and V4678 sampled from subject

9213 at day 0, 3, 59, 165, 476 and 1543 were downloaded

from the NCBI SRA database [51]. As described in Henn

et al. [11], the sequences were obtained by amplifying four

overlapping PCR amplicons which span the entire pro-

tein coding region of HIV-1 genome. Subject 9213 was

HLA-typed, and expressed the A01, A24, B38, B44 and

Cw04 alleles. Henn et al. [11] recognized dominant and

sub-dominant CTL responses against 7 HIV-1 epitopes

in subject 9213 and described the immune escapes. We

study the dynamics of these 7 escape mutations using the

reconstructed haplotype genomes.

Haplotype reconstruction pipeline

The haplotype reconstruction pipeline consists of two

major steps: 1) Read clean-up, and 2) Prediction of hap-

lotypes. Reads obtained from 454 NGS are known to

contain three major types of process errors: a) carry

forward and incomplete extension errors, b) homopoly-

mer miscall errors, and c) InDels in non-homopolymer

regions [11,36]. These 454 sequencer specific errors were

corrected using the default parameter settings of Read-

Clean454 v1.0 (or RC454) software which uses Mosaik

aligner [52] to align sequences to a reference genome

sequence [11]. The RC454 cleaned reads were then sub-

jected to PredictHaplo (version 0.5) [53] for haplotype

reconstruction. We used the sample’s consensus assembly

sequence obtained from Henn et al. [11], as the refer-

ence genome sequence for RC454 and PredictHaplo. We

tested haplotype reconstruction at different parameter

settings for PredictHaplo, and the default settings gave

the most reliable results (results not shown). The cleaned-

up reads obtained with the RC454 package were made

compatible with PredictHaplo using customized Python

scripts.

Phylogenetic analysis

For phylogenetic analysis, genes and genomes from the

reconstructed haplotypes were aligned using ClustalW

[54]. The complete genome, pol, env and gag align-

ments, used in Figure 3, were 8878bp, 3040bp, 2645bp

and 1546bp long, respectively. Phylogenetic trees were

reconstructed using the maximum likelihood (ML)

method performed by PHYML (version 3.0) [55]. ML

analysis was conducted using the general time reversible

(GTR) model, with six substitution rate categories for the

gene phylogenies, and nine for the complete genome phy-

logeny, with the proportion of invariant sites set to 0. The

gamma distribution parameter and nucleotide frequen-

cies were estimated from the dataset for the phylogenetic

reconstruction. From the parsimonious starting tree, the

best tree generated using both the nearest neighbor inter-

change (NNI) and the subtree pruning and regrafting

(SPR) approaches is shown in Figure 3. 100 bootstrap

replicates were performed to assess the support for the

branches and bootstrap support values ≥ 90 are indi-

cated on the branches. For Figure 1A and Figure 2A,

neighbor-joining phylogenetic trees were reconstructed

using ClustalW because of their high sequence similar-

ity [54]. To distinguish between synonymous and non-

synonymous substitutions, we generated phylogenetic

trees using MG and YAP codon substitution models per-

formed by CodonPhyML [56]; however, the topology of

the codon based phylogenetic trees was similar to the

nucleotide trees.

Selection and linkage analysis

To estimate the fitness and selection coefficients of

mutated viral genomes, we used the method described

by Maree et al. [22], which depends upon the frequency

of wildtype and mutated viral genomes, and the time

of evolution. To estimate selection coefficients, we con-

sidered that the frequency of a mutant haplotype rises

from a value of 0.03 (frequency threshold below which we

did not detect any haplotype) at t − 1 to the observed

frequencies at time t replacing its predecessor [57].

Note that the slow down of the selection coefficients

is likely to be biased by the long intervals of late time

points.

To detect the extent of positive selection, we first

codon aligned the gene sequences using CodonAlign tool

[58] and then used the random effects likelihood (REL)

method from Datamonkey server [59,60]. Linkage dise-

quilibrium between all polymorphic genomic sites was

calculated using DNAsp and linkage values only signifi-

cant after Bonferroni correction (p-value < 0.4 × 10−7)

were considered [61]. Linked sites were plotted as a net-

work using Cytoscape (version 2.8) [62].

Additional file

Additional file 1: Figure S1. Sequence alignments of the reconstructed

haplotype and the corresponding quasispecies. Sequence alignment of

four most prevalent haplotypes (A) haplotype_4, (B) haplotype_0, (C)

haplotype_3, and (D) haplotype_5 and the corresponding quasispecies.

Mismatches between the simulated genomes and the reconstructed

http://www.biomedcentral.com/content/supplementary/1742-4690-11-56-S1.pdf
http://www.biomedcentral.com/content/supplementary/1742-4690-11-56-S1.pdf
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haplotype are indicated as vertical lines with different colors

corresponding to different nucleotides (A: Green, T: Red, G: Orange, C: Light

blue and Gaps: Gray). The variation at each genomic site was present only

in a subset of genomes demonstrating that the haplotypes are

reconstructed as consensus sequences of the corresponding quasispecies.
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