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Reliable Risk Management for Autonomous Vehicles based on

Sequential Bayesian Decision Networks and Dynamic Inter-Vehicular

Assessment

Dimia Iberraken1,2, Lounis Adouane1 and Dieumet Denis2

Abstract— Guaranteeing the safety of an autonomous vehicle
(AV) is a challenging task, especially if the perceived environ-
ment is highly uncertain and other road users deviate from their
expected trajectories. In this paper, we propose a probabilistic
overall strategy for risk assessment and management of AV in
highway through a Sequential Level Bayesian Decision Network
(SLBDN) and an appropriate analytical formalization of criteria
for anomaly detection based on a Dynamic Predicted Inter-
Distance Profile (DPIDP) between vehicles. Accordingly, the
proposed system is designed to take the suitable maneuver
decision, have a safety retrospection and verification over the
current maneuver risk and take appropriate evasive action au-
tonomously from moving obstacles. Moreover, this probabilistic
framework accounts for measurements uncertainty through an
Extended Kalman Filter (EKF) and for vehicles’ maximum
capacities. Since the proposed strategy has a short response
time, integrating safety verification in the decision-making
process makes real time evasive decisions possible. Several
simulation results show the good performance of the overall
proposed control architecture, mainly in terms of efficiency to
handle probabilistic decision-making even for risky scenarios.

I. INTRODUCTION

A. Motivation

One of the major research topics in the domain of au-

tonomous navigation, is enabling vehicles to cope with any

environment traffic condition while making the appropriate

decision and guaranteeing the safety of maneuvers even

in presence of uncertainty [1], [2]. Although multiple Ad-

vanced Driver Assistance Systems (ADAS) have successfully

improved safety [3], fatal car crashes still occur [4], [5].

This is mainly caused by measurement uncertainties and

unexpected maneuvers of other traffic participants. For this

reason validating the safety of self-driving vehicles while

applying safety verification methods can prove the coherence

of the vehicles behavior, reduce remaining risks and the need

for extensive testing and more importantly allow us to plan

evasive maneuver, in real-time [1], [6], [7].

B. Literature Overview

Safety in the domain of autonomous vehicles denotes the

ability to respect traffic rules and avoid potential collision

with other traffic participants. According to [8], the core of

a robust automotive safety system able to handle the com-

plexity of driving can be partitioned as a situation assessment
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method which defines the current driving state of safety while

taking into account pre-planned trajectories, and a decision-

making strategy that makes the control decision. In this

paper, both of these parts are developed. Traditional decision

making methods involves building a system of rules and

deducing the most suitable maneuver [9]. The disadvantages

of such systems appear when considering traffic scenarios,

unexpected behaviors or perception modules failure that have

not been considered during the construction of the system.

In this case, new rules need to be added and integrated in

the existing system. This increases the complexity of the

decision-making process.

Concerning the situation assessment, researchers have pur-

sued multiple ways to improve situation assessment strate-

gies, during vehicle lane change, through threat measure

indicators such as Time to Collision (TTC) [10]–[12]. By

compromising between optimality and safety, the authors

in [13] have introduced a novel interval-based TTC com-

putation, which considers potential uncertainty sources such

as vehicular communication latency. However, most works

cannot ensure safety if traffic participants deviate from their

predefined behavior as most of the classical safety verifica-

tion approaches, perform the safety assessment offline before

the vehicle is deployed.

In order to avoid collision, online safety verification

methods have been extensively used in the literature [7],

[14], [15]. For example, reachability analysis [16], used

as a safety verification method, calculates the reachable

set of positions of each vehicle in the environment and

possible future collisions are identified when comparing the

intersection of the obtained sets. However if the trajectory

is regarded as unsafe no alternative is proposed to avoid the

collision. Spatial Logic reasoning has also been applied to

safety verification, for proving collision freedom of lane-

change maneuvers [17] or for real-time spatial logic that

can specify constraints in traffic maneuvers on multi-lane

motorway [18], however, modeling a generic model using

logical formulas is a big challenge.

C. Contribution

The proposed paper is to introduce a method to estimate

the current performed maneuver risks in real-time from

a safety standing point of view for any arbitrary traffic

scenarios and investigate the possibility to plan an evasive

action (cf. Section II). In previous work [1], [6], we pro-

posed a probabilistic framework which assesses the overall



surrounding environment by evaluating the collision risk with

all observed vehicles, plan driving maneuvers considering

predictions of road user trajectories and make the decision

on the most suitable actions. This sequencing of decisions is

handled by the means of a robust Sequential Level Bayesian-

Decision Network (SLBDN) (cf. Section II) that handles the

maneuver decision-making and the safety verification over

the current performed maneuver. In this paper, this proba-

bilistic decision-making strategy is extended to handle safety

verification (cf. Section II-A) during vehicle lane change and

with respect to “all” the vehicles in the environment but also

the evasive action selection (cf. Section II-B).

Moreover, using the specific properties of the dynamic

predicted inter-distance profile (DPIDP) between vehicles

(defined in [6], cf. Section II-A.1), used as risk metric input

into the safety verification, anomaly detection criteria are

defined (cf. Section II-A.4). In case any anomaly is detected,

whether the initial suppositions to perform the maneuver are

not anymore confirmed or the perception modules give wrong

information on the system, decisions regarding possible

evasive maneuver are taken, to ensure the vehicles’ safety

while accounting for the vehicles’ maximum capacities (cf.

Section II-B). The Bayesian based approach for handling

safety verification and evasive action selection is novel to

the best of the authors’ knowledge.

In addition, the short-term motion of the ego vehicle and

surrounding vehicles are predicted in this paper, based on

an Extended Kalman Filter (EKF) (cf. Section II-A.3) which

allows to have more reliable AIDP calculation.

This probabilistic decision-making strategy is defined as a

part of a Multi-Controller Architecture (MCA) for automated

driving in highway (detailed in previous work [1]).

The rest of the paper is organized as follows. Section

II formalizes the overall proposed probabilistic decision-

making process. The simulation results will be presented in

Section III and this paper concludes with some prospects on

future works.

II. DECISION-MAKING STRATEGY BASED ON

BAYESIAN-DECISION NETWORKS

It is proposed in this paper a more effective way to take

decisions under uncertain conditions, while taking advantage

of the dynamic of progression of the inter-distance between

vehicles, in order to define better the level of dangerousness

of the current maneuver.

The purpose of the overall network is to conform to the driver

perception of safety and judgment for dangerous situations

and infer the drivers action.

The flowchart presented in Fig. 1, illustrates the sequenc-

ing of decisions and the overall safety verification mechanism

for all the obstacles present in the environment. The first

decision is a part of the Maneuver Decision Level (MDL)

where at each ith ∈N> N sample time, the choice of action

regarding the most suitable maneuver is made (cf. Fig.1).

The probabilistic decision process is based on the current

situation assessment, using the Extended Time To Collision

 i > N

Yes

i ++

No

Maneuver completion

Yes

Is the 

Maneuver 

safe?

No

Start

Decision 1:

Maneuver Decision Level

Decision 2:

Safety Verification Level

End

Decision 3:

Evasive Action 

selection

int i = 0

int ETTC
O = {Obstacle1, Obstacle2, …, Obstaclen}

Computation of int tcritical  

 (cf. Section II-A.4) for all  

surrounding obstacles in O 

Safety 

Verification

int areq  

(cf. Section II-B) 

int tcritical 

Fig. 1. Flowchart illustrating the sequencing of decisions and safety
verifications for all surrounding obstacles. N is an integer value and is

defined as
⌈

Tch
Ts

⌉

with Ts the sampling period and Tch is the control

observation horizon. SO is the set of visible obstacles in the scene with
memory tracking Id. tcirtical are defined in Section II-A.4. ET TC is the
Extended Time To Collision. areq is the required acceleration and is defined
in section II-B.

(ETTC) [1] while taking measurement uncertainty into ac-

count. The possible output maneuvers are: Lane Change Left,

Lane Change Right, Keep Lane with ACC, Maintain Velocity

with CC.

The second decision is a part of the Safety Verification

Decision Level (SVDL) where for each time step Ts, while

the maneuver execution starts, a safety-checking regarding

the action chosen in the MDL and a verification of the

coherence of the maneuver with the predicted pre-planned

trajectory is performed through an improved definition of

anomaly detection criteria based-DPIDP [6] (cf. Section II-

A), used to detect and compensate for possible failure of the

perceptive module or unexpected behaviors.

The third decision is a part of the Evasive Action De-

cision Level (EADL) (cf. Section II-B) where in case the

verification advises to abort the maneuver, the system output

the evasive action based on the vehicles maximum capacities

and on the endangered lanes.

Since the presented method has a short response time

given that Bayesian Networks (BNs) are computationally

tractable (due to the exploitation of conditional independence

relationships) [9], [19], integrating safety verification in the

decision-making process makes real time evasive decisions

possible. In addition, Bayes Theory allows uncertainties to

be incorporated into calculations and provides a way of

combining uncertain data.

A most suitable decision is then obtained by maximizing a

utility function over the possible alternatives of the action



nodes (cf. Section II-C), given the available evidence [19].

We choose discrete actions, instead of low-level controls

like steering or accelerating, since modularized systems

have been reported to perform better, especially in terms

of complexity, functional safety, testability, in autonomous

driving than end-to-end systems [20].

A. Safety verification level: Dynamic Predicted Inter-

Distance Profile (DPIDP)

1) DPIDP definition: It is proposed in this paper a safety

criteria-based on a DPIDP between vehicles in order to

estimate the maneuvers risks during the whole navigation

task. Indeed, the assumption considered is that if nothing

changes in the initial expected dynamic of all the surrounding

dynamic obstacles, the predicted evolution of the inter-

distance between vehicles is not supposed to change [1].

The DPIDP is built based on predictions of all vehicles

future pose. To better understand the approach, we will

analyze the system during a lane change maneuver (cf. Fig

2), as it is considered among the main risky and challenging

maneuvers in highway for autonomous vehicle [21]. An

estimation of the time prediction horizon Tpred [s] is then

calculated by estimating the required time for the vehicle,

given a constant velocity to travel the curvilinear distance of

the lane change trajectory.

On the other hand, we suppose that the obstacle-vehicles

follow a global path already defined to be the center-line

of the lane and the prediction trajectories during the lane

change are constructed for Tpred [s] based on their expected

behaviors.

For each vehicle pair (ego vehicle and obstacle-vehicle)

trajectories, we define a control horizon Nch (number of

control moves) to compute the DPIDP as a function of

Tch (cf. Eq.(7)). The control time horizon is chosen to be:

Tch[s] = max(Tpred)/M, where M is a constant value chosen

accordingly based on a simple estimation of human reaction

time [5].

For each number of control moves Nch, the DPIDP will

be evaluated between the predicted state vector of the ego

vehicle Eq.(1) and the predicted state vector of the chosen

obstacle-vehicle Eq.(3) (cf. Fig. 2) and compared to the

evolution of the Actual Inter-Distance Profile (AIDP) (cf.

Section II-A.3). This gives the system an average time (Tch)

to confirm or not the dangerousness (given by the anomaly

criteria in Section II-A.4) of the situation assessment, to act

accordingly or to reconfigure otherwise. This way of rea-

Fig. 2. Predicted Trajectories during lane change maneuver (See. Simula-
tion Video given in https://bit.ly/2G0Zu27)

Fig. 3. DPIDP between Ego Vehicle and surrounding Obstacle-Vehicles

soning under uncertainty will eventually help ADAS reduce

false alarm and improve performance.

In what follows, the formalisation of the DPIDP is detailed.

2) Analytical formalisation of DPIDP: The motion of

the ego vehicle is described by the tricycle model:











ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = v tan(γ)/lb

(1)

Where X = {x,y,θ} is the state vector with (x,y) the vehi-

cle’s position and θ its orientation, v and γ are output of

the control law (defined in [2]) representing the velocity and

the steering angle respectively, lb is the wheel-base of the

vehicle.

Based on Euler’s Method to solve first order differential

equation with a given initial value, we have:











x(t +h) = x(t)+h v(t) cos(θ(t))

y(t +h) = y(t)+h v(t) sin(θ(t))

θ(t +h) = θ(t)+h v(t) tan(γ(t))/lb

(2)

with t ∈ [t0,Tpred ] and h the step size. The motion of the

surrounding obstacle-vehicles is assumed to be rectilinear

uniformly accelerated and is described by the following

equations:











xobs(t +h) = xobs(t)+
1

2
axobs

(t)h2 + vxobs
h

yobs(t +h) = yobs(t)+
1

2
ayobs

(t)h2 + vyobs
h

(3)

With (xobs,yobs) the obstacle-vehicle’s position, (vxobs
, vyobs

)

the speed components and (axobs
, ayobs

) the acceleration

components.

The formalization of the DPIDP, defined as function p(t+
h) over the interval t ∈ [t0,Tpred ], is then:



p(t +h) =

(

(

x(t +h)− xobs(t +h)
)2

+
(

y(t +h)− yobs(t +h)
)2

)1/2

=

(

(

x(t)+hv(t)cos
(

θ(t)+hv(t)
tan(γ(t))

lb

)

− xobs(t)−h2 1

2
axobs

(t)

−hvxobs
(t)

)2

+
(

y(t)+ hv(t)cos
(

θ(t)+ hv(t)
tan(γ(t))

lb

)

− yobs(t)

−h2 1

2
ayobs

(t)−hvyobs
(t)

)2
)1/2

(4)

A Predicted Lower Safety Boundary l(t+h) is constructed

as the projection (parallel curve) of p(t + h) with an offset

shift Do f f set denoting a possible authorized degree of free-

dom over the vehicles mutual velocities (cf. Fig. 3) and is

defined then as:

l(t +h) = p(t +h)−Do f f set (5)

The profiles DPIPD and the PLSB are recalculated each (t0+
Tch).

This above formalisation will allow us to define the

anomaly detection criteria (cf. Section II-A.4).

3) Actual Inter-Distance Profile (AIDP) and EKF-based

uncertainty handling: The collected sensor data are noisy

and uncertain. To deal with these issues, an EKF is used to

estimate and predict the ego vehicle and surrounding vehicles

state vector from the uncertain sensor measurements. The

vehicles motion (Eq.(1)) is described in this paper by the

following discretized car-like vehicle evolution model :
{

Xk+1 = f (Xk, vk, γk)+ εX ,k

Yk = g(Xk)+αY,k
(6)

where εX ,k is zero-mean Gaussian noise representing the

process noise and αY,k is the measurement noise.

Hence, the AIDP is calculated based on the EKF state

prediction output and is shown in Figure 4. We can clearly

see in the figure that applying the EKF on the noisy AIDP

allows to avoid false detections as we will see it in Section

II-A.4.

The resulting curve data set: (t,d(t)) defined on the

interval t ∈ [t0, tactual ] is approximated by a polynomial of

Fig. 4. Filtered AIDP by the means of the proposed EKF

second order using the least-squares method that finds the

optimal parameter values x̂ = (a1,b1,c1) by minimizing the

sum, of squared residuals.

4) Criteria for anomaly detection: Further, contrary to

what have been proposed as anomaly criteria in [6], where,

at each sample time, is calculated the current available

lateral error between the actual inter-distance profile (AIDP)

and the DPIDP, it is proposed in this paper to exploit the

dynamic of these measures progress to have more pertinent

risk assessment and management strategies (cf. Section II-

A). We define the anomaly detection criterion as the Critical

Time (tcritical) which is the time interval between the first

variation of d(t) and the intersection point between d(t) and

the function l(t).
The first variation of the function d(t) is characterized as the

time where the error ξ between the evolution of the derivative

of the function d(t) with respect to the expected profile p(t)
is greater then a small value ε . As for the intersection point

tinter (cf. Fig 3), we have to solve the following quartic

equation:

(

a1(t +h)2 +b1(t +h)+ c1

)2

=

(

(

x+hvcos
(

θ − xobs

+hv
tan(γ)

lb

)

−h2 1

2
axobs

−hvxobs

)2

+
(

y+ hvcos
(

θ

+ hv
tan(γ)

lb

)

− yobs −h2 1

2
ayobs

(t)−hvyobs

)2

−Do f f set

(7)

The positive root value of this quartic equation respecting

the condition tinter > t|ξ |>ε is the tinter value.

The critical time will be then:

tcritical = tinter − t|ξ |>ε (8)

This criterion combines two information. The first one is

that the AIDP crossed the lower boundary (through the

calculation of the intersection point). This will allow us to

detect the endangered obstacle-vehicles. The second one is

the information on criticality of the situation, the smaller

tcritical is (due to a quicker deceleration for instance of the

ahead obstacle-vehicle to overtake), the steeper the descent

is (cf. Fig. 3).

5) Generalisation of the methodology: As a result, for

a scene of one ego vehicle and three obstacle-vehicles, the

above methodology is applied for each ego-vehicle/obstacle-

vehicle pair (cf. Fig. 5), resulting thus in three prediction

profiles.

6) SVDL nodes:

• Anomaly detection criteria of AIDP (node AC-AIDP):

Depending on the values of tcritical , defined in Section

II-A.4, input to the node AC-AIDP (cf. Fig. 6), and for

any vehicle pair that detects an anomaly, we will have

two states:

– Critical time positive means that a value of critical

time is found which means d(t) goes beyond the

limit safety boundary defined by l(t).
– No Anomaly detected.

The AC-AIDP node constitutes the uncertain observa-

tion evidence input to node Status of maneuver (SM).



Fig. 5. DPIDP between Ego Vehicle and surrounding Obstacle-Vehicles

• Status of maneuver (node SM): This node describes the

status of the engaged maneuver based on the observa-

tions that the node AC-AIDP provides. The possible

states are Dangerous (for the case where a critical time

is found), Safe (the observation AC-AIDP does not

endanger the situation).

• Utility Check: UCheck Utility nodes UV defines the cost

related to the decision [22]. In the SLBDN (cf. Fig.

6), UCheck is the cost related to the safety verification

during the lane change maneuver based on the anomaly

criteria.

B. Evasive Action Decision Level (EADL)

In the literature many criteria have been defined [23]–[26]

to compute the remaining time span in which the driver can

still avoid a collision by braking or by steering. In this paper

we propose to compute the required deceleration areq, based

on the definition of the critical time tcritical (cf. Section II-A.4

and Fig. 3) and the evolution of the distance descent (if an

anomaly is detected), in order to choose one of the evasive

action maneuver. Computing the deceleration will allow us

to asses if an emergency braking is possible given the actual

situation configuration and given the vehicles’ maximum

capacity for braking amax. Note that in contrast with previous

work [1], [6], where lateral distance errors (Err1 between

AIDP and DPIDP, Err2 between DPIDP and LSB) is used

as anomaly detection criteria, these dynamic aspects and the

vehicles’ capacities were not taken into account.

Assume that the ego vehicle starts performing a lane

change maneuver at an initial speed v0 and that a change in

the initial configuration happens (obstacle-vehicle 1 comes to

standstill for example), meaning that tcritical exists (cf. Fig. 3).

Given that we can know the distance drop ddrop (between the

first variation of d(t): d|ξ |>ε and the intersection point tinter)
caused by this change and that this distance drop happens

during tcritical and assuming a desired stopping inter-distance

dstop (between the ego vehicle and the obstacle-vehicle 1) and

a stopping velocity v f at the end of the emergency braking

(as the purpose is to avoid the collision), we are able to find

the time required treq for the ego vehicle to reach dstop, if

ddrop remains constant, as:

treq =
d|ξ |>ε −dstop

ddrop

tcritical (9)

Starting from the uniform acceleration equation : v(t) =
at +v0, we will have the required deceleration to reach dstop

defined by:

areq =
v f − v0

treq

(10)

Using the above definitions, we can define the following

nodes as input to the EADL:

• Ego Vehicles’ Maximum Capacity (MaxCap): Depend-

ing on areq, two states are defined: areq ≤ amax and

areq > amax .

• Endangered Lane based Critical Time (E-Lane):

Depending on the values of tcritical for each lane and

for a road configuration of two lanes (lane information

are estimated from OpenSteetMap (OSM) [27] for

example), this node has 3 states: Lane 1, Lane 2, Both

Lanes on the lanes are endangered and emergency

braking is not possible.

• Utility Evasive: UEvasive is the cost related to the evasive

action selection given its input E −Lane and MaxCap.

C. Decision-Making Strategy

In the SLBDN network, three decision nodes are rep-

resented (cf. Fig. 6). Decision 1 (D1) has four possible

maneuvers: Lane Change Left (LCL) and Lane Change

Right (LCR) for lane change maneuvers, Keep Lane ACC

(KLACC) for staying in the considered lane while keeping

a safety distance with the vehicle in front and Maintain

Velocity (MV) which is an alternative decision allowing to

stay in the current lane while maintaining previous velocity

configuration. The decision-making in the MDL has been

detailed in previous works [1], [6]. Decision 2 (D2) has 2

states: Abort Maneuver (AM) that allow us to react to a

dangerous change in the DPIDP by canceling the previous

decision effect on the system and re-configuring by select-

ing the appropriate evasive maneuver (cf. SectionII-B) and

Maneuver is Safe (MS) state that consolidates the previous

decision made in node D1 regarding to safety.

Decision 3 (D3) in the other side, proposes 3 states for

handling anomalies during lane change maneuver (Fig. 2):

1) Continue maneuver (CM): in case for example only

Lane 1 is endangered which means only the pair ego-

vehicle/obstacle-vehicle 1 detects an anomaly (tcritical

is positive).

2) Emergency braking (EB): in case both lane are endan-

gered which means tcritical is positive for each pair of

vehicles in each one of the lane and if the vehicles’

maximum capacity for braking allows it areq ≤ amax.

3) Emergency stopping lane (shoulder lane) (ESL): in

case both lane are endangered and emergency braking

is not possible.

In this paper we show the possibility of handling evasive

action selection based on a Bayesian approach during lane



Maneuver Decision Level 

(MDL)

Safety Verification Decision 

Level (SVDL)
Evasive Action Decision Level (EADL)

Decision 1: Lane Change Maneuver

LaneChangeLeft
KeepLaneACC
LaneChangeRight
MaintainVelocity

U_Safety

Extended Time To Collision (ETTC)

 Anomaly Detection criteria of AIDP (AC-AIDP)

Decision 2: Maneuver Safety Checking

Abort Maneuver
Maneuver is Safe

U_Check

Status of Maneuver (SM)

Decision 3: Evasive Action 

Continue Maneuver
Emergency Braking
Emergency Stopping La...

Ego Vehicle's Maximum Capacity (MaxCap)

U_Evasive

Endangered Lane based Critical Time (E-Lane)

Fig. 6. Sequential Level Bayesian Decision Network (SLBDN) Architecture (developed while using Netica software)

change maneuver that is expandable for the whole naviga-

tion.

In order to derive decision strategy, situation assessment

variables represented by a set of chance nodes UC has to

be defined (cf. Fig. 6). UC represents the set of random

variables (X1,X2, ..,Xn) and their conditional probabilistic

dependencies [19].

To identify the most suitable decision, we compute the

Expected Utility (EU) for each decision state and the final

decision is the alternative maximizing this EU. A Multi-

Level Decision Network (MLDN) is a representation of a

joint expected utility function due to the chain rule:

EU(UD) = ∏
X∈UC

P(X |parent(X)) ∑
w∈UV

U(Xparent(w)) (11)

The ultimate goal of the proposed cascade decision-making

strategy is deriving the most suitable decisions given the

available evidence following the temporal order of the set

of decision nodes UD (the action chosen for decision Dn−1

is part of the information available at decision Dn).

III. SIMULATION RESULTS

The simulation results based on experiments performed on

a MATLAB/Simulink car simulator has been implemented

to test the developed algorithms (cf. Fig.2). To demonstrate

the robustness of the proposed approach for handling safe

highway maneuvers, let us show in what follows simulation

examples.

For the different simulations shown below (See. Simula-

tion Video : https://bit.ly/2G0Zu27), it is consid-

ered what follows:

• The scene is constituted of four vehicles in a two-

lane highway: two vehicles on the right lane including

the ego-vehicle (named respectively ego-vehicle and

obstacle-vehicle 1) and two vehicles on the left lane

(named respectively obstacle-vehicle 2 and obstacle-

vehicle 3).

• The initial velocities of the vehicles are given by:

Vegomax = 23m/s, VO1 = 12m/s, VO2 = 25m/s VO3 =
5m/s.

(a) Reconfiguration of the DPIDP

(b) Decision 2: SVDL

(c) Decision 3: EADL

Fig. 7. DPIDP, Decision 2 and Decision 3 when only lane 1 is endangered



A. Safety Verification and evasive action: Lane 1 is endan-

gered

We have selected a dangerous scenario that can occur in a

highway environment where the obstacle-vehicle 1 in front

suddenly brake, while the ego vehicle is trying to perform a

lane change maneuver. In this case, we can see in Fig. 7(a)

that the AIDP crosses the PLSB generating consequently the

SVDL to advise aborting the maneuver (cf. Fig. 7(b)) given

that tcritical is positive. In this case, given that the left lane is

free and given the ability of the system to reconfigure and

adapt to the change (thanks to the properties of the ELC

[6] and to the DPIDP) the evasive action maneuver is to

continue the lane change maneuver (cf. Fig 7(c)) followed

by a reconfiguration of the DPIDP to the new setting which

leads to the state ManeuverisSa f e for D2.

B. Safety Verification and evasive action: Lane 1 and Lane

2 are endangered

In addition to the obstacle-vehicle 1 that comes to stand-

still, it appears in the scene the obstacle-vehicle 3 coming

from behind in the left lane accelerating. At the beginning of

the simulation this obstacle is far and slow enough to allow

the lane change maneuver to start but suddenly accelerates.

Consequently, two of the three DPIDP profiles (cf. Fig. 8(a))

(corresponding to obstacle-vehicle 1 and obstacle-vehicle 3)

alert us through the anomaly criteria that the current situation

(a) DPIDP for the two obstacles

(b) Decision 2: SVDL

Fig. 8. DPIDP and output Decision 2 when both lane are endangered

(a) Decision 3: Scenario 2

(b) Decision 3: Scenario 3

(c) Evading to shoulder lane while using ELC [1]

Fig. 9. Evasive Decisions when both lane are endangered

is dangerous and the lane change maneuver is impossible

according to the acceleration capacities of the ego-vehicle.

In this case the appropriate decision is to abort the ma-

neuver (cf. Fig 8(a)) and two different evasive maneuver are

possible: Emergency braking or Emergency Stopping Lane.

The Emergency braking is possible if and only if areq ≤ amax.

In contrast with previous work [6] where a similar scenario

has been shown, the ego-vehicle will automatically try to

brake while not accounting for the vehicles’ capacity for

emergency braking which is not the optimal way. In this

second scenario (Scenario 2), areq > amax =−10m/s2, which

leads the system to choose the Emergency Stopping Lane

as evasive action (cf. Fig. 9(c) and Fig. 9(a)). Due to the

ability of the system anomaly metric DPIDP to reconfigure

within an average control horizon time Tch and adapt to the

changes as the safety is ensured, D2 come back to status

Maneuver is sa f e.

In a third scenario (Scenario 3), where the deceleration of

the Obstacle-vehicle 1 is smoother, areq ≤ amax =−10m/s2.

This induce the third decision to be Emergency braking as



we can see in Figure 9(b).

IV. CONCLUSIONS

This paper proposes to enhance the probabilistic overall

strategy for risk assessment and management of AV in

highway, highlighted in [1] and [6]. The aim of this paper

is to ensure even more AV safety in uncertain environment

and changing dynamic/behaviors of the surrounding vehicles,

while using mainly a Sequential Level Bayesian Decision

Network (SLBDN), and an appropriate analytic formulation

of anomaly detection criteria based on a Dynamic Predicted

Inter-Distance Profile (DPIDP) between vehicles called the

critical time tcritical , allowing us to quantify the risks and the

criticality of the driving situation. In addition, to account for

uncertainties in the state vector of the vehicles, an Extended

Kalman Filter (EKF) is utilized. The proposed methodology

is thus designed to integrate the safety verification algorithms

and the evasive action selection into the decision-making

process while accounting for uncertainties. This enables us

to have a retrospection over the current performed maneuver

risks and take the appropriate evasive action maneuver,

in real time while accounting for the vehicles’ maximum

capacities.

Several simulation results show the good performance of

the overall proposed control architecture, mainly in terms of

efficiency to handle probabilistic decision-making even for

risky scenarios. Topics for future work include to further

analyze and evaluate the generality the overall proposed

approach. Real-time experimentation will also be carried out

mainly in collaboration with the R&D Department of Sherpa

Engineering.
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