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This paper is devoted to path planning when the safety of the system considered has to be guaranteed in the presence

of bounded uncertainty affecting its model. A new path planner addresses this problem by combining Rapidly-exploring

Random Trees (RRT) and a set representation of uncertain states. An idealized algorithm is presented first, before a

description of one of its possible implementations, where compact sets are wrapped into boxes. The resulting path planner

is then used for nonholonomic path planning in robotics.
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1. Introduction

Consider a system described by a continuous-time state-

space model. Designing some control input to drive this

system from a possibly uncertain initial state to a de-

sired final state is a well-known robust control problem

(Ackermann et al., 1993; Francis and Khargonekar, 1995).

This problem is made more complicated when constraints

on the control input and on the evolution of the state also

have to be satisfied. To solve it, a model of the system

is usually assumed to be available, where noise variables

account for the fact that this model is only an approxima-

tion of reality. The control input then has to be chosen in

such a way that the system reaches the desired final state,

despite uncertainty in the initial state and the presence of

noise, i.e., the control input has to be robust to any type of

uncertainty.

This paper focuses on applications in robotics, where

the robust control problem becomes a reliable path-

planning problem (Latombe, 1991). Consider, for exam-

ple, a vehicle moving in a two-dimensionnal structured

environment. This vehicle should be driven from an ini-

tial state or configuration (position and orientation of the

vehicle with respect to a frame attached to the environ-

ment) to a final desired configuration, despite the presence

of uncertainty related to the model of the vehicle, to im-

perfect embedded sensors, to approximately charted ob-

stacles, etc. The control input and the corresponding paths

(succession of states) achieving this goal without collision

are said to be safe or reliable.

Path planners involving Rapidly-exploring Random

Trees (RRT) (LaValle, 1998; LaValle and Kuffner, 2001a;

LaValle and Kuffner, 2001b) represent the state-of-the-

art in random search. They allow an efficient explo-

ration of the configuration space but, to the best of our

knowledge, do not provide any robustness to model uncer-

tainty. When taken into account, configuration uncertainty

is usually described probabilistically, e.g., by a multivari-

ate Gaussian probability density function (Lambert and

Gruyer, 2003; Gonzalez and Stentz, 2005; Pepy and Lam-

bert, 2006). The main drawback of path planners based on

this description is that the reliability of the path obtained

may be guaranteed at best up to a given confidence level.

To facilitate path planning in the presence of uncer-

tainty, information allowing the vehicle to localize itself

is sometimes assumed to be available. In (Lazanas and

Latombe, 1995; Bouilly et al., 1995; Fraichard and Mer-

mond, 1998; Gonzalez and Stentz, 2004; 2007), for exam-

ple, relocalization zones in which the configurations be-

come perfectly (or at least much more accurately) known

are considered. This technique is rather efficient but re-

quires the preparation of these relocalization zones. In

(Lambert and Gruyer, 2003; Pepy and Lambert, 2006), a

complex model of exteroceptive sensors (sonars) and an

extended Kalman filter are used. To provide distance mea-

surements during path planning, sonars are simulated as-

suming that the vehicle is located at the mean of the mul-
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tivariate Gaussian function that characterizes location un-

certainty. The resulting simulated measurements are then

used to reduce uncertainty. If this technique facilitates the

calculation of a path, it of course does not allow any state-

ment about the reliability of this path.

This paper presents a first conceptual reliable robust

path planner, assuming that all uncertain quantities are

bounded with known bounds. At each time instant, un-

certain configurations are represented by possibly non-

connected sets. The proposed path planner takes advan-

tage of the ability of RRTs to explore the whole configura-

tion space efficiently. Starting from some uncertain initial

configuration (represented by a set), the planner aims at

driving the vehicle to a final configuration set (it will not

be possible to drive it accurately to a point final configura-

tion). Provided that the assumptions on the error bounds

are not violated, if a robust path is found using this new

path planner, its reliability will be guaranteed.

This paper is organized as follows: In Section 2,

the two types of robust path planning problems to be

addressed are presented. The principle of path planners

based on RRTs is described in Section 3. Section 4 pro-

vides a conceptual extension of these planners to sets and

Box-RRT, one of its implementable counterparts where

these sets are represented by boxes (or interval vectors).

Section 5 applies Box-RRT to path planning for non-

holonomic vehicles. Examples of path planning tasks for

a vehicle are given in Section 6, before some conclusions.

2. Reliable robust path planning

Consider a system whose evolution is described by the

continuous-time state equation

ds (t)

dt
= f(s (t) , u (t) , w (t)), (1)

where s (t) ∈ S ⊂ Rn is the state of the system, u is

some bounded input function with values in [u] and w is

some random bounded state perturbation function remain-

ing in [w]. It is assumed that u belongs to U∆t
[u] , the set

of piecewise-constant bounded functions over intervals of

the form [k∆t, (k + 1)∆t[, with ∆t > 0 and k ∈ N,

and that w belongs to W[w], the set of functions bounded

in [w]. For all t ∈ [k∆T, (k + 1)∆T [, u ∈ U∆t
[u] , and

w ∈ W[w], g (s, t) = f (s, u (t) , w (t)) is assumed ℓ-

Lipschitz over S.

The state-space S is partitioned into Sfree, to which

the state of the system is allowed to belong, and Sobs =
S \ Sfree, to which it is not. Sobs represents the results of

constraints imposed on the system, e.g., by its environ-

ment.

At time t = 0, s (0) is assumed to belong to some

known set S (0) = Sinit ⊂ Sfree. The system has to be

driven to a given set of goal states Sgoal ⊂ Sfree. The aim

of robust path planning is then to design an input func-

tion u ∈ U∆t
[u] such that the system reaches Sgoal, without

entering Sobs at any time instant, whatever the initial state

s ∈ Sinit and the noise function w ∈ W[w]. A planned path

is reliable when a given function u ∈ U∆t
[u] can be proved

to drive the system from any s ∈ Sinit to a final state in

Sgoal.

As will be seen below, there may be several formula-

tions of this robust path planning problem.

2.1. Problem 1: Path planning. A first formulation of

the robust path planning problem amounts to determining

whether

∃K > 0 and ∃u ∈ U∆t
[u] such that

∀s ∈ Sinit and ∀w ∈ W[w], s (K∆t) ∈ Sgoal and

∀t ∈ [0, K∆t] , s (t) ∈ Sfree, (2)

where s (t) is the solution of (1).

In (2), the same sequence of inputs has to drive the

system robustly from its imprecisely known initial state to

a final state belonging to Sgoal. If the initial uncertainty

on the state or the state perturbation is too large, or if Sfree

has a complex structure and the distance between Sinit and

Sgoal is too long, it may become quite difficult to find such

a sequence of inputs. It may then be convenient to relax

Problem 1 and consider Problem 2, presented in the next

section, instead.

2.2. Problem 2: Reachability analysis. Even if a so-

lution to (2) exists, actual control inputs are usually not

applied in open loop. Instead, an observer is used to es-

timate the state evolution using measurements provided

by sensors, see, e.g., (Luenberger, 1966). With this im-

proved knowledge, it may be very useful to update path

planning from time to time. In such a context, determin-

ing whether there exists a unique sequence of inputs that

drives the system to Sgoal whatever the initial state in Sinit

is too stringent. It suffices to know whether for any initial

state s ∈ Sinit there exists a sequence of inputs that drives

the system from s to Sgoal. This is typically a reachability
problem: One has to determine whether Sgoal is reachable

from any state in Sinit and for any w ∈ W[w].

Formally, one has to determine whether

∀s ∈ Sinit, ∃K > 0 and ∃u ∈ U∆t
[u] such that

∀w ∈ W[w], s (K∆t) ∈ Sgoal and

∀t ∈ [0, K∆t] , s (t) ∈ Sfree, (3)

where s (t) is again the solution of (1) .

3. Rapidly-exploring Random Trees (RRT)

As for several non-reliable path planning algorithms, the

RRT algorithm will be the corner-stone of the proposed
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Algorithm 1 RRT(sinit ∈ Sfree, Sgoal ⊂ Sfree, ∆t ∈ R+,

K ∈ N)

1: G.init(sinit)

2: i = 0
3: repeat

4: srand ← random_vector(Sfree)

5: snew ← RRT_extend(G, srand, ∆t)

6: until i++> K or (snew �=null and snew ∈ Sgoal)

7: return G

Algorithm 2 RRT_extend(G, srand, ∆t)

1: snear ← nearest_neighbor(G, srand)

2: u ← select_input(srand, snear)

3: snew ← new_state(snear, u, ∆t)

4: if collision_free_path(snear,snew,u,∆t) then

5: G.add_node(snew)

6: G.add_edge(snear, snew, u)

7: return snew

8: end if

9: return null

reliable and robust path planner. The structure and proper-

ties of the RRT algorithm are thus now briefly recalled. In

the remainder of this section, it is assumed that the initial

state s (0) = sinit is perfectly known, and that no pertur-

bation affects the state equation (1) .

3.1. Description. The RRT algorithm (Kuffner and

LaValle, 2000; LaValle and Kuffner, 2001b) is an incre-

mental method aimed at quickly exploring a given con-

figuration space from a given starting configuration. It

is described in Algorithms 1 and 2. First, the tree G

is initialised with a single node corresponding to sinit.

Then, a state srand ∈ Sfree is chosen at random. The

nearest_neighbor function searches in the tree G

for the node snear that is closest to srand according to some

metric d. A control input u ∈ [u] is then chosen (for in-

stance, at random). Integrating (1) over a time interval

∆t with the initial condition snear and a constant control

input u results in a new state snew. If it can be proved
that all state values along the trajectory between snear and

snew lie in Sfree, then the trajectory between snear and snew

is reliable and snew is added to G and connected to snear.

Otherwise, snew is not added to G. A new random state is

chosen to start the next iteration of the algorithm. A path

is found when snew = sgoal, or (more realistically) when

snew ∈ Sgoal.

Figure 1 illustrates the growth of the tree G with the

number of iterations of the RRT algorithm when S =
[0, 100]2, ṡ = u, with s ∈ S ⊂ R2, u ∈ [0, 1]2 and

∆t = 100 ms.

3.2. Improvements. Much attention has been dedi-

cated to improving RRT. In (LaValle and Kuffner, 2001b),

Algorithm 3 Set-RRT(Sinit ⊆ Sfree, Sgoal ⊆ Sfree, ∆t ∈
R+, K ∈ N)

1: G.init(Xinit)

2: i ← 0
3: repeat

4: Srand ← random_set(Sfree)

5: Snew ← Set-RRT_extend(G, Srand, ∆t)

6: until i++> K or (Snew �=null and Snew ⊂ Sgoal)

7: return G

Algorithm 4 Set-RRT_extend(G, Srand, ∆t)

1: Snear ← nearest_neighbor(G, Srand)

2: u ← select_input(Srand, Snear)

3: Snew ← prediction(Snear, u, ∆t)

4: if collision_free_path(Snear,Snew,u,∆t) then

5: G.add_guaranteed_node(Snew)

6: G.add_guaranteed_edge(Snear, Snew, u)

7: return Snew

8: end if

9: return null

the generation of srand is modified by biasing the tree to-

ward sgoal, which increases the planning speed for some

specific Sfree. Instead of choosing srand in the whole Sfree,

another option is to choose it with a probability p > 0 in a

given subset Srand of Sfree. If Srand = {sgoal}, one obtains

the RRT-Goalbias algorithm, and if Srand is the circle cen-

tered on sgoal with a radius mins∈G d(s, sgoal), one gets

the RRT-GoalZoom algorithm.

4. Set-RRT and Box-RRT

In order to cope with an uncertain initial configuration and

bounded state pertubations, the classical RRT path planner

has to be adapted to deal with sets. The first part of this

section is devoted to the presentation of a new concep-

tual algorithm, before describing one of its implementable

counterparts.

4.1. Set-RRT. Set-RRT aims at generating a graph G

consisting of nodes associated with sets in state space.

The structure of Set-RRT is very close to that of the clas-

sical RRT algorithm, where nodes are associated with

vectors. The main changes concern the metric required

to evaluate distances between sets, the prediction func-

tion, which has to determine the evolution of uncertain

states according to (1), and the collision test to determine

whether all possible trajectories between two consecutive

sets are reliable. The principle of Set-RRT is given in Al-

gorithms 3 and 4.

At Step 4, Srand is most often chosen as a point vector,

but making it a set allows replacement of Srand by Sgoal for

the implementation of set variants of Goalbias and Goal-
Zoom. Set-RRT stops when either the number of nodes
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(a) (b) (c)

Fig. 1. Growth of the tree built by the RRT algorithm: (a) 100 nodes, (b) 600 nodes, (c) 6000 nodes.

generated reaches its limit K , or when the goal area is

reached, i.e., the tree includes a node associated with a set

Sk such that Sk ⊂ Sgoal.

4.2. Box-RRT. Dealing with general sets of Rn is

very difficult, even for the simplest uncertain state equa-

tions. Wrappers (Jaulin et al., 2001) guaranteed to con-

tain the sets Sk have to be used to get an implementable

counterpart to Set-RRT. Candidate wrappers are, for ex-

ample, ellipsoids (Schweppe, 1973), zonotopes (Alamo

et al., 2003), interval vectors (Moore, 1979) or a union

of interval vectors (Kieffer et al., 2001; 2002). In what

follows, interval vectors, or boxes, are used to represent

uncertain states. These are quite simple sets, which may

provide a very coarse description of complex-shaped sets.

Using more accurate wrappers may increase the number

of problems to which solutions may be found.

Fig. 2. Set of trajectories between [snear] and [snew], wrapped in

[s̃1], is reliable, but this cannot be proved, since [s̃1] has

a non-empty intersection with Sobs.

In what follows, a specialization of Algorithm 3

to boxes is called Box-RRT. In Box-RRT, the Haus-

dorff distance (Berger, 1987) between boxes may be

used by the nearest_neighbor function. The box

[snew] = [sk+1] containing all possible state values at

time (k + 1)∆t considering that the state is in [snear] at

time k∆t and that the input uk ∈ [u] is constant over

[k∆t, (k + 1)∆t[ must be computed while taking into ac-

count the bounded state perturbation. This may be per-

formed by a set prediction function involving guar-

anteed numerical integration, as proposed, e.g., in (Jaulin,

2002; Kieffer and Walter, 2003; 2006; Raissi et al., 2004).

Finally, the set collision test that guarantees the reliability

of every path between [snear] and [snew] implemented in

collision_free_path requires to wrap all possible

state trajectories between [snear] and [snew]. This is again

performed using guaranteed numerical integration. Note

that wrapping may be so coarse that a path may not be

deemed robustly reliable even if it actually is, see Fig. 2.

On the contrary, in situations such as that of Fig. 3, the set

of paths between [snear] and [snew] can be easily proved to

be robustly reliable.

Figures 4(a) and 4(b) show two paths planned for a

system described by the two-dimensionnal uncertain state

equation

ṡ =
1

1 − w
u, (4)

where s ∈ R2, w ∈ [−0.02, 0.02], sinit ∈ [90, 90.1]2,

sgoal = [10, 20]2, u ∈ [0, 1]2, and ∆t = 100 ms. Fig-

ure 4(b) illustrates the performance of the Goalbias vari-

ant of the Box-RRT algorithm with p = 0.1.

Fig. 3. Set of trajectories between [snear] and [snew], wrapped in

[s̃1], is proved to be reliable, since [s̃1] has an empty

intersection with Sobs.
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(a) (b)

Fig. 4. Paths planned using the Box-RRT algorithm: (a) path planned using the Box-RRT algorithm, (b) path planned using the

Goalbias variant of Box-RRT.

These first two examples show the ability of Box-

RRT to find a reliable path in a simple environment, ac-

counting for uncertainty in the model of the system. Nev-

ertheless, uncertainty is growing along the path, since no

measurement is used to reduce it. The next section is de-

voted to a solution of Problem 2 described in Section 2.

4.3. Reach-RRT: Box-RRT and reachability analy-

sis. In Box-RRT a unique series of constant control in-

puts over time intervals of width ∆t is used to compute

[snew] from [snear] satisfying (1). They are the same for all

s ∈ [snear], which is natural for path planning, since the

succession of values taken by the control input is impor-

tant to actually drive the system from [sinit] to [sgoal].

If Box-RRT does not manage to find a unique input

function u ∈ U∆t
[u] to solve Problem 1, one may first try to

split [sinit] into subboxes and to apply Box-RRT to each of

them. A solution to Problem 2 is then obtained because

the control input sequence is usually no longer the same

for all s ∈ [sinit]. The main difficulty with this technique is

that the number of boxes in which [sinit] has to be split so

that Box-RRT provides a solution for each of them may be

difficult to determine a priori. Moreover, instead of get-

ting a single tree, one obtains as many trees as subboxes

in [sinit].

We propose instead to generate a single tree, lead-

ing to a set of trajectories without branching leading from

[sinit] to [sgoal]. Between two consecutive boxes [sk] and

[sk+1] of this set of trajectories, the control input may be

adapted to each s ∈ [sk] to ensure that the system actu-

ally reaches [sk+1]. This allows a reduction of the size of

[snew] at each iteration with a simple modification of Box-

RRT, entitled BoxReduction, executed just after Step 4 of

the extend function of the Box-RRT algorithm. Algo-

rithms 5 to 8 describe the proposed Reach-RRT algorithm.

Algorithm 5 Reach-RRT([sinit] ⊆ Sfree, [sgoal] ⊆ Sfree,

∆t ∈ R+, K ∈ N, J ∈ N)

1: G.init([sinit])
2: i ← 0
3: repeat

4: [srand] ← random_box(Sfree)

5: [snew] ← Reach-RRT_extend(G, [srand], ∆t, J)

6: until i++> K or ([snew] �= ∅ and [snew] ∈ [sgoal])
7: return G

Algorithm 6 Reach-RRT_extend(G, [srand], ∆t, J)

1: [snear] ← nearest_neighbor(G, [srand])
2: u ← select_input([srand], [snear])
3: [snew] ← prediction([snear], u, ∆t)

4: if collision_free_path([snear],[snew],u,∆t) then

5: [snew] ← box_reduction([snear], [snew], J)

6: G.add_guaranteed_node([snew])
7: G.add_guaranteed_edge([snear], [snew], u)

8: return [snew]
9: end if

10: return ∅

In the Set-RRT_extend function of Algorithm 4,

assume that [snear] corresponds to time k∆t. After Step 4
of this function, one gets [snew] at (k + 1)∆t correspond-

ing to the set of states consistent with [snear], the chosen
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Algorithm 7 box_reduction([snear], [snew], J)

1: [storeturn] ← [snew]
2: S ← cut([snear] , J) {S =

{[snear]1, [snear]2, . . . , [snear]J}}

3: repeat

4: [sred] ← reduce([storeturn])
5: for all [snear]j ∈ S do

6: isReduced ← find_input([snear]j , [sred])
7: if (isReduced == FAILURE) then

8: return [storeturn]
9: end if

10: end for

11: [storeturn] ← [sred]
12: until TRUE

control input u, and the noise w ∈ W[w]. The aim is to

find some [s′new] ⊂ [snew], with minimum width, such that

∀s ∈ [snear], ∃uk ∈ [u] satisfying

∀w ∈ W[w], s ((k + 1)∆t) ∈ [s′new] and

∀t ∈ [k∆t, (k + 1)∆t] , s (t) ∈ Sfree. (5)

This problem may be quite difficult to solve. The follow-

ing sub-optimal algorithm aims only at finding a box [sred]
that is smaller than [snew] and satisfies (5). It is inspired

by (Jaulin and Walter, 1996).

First, a box [sred] ⊂ [snew] is chosen such

that mid{[sred]} =mid{[snew]} and rad{[sred]} =
(1 − ε) ·rad{[snew]} with ε ∈ ]0, 1[, see Fig. 5. Here,

φ ([s] , uk, k∆t) represents a box containing the set of all

solutions of (1) evaluated at time (k + 1)∆t, obtained for

an initial state s ∈ [s] at k∆t, with a constant control

input uk. Then [snear] is split into J subboxes [snear]j ,

j = 1, . . . , J . For each [snear]j , one tries to find a con-

stant input uj ∈ [u] that robustly drives all states from

[snear]j to [sred] (see Fig. 5). For that purpose, one starts

from [u]. If mid {[u]} robustly drives [snear]j to [sred], then

uj =mid{[u]}. Otherwise, [u] is bisected and the mid-

points of the two resulting boxes are tested again. The bi-

section procedure is repeated until a control input is found

or until the resulting subboxes are too small to be further

bisected. Algorithm 8 summarizes these operations. It has

to be called for each subbox [snear]j of [snear].
When control inputs satisfying (5) have been found

for each [snear]j , one may try to reduce [sred] further.

5. Application in robotics

The proposed Box-RRT algorithm is now applied to path

planning for nonholonomic vehicles in a structured 2D

environment, where obstacles are described by polygons.

One of the difficulties of path planning in this context is

the characterization of Sfree, which may be quite complex.

In (Jaulin, 2001), Sfree is characterized first or constructed

Algorithm 8 find_input(IN: [s], [sred], [u], ε)

1: A ← [u]
2: while A �= ∅ do

3: [c] ← Pop(A)

4: [snew] ← φ ([s], mid([c]), k · ∆t)
5: if [snew] ⊆ [sreduced] and

collision_free_path([snear], [snew], mid([c]),∆t)

then

6: return SUCCESS

7: else

8: if w([c]k)< ε then

9: return FAILURE

10: else

11: {[cleft] , [cright]} ← bissection([c])
12: A+ = [cleft]
13: A+ = [cright]
14: end if

15: end if

16: end while

Fig. 5. [snear] is split into subboxes and for each sub-

box [snear]j , an input uj is computed such that

φ([snear]j , u
j , k∆t) ⊆ [s red].

iteratively. Here, Sfree is not explicitely determined: only

the constraints of the environment are used to determine

whether a set of paths is reliable. Apart from the model

of the vehicle considered here, this section provides a de-

scription of a collision test to determine whether a set of

paths between two consecutive sets of states is reliable.

5.1. Model of the vehicle. Various kinematic or dy-

namic models of vehicles (Pepy et al., 2006) could be used

to test the Set-RRT path planner. Here, a kinematic model

based on the classical simple car model (LaValle, 2006)

evolving in a 2D environment is considered, see Fig. 6.

This model incorporates nonholonomic constraints and is

given by

⎧

⎪

⎨

⎪

⎩

ẋ = v(1 + wv) cos θ,

ẏ = v(1 + wv) sin θ,

θ̇ = v(1+wv)
L

tan (δ(1 + wδ)) ,

(6)
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Fig. 6. Simple car model.

where the state vector s = (x, y, θ)T specifies the position

(x, y) and the orientation θ of a frameV attached to the ve-

hicle with respect to a world frame W attached to the en-

vironment. The control input vector is u = (v, δ)T, where

v denotes the longitudinal speed and δ ∈ [−δmax, δmax]
the steering angle. Here, u is assumed to belong to a set

U with a finite number of elements. L is the distance be-

tween the front and rear wheels. The noise components

wv ∈ [−verr, verr] and wδ ∈ [−δerr, δerr] account for the

slipping of the vehicle and for the steering imprecision.

In the following figures, walls and obstacles to be

avoided are represented by polygons.

5.2. Collision test. If [sinit] and [sgoal] are, respectively,

the set of initial and final states, one has to show before

starting the path planner that both sets of states belong to

Sfree. In what follows, the collision tests for a box in the

configuration space and for a set of paths between config-

uration boxes are described. These tests form the core of

the collision_free_path function used in the box-

variant of Algorithms 3 and 4, see Algorithm 9.

5.2.1. Collision-free configuration. The projection of

the shape of the vehicle onto the (x, y)-plane in V is

wrapped in a convex polytope C. Each vertex vi, i =
1, . . . , nv of C is identified by its coordinates (xV

i , yV
i )

in V ′, the projection onto the (x, y)-plane of V . Assume

that the state of the vehicle is s = (x, y, θ)
T

in W . The

boxes
([

xW
i

]

,
[

yW
i

])

containing the set of coordinates of

the nv vertices of the polytope in W ′, the projection onto

the (x, y)-plane of W , are then

(

[xW
i ]

[yW
i ]

)

=

(

[x]
[y]

)

+

(

cos[θ] − sin[θ]
sin[θ] cos[θ]

) (

xV
i

yV
i

)

. (7)

To determine the set containing all possible C in W , one

may build the convex envelope of
([

xW
i

]

,
[

yW
i

])

, i =
1, . . . , nv. A polytope containing these nv boxes is eas-

ily obtained by the Graham scan method (Graham, 1972)

with time complexity O(n log n).

Algorithm 9 collision_free_path([snear], [snew], u, ∆t, En-

vironment)

1: [s̃1] = [snear] ⊔ [snew]
2: while [snear] + [0, ∆t]f([s̃1], u) �⊂ [s̃1] do

3: [s̃1] ← [s̃1] + ǫ [−1, 1]
×3

4: end while

5: if CollisionFreeConfiguration([s̃1], u, ∆t, Environ-

ment) then

6: return true;

7: else

8: return false

9: end if

Since this convex hull is an outer approximation of

the union of all the possible locations of parts of the ve-

hicle that are associated with a given configuration box,

one may now test whether the vehicle is safely located. A

collision may occur only if there exists a segment of the

polygon that intersects a segment of the environment or if

a segment of the environment is entirely included in the

polygon.

5.2.2. Collision-free path. The previous test is use-

ful for determining whether [sinit] and [sgoal] are reliable.

Now, one has to extend it to determine whether a collision

may occur when the vehicle moves from [snear] to [snew].
This is the aim of the collision_free_path func-

tion.

Guaranteed numerical integration (Moore, 1966;

Lohner, 1987) has been used to obtain [snew] from [snear].
To enclose the set of trajectories between [snew] and [snear],
it suffices to find [s̃1] satisfying

[snear] + [0, ∆t]f([s̃1], u) ⊂ [s̃1]. (8)

Then, the following holds true (Moore, 1966):

∀s ∈ [s0] ∀t ∈ [k∆t, (k + 1)∆t], s(t) ∈ [s̃1]. (9)

The box [s̃1] is evaluated in the first step of guaranteed

numerical integrators (Picard-Lindelöf iteration to prove

the existence and uniqueness of solutions to ODEs). It is

thus obtained as a byproduct of these integrators. Once

[s̃1] is computed, it has to be tested for reliability with

the same algorithm as for [sinit] and [sgoal]. The collision

test used with the Box-RRT algorithm is summed up in

Algorithm 9.

When it is proved that no collision occurs between

any two consecutive nodes of the tree, one proves by in-

duction that the path between [sinit] and [sgoal] is robustly

reliable, if it exists.

6. Results

This section provides some results obtained with the Box-

RRT algorithm considering the simple car model of Sec-

tion 5.1. In all examples, ∆t = 100 ms. Only projections
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of boxes onto the (x, y)-plane are represented to increase

readability. All computing times are for a 1.4 GHz Pen-

tium computer.

6.1. Successes. First, results obtained at low speed

(lower than 1 m·s−1) are presented; slipping is then negli-

gible (verr = 0), and it is also assumed that δerr = 0.

Figure 7(a) represents the solution of a simple path-

planning problem using the Box-RRT algorithm. The

width of each component of [sinit] is 20 cm for the x and

y components and 0.1 rad for θ. The box [sgoal], with size

10 m×10 m×2π rad, has to be reached. The distance be-

tween the projections onto the (x, y)-plane of mid{[sinit]}
and mid{[sgoal]} is around 100 m. About 30,000 nodes are

built in about 28 s by Box-RRT to reach [sgoal]. In Fig. 7(b)

about 100 000 nodes, built in about 115 s, are required to

reach a smaller goal, with size 5 m×5 m×2π rad.

Other types of models could readily be used. For ex-

ample, Fig. 7(c) (65 000 nodes in about 60 s) shows a path

planned for a model only able to turn right. Dynamic vehi-

cle models (Pepy et al., 2006) or kinematic chains (Yakey

et al., 2001) could also be considered.

Harder problems may be solved, such as path plan-

ning in an environment with more obstacles, as depicted

in Fig. 7(d) (85 000 nodes in about 90 seconds). In this

example, the size of [sgoal] is 15m×15m×2π rad. Again,

a guaranteed path between the beginning and the end of

the labyrinth is found.

6.2. Challenges. In the previous section, between

Fig. 7(a) and 7(b), the size of [sgoal] has been reduced,

which made the problem harder to solve. If the size of

[sgoal] is reduced further, a path could no longer be found

(see Fig. 8(a)) even if it may still exist. Since only pre-

diction is used, and considering the form of the dynamical

equation describing the motion of simple car, the size of

the box describing the uncertain state always grows along

the path. Thus, as soon as the size of [s] at the end of a

path becomes bigger than that of [sgoal], it is impossible to

reach [sgoal] from this box.

The same problem appears when the skidding error

is too large. This problem is illustrated in Fig. 8(b), where

the size of [sinit] is 10 cm×10 cm×[1, 1.05] rad, the size

of [sgoal] is 10 m×10 m×2π rad, verr = 10−2, and δerr =
10−3. Uncertainty then becomes exceedingly large and

the vehicle can no longer be guaranteed to pass through

the corridor. Thus, this problem cannot be solved using

the version of Box-RRT presented in Section 4.2, unless

some exteroceptive measurements are used at some points

along the path to reduce uncertainty.

6.3. Application of Reach-RRT. The same simulated

conditions are considered as in Fig. 8(b) of Section 6.2.

Results illustrated in Figs. 9(a) and 9(b) show that the

use of differentiated inputs allows a reduction of the boxes

and a proof of guaranteed reachability.

In this example, adapting the input allows the size

of the box [snew] at each iteration to be reduced by 17%

on average. This rate is obtained at the price of splitting

each [snear] in at least 64 subboxes, which significantly in-

creases the computational load. Thus, the reduction step

may be used with a period larger than ∆t.

In Fig. 9(a), box reduction is performed every sec-

ond. The path planner finds a path by generating about

10 000 nodes. Similarly, a path is found for the problem

illustrated in Fig. 9(b) with box reduction performed every

two seconds on each path.

As mentioned earlier, with Reach-RRT, one proves

that for each initial state a control input exists that is

able to drive the system robustly to the goal area. It

is then worth trying to divide the global path planning

task into several local (short-term) planning tasks along

the path obtained by Reach-RRT. This allows information

provided by sensors to be taken into account, facilitating

the task of Box-RRT.

7. Conclusions and perspectives

This paper has presented algorithms based on rapidly-

exploring random trees able to perform path planning

tasks for models of systems including uncertainties. Un-

certain quantities are assumed to belong to sets. A first

conceptual Set-RRT path planner dealing with general sets

has been presented, followed by an implementable Box-

RRT dealing with boxes. Box-RRT has also been adapted

to perform reachability analysis.

Some algorithms presented in this paper are rather

preliminary, but show the potential of the approach. For

example, the choice of the control input in Box-RRT or

Reach-RRT is not optimised yet. Better local, i.e., short-

term, reachability analysis techniques could be used, see,

e.g., (Collins and Goldsztejn, 2008; Ramdani et al., 2008).

In the present version of Set-RRT and Reach-RRT,

Sfree is assumed to be constant with time. One could easily

adapt the proposed algorithms to Sfree varying with time,

to describe moving obstacles, to take into account the lim-

ited energy available to the system, etc.

The model of the mobile robot used in this paper

is extremely simple, and does not take info account the

vehicle dynamics. As a result, the paths generated may

exhibit abrupt changes. A natural way of improving

the smoothness of the trajectories generated would be to

model the vehicle dynamics and put constraints on accel-

eration. This should form the subject of future studies.
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