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Abstract: Semantic communication is a promising technology used to overcome the challenges of
large bandwidth and power requirements caused by the data explosion. Semantic representation is
an important issue in semantic communication. The knowledge graph, powered by deep learning,
can improve the accuracy of semantic representation while removing semantic ambiguity. Therefore,
we propose a semantic communication system based on the knowledge graph. Specifically, in our
system, the transmitted sentences are converted into triplets by using the knowledge graph. Triplets
can be viewed as basic semantic symbols for semantic extraction and restoration and can be sorted
based on semantic importance. Moreover, the proposed communication system adaptively adjusts
the transmitted contents according to channel quality and allocates more transmission resources to
important triplets to enhance communication reliability. Simulation results show that the proposed
system significantly enhances the reliability of the communication in the low signal-to-noise regime
compared to the traditional schemes.

Keywords: semantic communication; knowledge graph; semantic extraction; semantic restoration

1. Introduction

In recent years, wireless communication technology has developed rapidly, bringing
great convenience to human life. Fifth-generation (5G) wireless communication technology
has played an important role in smart cities, autonomous driving, telemedicine, and other
fields [1]. However, with the gradual increase in the communication rate, the explosive
growth of data has created enormous challenges for wireless communication technology [2].
According to the forecast from the International Telecommunication Union (ITU), the annual
growth rate of the global mobile data stream will reach up to 55% by 2030 [3]. Moreover,
the transmission rate of existing communication technologies has gradually approached
the Shannon capacity [4], which cannot meet the continuously growing communication
demands in the future 6G era. In the future, the 6G communication system will play an
important role in remote holography [5], digital twin [6], and other application fields.
Therefore, the sixth-generation wireless communication system needs to provide an ultra-
high peak rate, ultra-large user experience rate, and ultra-low network latency, which
will consume more limited available spectrum and power and bring huge challenges to
communication technology. Semantic communication is one of the effective techniques
used to overcome these challenges [7].

Semantic communication, as a revolution against traditional communication, is a new
communication paradigm [8]. The concept of semantic communication was first proposed
by Weaver (1949) [9]. After Shannon (1948) put forward the classical information theory [4],
Weaver proposed that communication should be divided into three different layers, namely
the technical layer, semantic layer, and effectiveness layer. The technical layer represents tra-
ditional communication, focusing on “how to accurately transmit communication symbols”.
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The semantic layer focuses on “how to accurately convey the meaning of communication
symbols”; the effectiveness layer focuses on “how the received meaning effectively affects
the receiver’s behavior”. Compared with traditional communication, semantic communi-
cation aims to reduce the uncertainty of message understanding between the transmitter
and the receiver. Moreover, semantic communication mainly transmits semantic-relevant
information, which greatly reduces the amount of redundant data. Therefore, semantic
communication is a suitable technology (against the scenarios) with limited communication
bandwidth and a low signal-to-noise ratio (SNR) [10,11].

However, some fundamental problems of semantic communication have not been
effectively solved. One of them is semantic representation, which limits the development
of semantic communication [7]. Regarding semantic representation—existing research
studies tend to use transmitted content features to represent the semantics. This repre-
sentation lacks human language logic and cannot be interactive verification with human
understanding [12]. To solve this problem, we considered using the knowledge graph
instead of features to represent semantics. The knowledge graph can decompose text into
multiple semantic units without losing semantics [13], ensuring the accuracy of seman-
tic representation. The basic structure of the knowledge graph is a triplet in the form
of an “entity-relation-entity” [13]. From the linguistic point of view, a single entity may
have multiple types of semantic information. The specific semantic information can be
determined after a relationship is formed between entities, so the triplet in the knowledge
graph can be regarded as the smallest semantic symbol. There have been some research
studies exploring the relationship between the knowledge graph and semantics. Jaradeh
et al. (2019) proposed that the knowledge graph was the next-generation infrastructure for
semantic scholarly knowledge [14]. Mosa (2021) proposed that the knowledge graph could
help with semantic category prediction [15]. Zhou et al. (2022) combined the knowledge
graph with semantic communication to improve the validity of communication [16]. Thus,
the knowledge graph can effectively represent semantics; we investigated the semantic com-
munication system based on the knowledge graph (SCKG) for improving communication
reliability. The main contributions of this paper are summarized as follows:

• A semantic extraction method is proposed to extract triplets from transmitted text to
represent its core semantic information, reducing the information redundancy of the
transmitted text.

• A semantic restoration method based on text generation from the knowledge graph is
proposed, which completes the semantic restoration process by reconstructing the text
structure between entities and relations.

• A novel semantic communication system was developed, which can sort triplets based
on semantic importance and adaptively adjust the transmitted contents according to
the channel quality.

The rest of this paper is organized as follows. Section 2 briefly reviews the related
work. Section 3 details the proposed system and the semantic extraction and restoration
methods used in the model. Experimental results are presented in Section 4 to verify the
performance of the proposed model. Finally, Section 5 concludes this paper.

2. Related Work
2.1. Semantic Communication Development

Due to technical limitations in the early stage of communication development, re-
searchers have focused on solving engineering problems at the technical layer and post-
poned the study at the semantic layer. However, this does not mean that the research on
semantic communication will be shelved. With the advancements in technology, the seman-
tic problem has become an urgent problem that needs to be solved in the communication
field [17].

In terms of theoretical research, Carnap et al. (1954) first proposed the concept of the
semantic information theory to supplement the classical information theory [18]. They
thought that the semantic information contained in the sentence should be defined based
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on the logical probability of the content of the sentence. Floridi (2004) proposed a theory of
strongly semantic information [19] and pointed out the problem that sentence contradictions
will have infinite information. Bao et al. (2011) put forward a general model of semantic
communication, using a factual statement in the propositional logic form to represent
semantics [20]. Moreover, the semantic entropy, semantic noise, and semantic channel
capacity were defined in [20]. Based on the literature [20], Basu et al. (2012) provided a
detailed explanation of the relationship between semantic entropy and information entropy,
and they defined the concepts of semantic ambiguity and semantic redundancy [21]. In [22],
Lan et al. (2021) proposed that semantic communication can be divided into human-to-
human, human-to-machine, and machine-to-machine sub-areas, which broadened the
scope of semantic communication.

On the other hand, the rapid development of neural networks and artificial intelli-
gence technology promotes the progress of technical research in semantic communication.
In terms of semantic coding, the authors of [23] proposed a joint source-channel coding
for semantic information with a bidirectional long short-term memory model (BILSTM).
As an extension of the literature [23], Rao et al. (2018) presented a variable-length joint
source-channel coding of semantic information [24]. In [25], Liu et al. (2022) proposed a
semantic encoding strategy based on parts-of-speech and context-based decoding strategies,
which enhanced communication reliability from the semantic level. Based on the semantic
communication framework, Xie et al. (2021) proposed a deep learning-based semantic
communication model [26], which used word embedding technology to map text to se-
mantic space and then performed source-channel joint encoding for semantic information
by using the transformer framework [27]. Furthermore, the authors of [28] proposed a
lightweight distributed semantic communication system for the application scenario of
the internet of things (IoT), which reduced the cost of IoT devices. The authors of [29]
proposed a semantic communication model based on reinforcement learning to investigate
the impact of noisy environments on semantic information. In different information forms,
Weng et al. (2021) proposed a semantic communication model for speech transmission [30].
In [31], Hu et al. (2022) proposed a robust end-to-end semantic communication system to
combat the semantic noise for image transmission. Moreover, a semantic communication
model based on multi-information modalities was developed in [32]. Regarding semantic
representation, Zhou et al. (2022) used the transformer for semantic extraction and semantic
restoration [33].

2.2. Performance Metrics

Semantic communication, different from traditional communication systems, does
not emphasize the perfect recovery of the transmitted message, but rather on the receiver
correctly understanding the message in the same way as the transmitter. As a result,
performance metrics commonly used in traditional communication systems (e.g., bit error
rate and symbol error rate) are no longer suitable for semantic communication. Hence, this
paper uses the bilingual evaluation understudy (BLEU) score [34], a metric for evaluation
of translation with the explicit ordering (METEOR) score [35], and the semantic similarity
score [36], as performance metrics.

2.2.1. BLEU Score

BLEU is currently the most commonly used metric in text evaluation [37]. It evaluates
the similarity by counting the number of the same n-grams between transmitted and
received texts, where n-gram means n consecutive words in the text. The formula can be
expressed as

log BLEU = min
(

1− lŝ
ls

, 0
)
+

N

∑
n=1

ωn log pn (1)
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where s and ŝ denote the transmitted sentence and restored sentence, respectively. ls and
lŝ are the lengths of the transmitted sentences s and restored sentence ŝ, respectively. ωn
represents the weight of n-grams, and pn denotes the precision of n-grams.

2.2.2. METEOR Score

METEOR extends the synonym set by introducing external knowledge sources, such
as WordNet [38]. Furthermore, it uses precision Pm and recall Rm to evaluate the similarity
between transmitted and received texts. The formula is given as follows

Fmean =
PmRm

αPm + (1− α)Rm
(2)

METEOR = (1− Pen)Fmean (3)

where α is the hyperparameter according to WordNet, Fmean represents the harmonic mean
combining Pm and Rm, and Pen is the penalty coefficient.

2.2.3. Semantic Similarity Score

The semantic similarity score converts text into vectors by using the BERT model [39].
It evaluates the semantic similarity between sentences by comparing the degree of similarity
between vectors. For the transmitted sentence’s vector v(s) and the received sentence’s
vector v(ŝ), the semantic similarity score can be expressed as

simv(s, ŝ) =
v(s) · (v(ŝ))T

‖ v(s) ‖ · ‖ v(ŝ) ‖ (4)

All the performance metrics introduced above take values between 0 and 1. A higher
score given by the performance metrics means that the received text’s semantic is closer to the
transmitted text’s semantic; 0 means semantically irrelevant; 1 means semantically consistent.

3. System Model

As shown in Figure 1, the structure of the proposed system consists of a semantic ex-
traction module, traditional communication architecture, and semantic restoration module.
The proposed system can be divided into two levels, which are the semantic level and the
technical level. The structure of the technical level is the same as that of the traditional
communication system; thus, we mainly introduce the details at the semantic level. At the
transmitter, the semantic extraction module can extract the knowledge graph (KG) of the
transmitted sentence to represent its semantics. More importantly, the knowledge graph is
sorted according to semantic importance. At the receiver, the semantic restoration module
can recover the transmitted sentence according to the received knowledge graph.

Figure 2 shows examples of the proposed semantic communication system in different
channel qualities. At the transmitter, the transmitted sentence is first converted into the
knowledge graph through the semantic extraction module. Next, the transmitter adjusts
the knowledge graph according to the channel quality. Then, the knowledge graph is
transmitted through the channel. With the noisy knowledge graph received, the semantic is
recovered through the semantic restoration module. In Figure 2a, when the channel quality
is good, the transmitted sentence and the restored sentence convey the same semantics
although they have different sentence structures. When the channel quality is poor, all
triplets cannot be transmitted correctly. Therefore, the proposed semantic communication
system chooses to transmit the most important triplet. When it comes to Steve Jobs, people
tend to care about his relationship with Apple rather than the college he graduated from.
As shown in Figure 2b, the transmitter only sends “< Steve Jobs-founder-Apple” when the
channel quality is poor.
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Figure 1. The structure of the proposed semantic communication system based on the knowledge
graph, including the semantic extraction module, traditional communication architecture, and se-
mantic restoration module.

Transmitted sentence:
Steve Jobs, a graduate of Reed College, 
is the founder of Apple.

Semantic Extraction

Steve Jobs

Reed College

Apple

graduate

founder

Source/Channel
encoder Channel Source/Channel

decoder

Semantic Restoration

<Entities>:Steve Jobs, Reed College
<Relation>:graduate

<Entities>:Steve Jobs, Apple
<Relation>:founder

Restored sentence:
Steve Jobs graduated from Reed College 
and is the founder of Apple.

(a)

Transmitted sentence:

Steve Jobs, a graduate of Reed College, 

is the founder of Apple.

Semantic Extraction

Steve Jobs

Reed College

Apple

graduate

founder

Source/Channel

encoder
Channel

Source/Channel

decoder

Semantic Restoration

<Entities>:Steve Jobs, Apple

<Relation>:founder

Restored sentence:

Steve Jobs is the founder  

of Apple.

Protect Mechanism

Transmitted sentence:

Steve Jobs, a graduate of Reed College, 

is the founder of Apple.

Semantic Extraction

Steve Jobs

Reed College

Apple

graduate

founder

Source/Channel

encoder
Channel

Source/Channel

decoder

Semantic Restoration

<Entities>:Steve Jobs, Apple

<Relation>:founder

Restored sentence:

Steve Jobs is the founder  

of Apple.

Protect Mechanism

(b)

Figure 2. Examples of the proposed semantic communication system in different channel qualities.
(a) An example of the proposed semantic communication system when the channel quality is good.
(b) An example of the proposed semantic communication system when the channel quality is poor.
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3.1. Semantic Extraction Method

To represent the semantic information correctly, the semantic extraction module at
the transmitter uses a deep learning network to extract the knowledge graph from the
transmitted sentence. Let S2Gθ(•) be the function of the proposed semantic extraction
method, which takes the sentence S = [w1, w2, · · · , wm] as input and its corresponding
output is the knowledge graph G, where wm is the mth word in the sentence. The deep
learning network structure for the semantic extraction method is shown in Figure 3.

S NER(·)
(entity extraction)

LSTM
(compute embedding)

Multi-label classification
MLCL(·)

(predict relation)
TrainE ie ijr G

Ĝ GAT
(encode KG)

RNN
(decode)

ATTENTION
(aggregation context)

MLP(·)
(generate word) Trainh ib ic iw Ŝ

Figure 3. The deep learning network structure for the semantic extraction method.

In particular, we used the pipeline method to extract the knowledge graph, which
means extracting the entities in S and then predicting the relations between entities. Firstly,
we used a well-established named entity recognition model (NER) to extract the entities [40].
This model is based on the conditional random field classifier and Gibbs sampling. The
conditional random field classifier combines the characteristics of the maximum entropy
model and the hidden Markov model, and it is often used to deal with sequence labeling
tasks, such as parts-of-speech tagging and named entity recognition. Gibbs sampling is a
method of generating Markov chains that can be used for Monte Carlo simulations. Based
on the conditional random field classifier and Gibbs sampling, NER is trained by using a
large amount of manually annotated text and can recognize entities from given sentences.
Therefore, the entities in the transmitted sentence can be expressed as

E = [en1, en2, · · · , eni, . . . , enL] = NER(S) (5)

where eni represents the ith entity in the sentence, L is the total number of entities contained
in the sentence.

After extracting entities from S, we predict the relations between the two entities.
Firstly, the embedding of each word wj in the entity eni is averaged to obtain the entity’s
embedding. The embedding of wj can be obtained by using a long short-term memory
model (LSTM) [41] to encode wj and its context. The formula is given as follows

emb
(
wj
)
= LSTM_encode

(
wj, w<j, w>j

)
(6)

Therefore, the ith entity’s embedding ei can be represented as

ei =
1

Len(eni)
∑

wj∈eni

emb
(
wj
)

(7)

where Len(eni) is the number of words in the entity eni.
Then we feed the entity embeddings into a multi-label classification layer MLCL(•) to

predict the relations. The multi-label classification layer MLCL(•) can take in two entities
and predict the possible relation set. To prevent these two entities from being irrelevant,
the relation set includes the “no-relation” type. The relation set between the ith entity and
the jth entity can be represented as

rij = MLCL
(
ei, ej

)
(8)

Since the knowledge graph is made of entities and relations, the probability of ex-
tracting a graph from a given sentence is equivalent to the product of the probability of
extracting the relation set given any two entities. The formula can be expressed as
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p(G | S) =
L

∏
i=0

L

∏
j=0

p
(
rij | ei, ej, S

)
(9)

Based on the probability p(G | S), we can denote the loss function of the proposed
semantic extraction method by using the negative log-likelihood loss, which can be formu-
lated as

LS2G(θ) = E[− log p(G | S; θ)]

= E
[
− log

L

∏
i=0

L

∏
j=0

p
(
rij | ei, ej, S; θ

)] (10)

where θ is the network parameter set of the deep learning network, which is shown in
Figure 3.

Utilizing the loss function LS2G, the optimal parameter set θ∗ can be easily found
using the gradient descent method. Consequently, the details of the proposed semantic
extraction method can be summarized in Algorithm 1.

Algorithm 1 The proposed semantic extraction method

Input: the transmitted sentence S
1: Build entity set E by Equation (5)
2: for each eni ∈ E do
3: Compute the embedding ei by Equations (6) and (7)
4: end for
5: Construct the relation set according to Equation (8)
6: Compute loss function LS2G(θ) according to Equation (10)
7: Train θ → θ∗

Output: The knowledge graph G

3.2. Semantic Restoration Method

The proposed semantic restoration method—similar to the proposed semantic extrac-
tion method—uses deep learning to generate sentences from the received knowledge graph.
The generated sentence can help the receiver understand the semantics of the transmitted
sentence. Let G2Sϕ(•) be the function of the proposed semantic restoration. The input of
G2Sϕ(•) is the received knowledge graph Ĝ and its output is the restored sentence Ŝ. The
deep learning network structure for the semantic restoration method is shown in Figure 4.

S NER(·)
(entity extraction)

LSTM
(compute embedding)

Multi-label classification
MLCL(·)

(predict relation)
TrainE ie ijr G

Ĝ GAT
(encode KG)

RNN
(decode)

ATTENTION
(aggregation context)

MLP(·)
(generate word) Trainh ib ic iw Ŝ

Figure 4. The deep learning network structure for the semantic restoration method.

At first, we encoded the received knowledge graph Ĝ to convert it to the embedding,
which could be processed by the deep learning network. Specifically, we used the graph
attention network (GAT) [42] to calculate the embedding of the received knowledge graph
Ĝ. GAT is a representative graph convolutional network that can encode the knowledge
graph by introducing the attention mechanism into the knowledge graph. Therefore, the
embedding of Ĝ can be represented as

h = GAT(Ĝ) (11)
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After obtaining the embedding h, we used the recurrent neural network (RNN) and
the attention mechanism to generate the sentence word by word. Each step of RNN can
produce a word embedding. In the ith step, the embedding bi can be represented as

bi = RNN(bi−1, wi−1) (12)

where wi−1 is the i− 1th word in the generated sentence, bi−1 is the embedding produced
in the i − 1th step. To improve the accuracy of the generated sentence, the attention
mechanism was used to obtain the embedding of contextual information. The formula can
be described as

ci = ATTENTION(bi, h) (13)

where ci denotes the contextual information of the ith word. Then we fed the word
embedding bi and the contextual information ci into a multilayer perceptron (MLP) to
generate the ith word wi.

Consequently, the generation of wi based on the received knowledge graph Ĝ and
all previously generated words w<i was fulfilled by predicting the word wi through MLP
with the assistance of the word embedding bi and the contextual information ci. Thus, the
probability of recovering word wi can be represented as

p(wi|w<i, Ĝ) ∝ exp(MLP([bi; ci])) (14)

In summary, the probability of generating a sentence from the received knowledge
graph Ĝ is equivalent to the product of the probability of generating each word. The
probability can be described as

p(Ŝ|Ĝ) = ∏ p
(
wi | w<i, Ĝ

)
(15)

Similarly, we used the negative log-likelihood loss to denote the loss function of
the proposed semantic restoration method according to the probability p(Ŝ|Ĝ). The loss
function can be represented as

LG2S(ϕ) = E[− log p(Ŝ | Ĝ; ϕ)]

= E
[
− log ∏ p

(
wi | w<i, Ĝ; ϕ

)] (16)

where ϕ is the network parameter set of the deep learning network, which is shown in
Figure 4. Finally, the gradient descent can be used to find the optimal parameter set ϕ∗ for
minimizing the loss function LG2S(ϕ).

The details of the proposed semantic restoration process are summarized in Algorithm 2.

Algorithm 2 The proposed semantic restoration method

Input: the received knowledge graph Ĝ
1: Compute the embedding of Ĝ by Equation (11)
2: while wi is not the satisfied end feature do
3: Compute bi by Equation (12)
4: Compute the contextual information ci by Equation (13)
5: Generate word wi according to Equation (14)
6: end while
7: Compute the loss function LG2S(ϕ) according to Equation (16)
8: Train ϕ→ ϕ∗

Output: the knowledge graph Ŝ
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3.3. System Process

In this section, we introduce the overall process of the proposed semantic commu-
nication system. Let S = [w1, w2, · · · , wm] be the transmitted sentence, where wm is the
mth word in the sentence. As shown in Figure 5, with the help of the proposed semantic
extraction method S2Gθ(•), the transmitter converts the transmitted sentence S to the
knowledge graph G, which can be represented as G = S2Gθ(S). The knowledge graph G
consists of n triplets and it can be formulated as G = [g1, g2, · · · , gn].

Source
Encoder

Channel
Encoder

Channel
Decoder

Source
Decoder

Channel

Semantic 
Restoration

/G2S

S 'G X

YĜŜ

Semantic 
Extraction

/S2G
G

Sort KG

Refactor 
KG

Semantic level Technical level

Semantic Extraction
S2Gθ(·)

Compute semantic 
importance

Source encoder
T(·)

Channel encoder
C(·)

Channel
H

Channel decoder
C -1(·)

Source decoder
T -1(·)

Semantic Restoration
G2Sφ (·)

S G B X

YB̂ĜŜ

N

Figure 5. The overall process of the proposed semantic communication system based on the knowl-
edge graph, combining the proposed semantic extraction method, the proposed semantic restoration
method, and the traditional communication architecture.

Using the proposed semantic extraction method, the transmitted sentence is converted
into a series of triplets. In this process, the semantics of the transmitted sentence are
extracted without losing semantics [13]. During transmission, these triplets are independent
of each other, which means that errors in some triplets will not affect other triplets. However,
in Markov models, once there is a transmission error, the whole transmitted sentence will
be affected. Therefore, the proposed semantic communication system is more robust under
a low SNR. Moreover, different semantic basic symbols (triplets) have semantic importance
in semantic communication, unlike bits or symbols that are treated equally in traditional
communication, such as longer-range models and Markov chain-based probabilistic models.
These triplets (with semantic importance) should be treated differently. The triplets with
important semantics should be allocated with many time slots and bandwidth resources.
When the channel quality is extremely poor, instead of transmitting all triplets, which
cannot be guaranteed by the channel, it is better to ensure that the most important triplet
can be transmitted correctly. When the channel quality is better, the system can adjust the
sending content according to semantic importance. Motivated by the different triplets with
semantic importance, we sort these triplets according to their semantic similarity scores:

simv(s, gi) =
v(s) · (v(gi))

T

‖ v(s) ‖ · ‖ v(gi) ‖
(17)

where gi denotes the ith triplet in G. Table 1 shows an example of semantic importance.
From Table 1, “< Steve Jobs – founder-Apple>” is more important than “< Steve Jobs –
graduate-Reed College >”, which is also in line with human perception.

Table 1. An example of semantic importance.

Sentence Triplets of Knowledge Graph Semantic Similarity

Steve Jobs, a graduate of Reed
College, is the founder of Apple

Steve Jobs – graduate-Reed College 0.56
Steve Jobs – founder-Apple 0.73



Entropy 2022, 24, 846 10 of 18

Based on the sorted triplets, we can adaptively adjust the number of transmitted
triplets according to the channel quality. When the channel quality is extremely poor, we
only transmit the most significant triplet and use the communication resources of triplets
not transmitted to protect it. As the channel quality improves, we increase the number of
transmitted triplets.

After the transmitted knowledge graph G is obtained, the transmitter first maps it into
a binary bit stream B = T(G), and then feeds the binary bit stream into the channel encoder
to cope with the effects of channel noise and distortion. Therefore, the whole process of the
transmitter can be represented as

X = C(T(G)) (18)

where T(•) and C(•) denote the source encoder and the channel encoder, respectively. If X
is sent, the received signal can be represented as

Y = HX + N (19)

where H is the channel coefficient and N ∼ CN
(
0, σ2

n
)

denotes the additive white Gaus-
sian noise.

After obtaining the received signal, the receiver will decode it to recover the transmit-
ted knowledge graph. Defining C−1(•) and T−1(•) as the channel decoder and the source
decoder, respectively, the received knowledge graph Ĝ can be represented as

Ĝ = T−1
(

C−1(Y)
)

(20)

Then we use the proposed semantic restoration method G2Sϕ(•) to obtain the restored
sentence Ŝ.

Ŝ = G2Sϕ(Ĝ) (21)

The process of the proposed semantic communication system is shown in Algorithm 3.

Algorithm 3 Process of the proposed semantic communication system.

Input: The transmitted sentence S
1: Transmitter:
2: Extract the knowledge graph by Algorithm 1
3: for i = 1 to n do
4: Compute the semantic importance of gi by Equation (17)
5: end for
6: Sort the knowledge graph according to the semantic importance
7: Adjust the number of transmitted triplets according to the channel quality
8: C(T(G))→ X
9: Transmit X over the channel

10: Receiver:
11: Receive Y
12: T−1(C−1(Y)

)
→ Ĝ

13: Restore the sentence Ŝ by Algorithm 2
Output: The restored sentence Ŝ

4. Experimental Results

In this section, we compare the proposed SCKG with other traditional models under
different channels, including the AWGN channel and the Rayleigh fading channel to verify
the effectiveness of SCKG. In Table 2, we introduce the models used in the experiments,
including their general features and technical methods. It is worth noting that the traditional
communication models are not the only ones mentioned in Table 2. The source coding
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can also choose arithmetic coding, L–Z coding, and other coding methods. Identically, the
channel coding can also choose turbo code, polar code, and other coding methods.

Table 2. Introduction to the proposed model and other traditional models.

Model General Features Technical Methods

SCKG

(1) Adding the semantic ex-
traction module and semantic
restoration module into tradi-
tional communication architec-
ture. (2) Using triplets as seman-
tic basic symbols for semantic
extraction and restoration.

(1) Semantic extraction—
network structure using
NER + LSTM. (2) Semantic
restoration—network struc-
ture using GAT + RNN +
ATTENTION.

Huffman [43] + LDPC [44]

(1) Using the traditional com-
munication architecture from
Shannon’s information theory.
(2) Using Huffman coding as
source coding and using LDPC
coding as channel coding.

(1) Convert transmitted sen-
tences to bit sequences by us-
ing Huffman coding. (2) Using
LDPC coding to combat chan-
nel distortion.

DeepNN [23]

(1) Using the deep neural
network for source-channel
joint coding. (2) Replacing
source encoding and channel
encoding with the encoder
of the deep neural network.
(3) Replacing source decoding
and channel decoding with the
decoder of the deep neural
network.

(1) Encoder—network structure
using BILSTM. (2) Decoder—
network structure using
LSTM.

4.1. Experimental Settings

In the simulation, the adopted dataset was the WebNLG dataset [45], which is usually
used to generate sentences from knowledge graphs. Each data in the dataset consists of
multiple triplets and their corresponding sentences. After preprocessing the dataset, we
obtained 12,597 training data, 1746 validation data, and 2493 test data. The training and
testing environment was Ubuntu16.04+CUDA10.1, the selected deep learning framework
was PyTorch 1.6.0. The training settings of the semantic extraction method and the semantic
restoration method are shown in Table 3.

Table 3. Training settings for semantic extraction and restoration method.

Type Parameters for Semantic
Extraction Method

Parameters for Semantic
Restoration Method

Epochs 50 50
Batch size 32 32
Optimizer Adam Adam

Learning rate 5× 10−5 2× 10−4

Drop 0 0.1

In the experiment, the test data of WebNLG were transmitted sentence-by-sentence to
the transmitter. Then we obtained the restored sentences by using the above-mentioned
methods at the receiver. After the restored sentences were obtained, the experimental
results could be calculated according to the performance metrics.

For the benchmark, we adopted the traditional communication architecture with
source coding and channel coding, where source coding could use Huffman coding, arith-
metic coding, L–Z coding, etc., and channel coding could use LDPC coding, turbo code,
polar code, etc. For simplicity, we adopted the combination of Huffman coding and LDPC
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coding (named “Huffman + LDPC”). Moreover, we considered another two methods as
ablation experiments to validate the effectiveness of the proposed model. One involved
using the proposed model without adaptive transmission and semantic restoration (named
the “Proposed model without AT and SR”), and the other involved using the proposed
model without adaptive transmission (named the “Proposed model without AT”).

4.2. Experimental Result Analysis
4.2.1. Performance of the Proposed Semantic Communication System

First, we investigated the effects of the number of triplets on the semantic perfor-
mance under different SNRs. Here, we considered three strategies, one strategy was to
send the first triplet (named “Send the 1st triplet”), and the other two schemes involved
sending 50% triplets (named “Send 50% triplets”) and 100% triplets (named “Send 100%
triplets”), respectively. Moreover, we compared these three strategies with the benchmark
and an end-to-end deep learning-based communication system proposed in [23] (named
DeepNN). Figure 6 shows the performance of the semantic similarity versus the SNR in this
experiment. From Figure 6, “Send the 1st triplet” has the best semantic similarity under
a low SNR because it uses the most resources to protect the first triplet. With the SNR
becoming better, “Send 50% triplets” has better performance because “Send the 1st triplet”
transmits limited semantics, and the accuracy of the scheme “Send 100% triplets” cannot be
guaranteed due to the channel distortion. The semantic similarity of “Send 100% triplets” is
above the others at a high SNR, which is reasonable due to the error-free transmission when
the channel quality is good. Meanwhile, all three strategies outperformed the benchmark
and DeepNN in their superior SNR regions. According to Figure 6, it is reasonable to send
the most important triplet in the low SNR region, send 50% triplets in the medium SNR
region, and send 100% triplets in the high SNR region.

2022/6/13 20:55 1_c.svg

file:///E:/JST/NUDT/BCNG/Semantic Communication/reference/小论文/MDPI/返修/修改/1_c.svg 1/1

Figure 6. Semantic similarity versus the SNR under the AWGN channel, with send the 1st triplet;
send 50% triplets; send 100% triplets; Huffman + LDPC; DeepNN.

Figure 7 demonstrates the relationship between the SNR and the BLEU score under
the AWGN channel. From Figure 7, the proposed model performs better under a low
SNR in terms of the 1-gram BLEU score or 2-gram BLEU score due to the protection of
important triplets. Moreover, after converting the received triplets into sentences by using
the proposed semantic restoration method, “Proposed model without AT” outperforms
“Proposed model without AT and SR” for all SNR regimes. However, the performance of
the proposed model is inferior to the traditional communication system in the high SNR
region in Figure 7. This is because the proposed semantic restoration method attempts
to recover the same semantic rather than the same sentence structure. For example, the
transmitted sentence is “Steve Jobs was the founder of Apple”, and the restored sentence is
“Steve Jobs founded Apple”. Although the two sentences are semantically consistent, the
BLEU score of the proposed scheme is poor.
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Figure 7. BLEU score versus the SNR over the AWGN channel. (a) BLEU(1-gram) score over the
AWGN channel. (b) BLEU(2-gram) score over the AWGN channel.

Figure 8 shows the relationship between the SNR and the BLEU score under the
Rayleigh fading channel. All scores in Figure 8 are lower than the scores in Figure 7 because
of the severe impacts of Rayleigh fading. However, the proposed model significantly
improves performance compared to the benchmark. From Figure 8, the proposed model
outperforms the benchmark across the SNR range over the Rayleigh fading channel, either
the 1-gram BLEU score or the 2-gram BLEU score. It reflects that our proposed model is
more robust to complex communication environments. Meanwhile, since “Proposed model
without AT” and “Send 100% triplets” are identical in the high SNR region, the results of
the proposed model and “Proposed model without AT” are the same when the SNR is
higher than 2 dB.2022/4/21 11:55 R_BLEU1.svg

file:///C:/Users/64337/Desktop/figure/R_BLEU1.svg 1/1
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Figure 8. BLEU score versus the SNR over the Rayleigh fading channel. (a) BLEU(1-gram) score over
the Rayleigh fading channel. (b) BLEU(2-gram) score over the Rayleigh fading channel.

Since BLEU is an evaluation metric that calculates scores based on word matching,
sentence sizes can affect the performance of our proposed model. To research this, we
divided the transmitted sentences into three groups—sentence length between 0 and 15,
sentence length between 15 and 30, and sentence length greater than 30. Figure 9 shows
the relationship between the SNR and the (1-gram) BLEU score under the AWGN channel
and the Rayleigh fading channel, respectively. From Figure 9a, “Sentence Length (0, 15)” is
significantly higher than the other two groups. This is because the proposed model only
transmits the most important triplet in the low SNR, and the length of the restored sentence
is limited. In the low SNR region, the BLEU score decreases as the sentence length increases.
With the SNR increasing, the number of the transmitted triplets increases, and the gaps
between the different groups narrow. In Figure 9b, the gaps between the different groups
are not obvious due to the effects of Rayleigh fading.
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Figure 9. BLEU (1-gram) score versus the SNR with sentence length (0, 15). Sentence Length (15, 30);
sentence length (>30). (a) BLEU (1-gram) score over the AWGN channel. (b) BLEU (1-gram) score
over the Rayleigh fading channel.

Figure 10 shows the METEOR score versus the SNR over the AWGN channel and the
Rayleigh fading channel. From Figure 10a, the score of the benchmark is close to 1 and
higher than our proposed model when the SNR is above 4 dB. This is because the few errors
that occurred during the transmission were corrected by the channel coding at a high SNR;
the benchmark could restore the transmitted sentence without distortion. However, our
proposed model discards the information of sentence structure during transmission. When
the SNR is less than 4 dB, the channel coding cannot correct all errors during transmission.
In this situation, the METEOR score of the benchmark degrades rapidly. However, the
proposed model reduces the number of transmitted triplets and protects important triplets
in this case, which leads to a better performance in the low SNR region. From Figure 10b,
even under the Rayleigh fading channel, our model outperforms the benchmark in all
SNR regions.2022/4/21 12:09 METEOR.svg

file:///C:/Users/64337/Desktop/figure/METEOR.svg 1/1

(a)
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Figure 10. (a) METEOR score versus the SNR over the AWGN channel. (b) METEOR score versus
the SNR over the Rayleigh fading channel.

Figure 11 draws the relationship between the SNR and the semantic similarity under
the AWGN channel and the Rayleigh fading channel. From Figure 11, the “Proposed model
without AT and SR” outperforms the benchmark in the low SNR region under the AWGN
channel, while it outperforms the benchmark in all SNR regions under the Rayleigh fading
channel. This is because our proposed model splits the transmitted sentence into multiple
independent triplets, leading to that, the wrongly transmitted triplets will not affect the
semantics of other triplets. However, the benchmark model transmits the sentence as
a whole, and if errors occur in the transmission, then the semantics of the sentence are
affected. Therefore, when the channel quality is poor, our proposed model can preserve
partially correct semantics. Meanwhile, since the semantic similarity based on the BERT
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model can capture semantic relationships among words, the proposed scheme obtains a
higher similarity compared with the BLEU score and METEOR score.2022/4/21 12:16 sim.svg

file:///C:/Users/64337/Desktop/figure/sim.svg 1/1
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(b)

Figure 11. (a) Semantic similarity versus the SNR over the AWGN channel. (b) Semantic similarity
versus the SNR over the Rayleigh fading channel.

To ensure the fairness of the comparison of experimental results, we computed the
time complexities of all strategies. We transmitted 1000 sentences from the transmitter to
the receiver by using different strategies and calculated the average execution time. All
tests were run on Python and were performed by the computer with AMD Ryzen 7 4800H
and NVIDIA GeForce GTX 3060. The results are shown in Table 4. From Table 4, our
proposed model increases the computational complexity and improves communication
reliability.

Table 4. The time complexity of all strategies.

Strategies Time Complexity/s

Huffman + LDPC 2.7324
Proposed model without AT and SR 3.1638

Proposed model without AT 3.7742
Proposed model 3.8539

4.2.2. Comparison with Other Semantic Communication Models

To validate that our proposed model is more competitive than existing research,
we compared it with the scheme from [23], which adopts an end-to-end deep learning-
based communication system for text transmission (named DeepNN). Figure 12 shows the
relationship between the SNR and the semantic similarity performance over the AWGN
channel. From Figure 12, our proposed model outperforms DeepNN across the entire
SNR region. The reasons are two-fold. First, by using triplets as semantic basic symbols,
our proposed model can extract lossless semantics. Moreover, the important triplets are
allocated more transmission resources in our proposed model, which effectively protects
the importance of the semantics. However, DeepNN uses a fixed bit length to encode
sentences of different lengths, resulting in a partial loss of semantics.
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Figure 12. Semantic similarity of our proposed model and DeepNN versus the SNR over the
AWGN channel.

5. Conclusions

In this paper, the reliable semantic communication assisted by the knowledge graph
was studied, which overcomes the problem that the meaning of data represented by
the features of the deep learning model cannot be explainable [26,28]. Specifically, we
proposed a semantic extraction scheme that transforms the transmitted sentence into
multiple triplets with semantic importance. Moreover, an adaptive transmission scheme
is proposed, in which the important triplets are allocated more communication resources
to combat channel distortion. Moreover, a semantic restoration scheme was designed to
reconstruct the sentence and recover the whole semantic at the receiver. The simulation
results show that the proposed system outperforms the traditional schemes in improving
communication reliability, especially in the low SNR regime. However, the optimal number
of triplets transmitted over a specific channel is still an ’open question’. In the future,
more work is needed to analyze the relationship between the number of triplets and the
channel quality.
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