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1. INTRODUCTION

Suppose P is a given unstable plant. The problem of determining

a controller C such that the feedback system of Figure 1 is stable

has been studied for several years. Recent results [1-3] provide

a characterization of all controllers C that stablize the given plant P.

With the availability of this characterization, interest has been created

in the problem of reliable stabilization. In [4,5] the object of study

is the so-called simultaneous stabilization problem, where one would

like to determine whether or not there exists a single controller C that

stabilizes each of several given plants P0' 1.., P . The motivation for the

problem formulation is that P0 represents the model of the plant in its

normal mode, while P1, ... Pn represent the same plant under various

structural perturbations, such as sensor/actuator failures, changes

in the mode of operation etc. Thus, if the simultaneous stabilization

problem has a solution, then not only does C stabilize the nominal

plant P0, but this stabilization is reliable against a prespecified

set of structural changes in the plant.

The problem studied in this paper is in a sense the dual of the

simultaneous stabilization problem. Consider the system shown in Figure

2, where P is a given plant, and C1, C2 are controllers to be determined.

The objective is to select C1 and C2 (if possible) such that the system

of Figure 2 is stable as shown, as well as when either C1 or C 2 is set

equal to zero. The structure in Figure 2 is called a multi-controller

configuration, and the above requirements on C1, C2 mean that C1 and

C2 together stabilize P, and in addition, both C1 and C2 individually
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stabilize P. The motivation for studying this problem is the following:

In the "normal" mode, both controllers C1 and C2 are in operation and

the system is stable. Should either controller fail (modeled by setting

Ci=O for i=l or 2), the system is still stable (though other properties

such as sensitivity might be affected adversely). Thus, if there exist

controllers C1, C2 satisfying the above requirements, then the stabili-

zation scheme of Figure 2 is reliable against a single controller failure.

It should be emphasized that the reliable stabilization scheme

proposed in Figure 2 is quite distinct from the standard technique of

having redundancy in key controllers [6]. The redundancy scheme can

be represented as in Figure 3. In this scheme, the back-up controller

is switched-in once the failure of the main controller is detected. Thus

only one controller is connected to P at any one time. In contrast, in

the normal mode of operation of the system shown in Figure 2, both

controllers are connected to P. There are two reasons for proposing

the structure of Figure 2 as an alternative to that in Figure 3: (i) In

systems with very fast transients such as aircraft, the system may become

unstable during the time it takes to detect the failure of the controller

(ii) The structure of Figure 3 is not reliable against the failure of

the "switch".

The objective of the paper is to present conditions on P that ensure

the existence of controllers C1 and C2 that achieve reliable stabilization

of P. The problem is of course trivial if a controller C can be found that

stabilizes P in such a way that the feedback system has a gain margin greater

than two; in such a case, one can simply choose C1 = C2 = C. If P is a
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minimum phase plant, the results of [7,8] imply that one can actually find

a stabilizing controller with infinite gain margin. Howev er, the case where

P is nonminimum phase is still open. The main result of the paper is as

complete as it is surprising: It states that, given any plant P and any

controller C1 that stabilizes P, there always exists another controller C2

such that C1 and C2 together reliably stabilize P. Thus, not only does

the reliable stabilization problem have a solution for arbitrary plants P,

but also one of the two stabilizing controllers can be specified arbitrarily

(subject of course to the constraint that it stabilizes P). Further, it is

shown that, given any plant P, there exists a stabilizing controller C such

that 2C also stabilizes P; hence C1 = C2 = C solves the reliable stabilization

problem.

The main result of the paper carries over with very little modification

to the problem of reliable robust regulation. It is shown that, given any

plant P and any controller C1 that solves the robust tracking problem for P

and a given reference input, there exists another controller C2 such that

C2 and C1 + C2 also solve the same problem. Moreover, there exists a C

such that C and 2C both solve the robust tracking problem. Similar results

apply to disturbance rejection.

The present results considerably extend those of [9], in which sufficient

conditions of the weak-coupling type are given for a plant P to be reliably

stabilizable. In contrast, the present result show that every plant can

be reliably stabilized.
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2. PROBLEM STATEMENT AND MAIN RESULT

Let R(s) denote the field of rational functions with real coefficients,

and let S denote the subset of R(s) consisting of proper stable rational

functions; in other words, S consists of functions in R(s) that do not

have poles in the closed right half-plane nor at infinity. Let M(R(s))

(resp. M(S)) denote the set of matrices, of whatever order, whose

elements all belong to R(s) (resp. S).

Consider now the system of Figure 1 and suppose P, C e M(R(s)).

Then it is easy to verify that

= H(P,C) ]1 (1)

e2 _ u2

where

(I1+ PC)- -P( + CP)-

H(P,C) = (2)

C(I + PC) (I + CP) J
assuming the indicated inverses exist. We say that the pair (P,C) is

stable, and that C stabilizes P, if H(P,C) is well-defined and belongs

to M(S). This is equivalent to requiring that el, e2 be bounded when-

ever ul, u2 are bounded.

The problem studied in this paper can now be stated precisely.

Reliable Stabilization Problem (RSP). Given P e M (R (s)), find

C1 , C2 G M(R(s)) of compatible dimensions such that

(i) (P, C1) is stable

(ii) (P, C2) is stable
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(iii) (P, C + C2 ) is stable.

Let S(P) denote the set of all controllers that stabilize P; i.e.

S(P) = {C e M(R(s)) : (P,C) is stable} (3)

Then the reliable stabilization problem is one of finding C1, C2 in S(P)

such that C1 + C2 also belongs to S(P). If such C1, C2 can be found,

we say that P can be reliably stabilized, and that C1 and C2 together

reliably stabilize P.

We present at once the main result of the paper.

Theorem 1. Every plant P e M(R(s)) can be reliably stablized. Further

given any P e M(R(s)) and any C1 e S(P), there exists a C2 e S(P) such

that C1 + C2 e S(P), i.e. such that C1 and C2 together reliably stabilize P.

Theorem 2. Given any P e M(R(s)), there exists a C e S(P) such that

2C e S(P), i.e. such that Ci = = = C together reliably stabilize P.

The proof of Theorem 1 requires the following lemma.

Lemma 11. Suppose A e Sm x n B e S n x m. Then there exists a matrix

Q e M(S) such that I -AB + QBAB is unimodular in M(S) (i.e. has an

inverse in M(S).

Proof. Define the norm on M(S) in the usual way, namely,

(3)I |F| I = SUP G(F(jW)), VF e M(S) (3)

where c(') denotes the largest singular value of a matrix . Then

I +F is unimodular whenever IFI I < 1. In particular, I -rAB is

unimodular whenever |rl < I ABI -1. Let k be an integer larger than

-1 -l kI |ABI . Then (I -k AB) is unimodular, and so is (I -k AB) . By the

binomial expansion,
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-1 k k
(I -k AB) =I - AB + Z f.(AB)i (4)

i=2

where the f. are appropriate real numbers. Now define

k-2

Q = Z fi+2(AB) A e M(S) (5)
1+2

i=o

Then clearly

I - AB - QBAB = (I -k -AB) k (6)

is unimodular.

Following [8], we say that a plant P is strongly stabilizable if

it can be stabilized by a stable compensator. Thus Lemma 1 shows that

-1
every plant of the form BAB(I-AB) is strongly stabilizable, irrespective

of the matrices A and B.

Proof of Theorem 1. Suppose P e M(R(s)) and C 1 C S(P) are specified.

Let (N,D), (D,N) be any right-coprime factorization and left-coprime

factorization, respectively, of P over M(S). The fact that C1 stabilizes

P implies [2,3] that C1 = Y X =XY , where X, X, Y, Y e M(S) satisfy

XN + YD = I, NX + DY = I (7)

-1 -'i1
Moreover, Y X X Y implies that

YX = XY (8)

Using Lemma 1, select a matrix Q e M(S) such that I - XN + QNXN is

unimodular. From the results of [2,3], the controller C defined by

C = (Y - QYN) (X + QYD) (9)
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is in S(P). Let C = C1 + C2. We now show that C2 = C - C 1 is also

in S(P), which shows that C1 and C2 together reliably stabilize P. Now

C2 = C = (Y QYN) (X + QYD) XY

= (Y - QYN) [(X +YD)Y (Y QYN)XY

(Y QYN) [XY - YX + QY(DY + NX)]Y

= (Y QYN) QY Y by (7) and (8)

(Y QYN) -Q

--1 '

=D N (10)
C C
2 2

where DC = Y - QYN, NC = Q. At this stage, it has not been shown
2 2

that D , N are left-coprime. But let us anyway compute the "return
C C22 2

difference" matrix D D + N as in [2,3]. This gives
C2 2

DC D + NC N = (Y - QYN)D + QN

2 2

= YD - QYND + DN

= YD - QYDN + QN, since ND = DN (11)

Now (7) and (8), together with D = DN, can be written as

hu 4he tDw mXr 1i' (12)

Thus the two matrices in (12) are the inverses of each other. Hence
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interchanging the order of multiplication does not affect the result;

i.e.

f l [.= ] = I (13)

In particular, NX + YD = I, so that YD= I - NX. Similarly, from (7) we

get YD = I - XN. Substituting these in (11) gives

D D + N N = I - XN - QN + QNXN + QN
C 2 C

(14)

= I - XN + QNXN

which is unimodular by construction. Hence C2 e S (P). This also shows,

a fortiriori, the left-coprimeness of (c ,Nc ) = (Y -QYN, Q).
2 2

The proof of Theorem 2 depends on the following lemma.

Lemma 2: Given a plant P e M(R(s)), let (N,D), (D,N) be any r.c.f. and

l.c.f. of P, and let (X,Y) be any solution of the equation XN+YD = I. Then

there exists an R e M(S) such that I + XN + RDN is unimodular.

Proof. It is first shown that the matrices I + XN, DN are right-coprime.

From [11,12], one can select X, Y such that

L j [ Y N d (15)

Suppose M is a right divisor of both I+XN and DN, denoted by M (I+XN), MIDN.

This implies, successively, that
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MIYDN, MI(I-NX)N since NX + YD = I (16a)

MIN(I-XN), M I(I+NX)N (16b)

MIN since N = [Q-NX)N + (I+NX)N]/2 (16c)

N IXN (16d)

MII since NI(I+XN), MIXN (16c)

This last step shows that M is unimodular.

Now let C+ denote the extended right half-plane, i.e. {s:Re s>0} {-}.

The next step is to show that I+X(s)N(s) >0 whenever s e C+ is real and

D(s) N(s) = 0. It would then follow from [5,10] that I +XN + RDN is uni-

modular for some R e M(S). Suppose (DN) (s) = 0. Then

(YDN) (s) = 0 => [(I-NX)N] (s) = 0

=--> N(s) = (NXN) (s)

, (XN) (s) = (XN XN) (s) = [(XN) (s)]2 (17)

Let a = J2 -1 0.414. Then it is easy to verify that 1-2c = . Thus

I + (XN) (s) = I + 2a(XN) (s) + a (XN) (s)

= I + 2a(XN) (s) + a 2[XN(s)]2 by (17)

= [I + (XN)(s)] (18)

II + (XN)(s)I = II + a(XN) (s) 12 > 0 (19)

However, since I+XN and DN are right-coprime, the smallest invariant factor

of DN and II +XN I are coprime. Hence II + (XN) (s) I # 0, which implies,
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in conjunction with (19) that II + (XN) (s)I > 0.

Proof of Theorem 2. Let C = (Y-RN)- (X+RD). Then 2C = (Y-RN) -

2 (X+RD). Clearly C stabilizes P, from [2,3]. The return difference matrix

corresponding to P and 2C is

(Y-RN)D + 2 (X+RD)N = I +XN +RDN (20)

which is unimodular by construction. Thus 2C e S(P).

The preceding results extend readily to the problem of reliably

stabilizing a plant while at the same time tracking a given reference input,

or rejecting a disturbance. In order to present this extension, a few

facts are recalled from [13].

Given a plant P e M(R(s)), a basic neighborhood of P is a set

N(P) M(R(s)) of the form

N(P) = {N1 D1
1 :JJN 1-NII < c, J D1-DII < E, (N,D) an r.c.f. of P} (21)

A property (such as stability, tracking or disturbance rejection) is said

to be robust against perturbations in P if there is a basic neighborhood

N(P) such that the property continues to hold for all plants in N(P).

Consider first the problem of robust tracking, as depicted in Figure 4.

The reference signal r is the output of an unstable system D Nr, where
r r

D , N are left-coprime. The controller C solves the robust tracking
r r

problem if

(i) C stabilizes P

(ii) (I+PC) D N e M(S)
r r
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(iii) Both (i) and (ii) are robust against perturbations

in P.

The following result is proved in [13].

Lemma 3. Let (D,N) be any l.c.f. of P, and let a denote the largestr

invariant factor of D . Then the robust tracking problem has a solution if
r

and only if N and a I are right-coprime. Suppose C e S(P) and let

(NC,DC ) be any r.c.f. of C. Then C solves the robust tracking problem if

and only if a divides every element of DC.

A ready consequence of Lemma 3 is the following:

Lemma 4 with all symbols as in Lemma 3, suppose a I, and N are right-

coprime. Then C solves the robust tracking problem if and only if arC

stabilizes P/a . Thus the set of solutions to the robust tracking problem
r

is given by a S(P/a,)
r r

Proof. The coprimeness of a I and N implies that (a D, N) is a l.c.f.

of P/ar

"if" suppose a C stabilizes P/a , and let C1 = a C. Then, from [2,3]
r r 1 r

it follows that C1 has an r.c.f. (B,A) such that

a DA + NB = I (21)
r

or equivalently

D a A + NB = I (22)
r

-1 -1 -1
Now (22) implies that C = B(Aa ) = a BA = C1/a stabilizes P.

r r r

Moreover, since a A and B are clearly coprime, it follows from Lemma 3
r
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that C solves the robust tracking problem.

"only if" Suppose C solves the robust tracking problem, and let

(NC, DC ) be an r.c.f. of C such that

DDC + NNC = I (23)

By Lemma 3, a I divides DC . Accordingly, suppose DC = a M. Then (23)
r C r

implies that

a DM + NN = I (24)r C

Hence N N C1 stabilizes (a D)1 = P/a . Clearly C = Nc(Dc/r

a ND a C.
rC C r

Combining Lemma 4 with Theorems 1 and 2 now gives the following result.

Theorem 3. Suppose a plant P and a reference input generator D N
r r

are specified, together with a controller C1 that solves the robust tracking

problem. Then there exists a C2 such that both C2 and C1 + C2 solve the

robust tracking problem. In particular, there exists a C such that both

C and 2C solve the robust tracking problem.
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3. CONCLUSIONS

In this paper, a complete solution has been given to the problem of

designing a pair of controllers C1 and C2 for a given plant P such that

C1, C2, C1 + C2 all stabilize P. This problem was previously studied in

[9] and can be thought of as a dual to the simultaneous stabilization

problem considered in [4,5].

A much more interesting problem which is as yet unsolved is the

following: Given a plant P and a controller C that stabilizes P, when

can it be decomposed as a sum of two controllers C1 and C2, each of which

stabilizes P? This problem is more natural than the one studied here in

the following sense. During the normal (i.e., unfailed) node, C is the

controller that is applied, and can be chosen to have desirable properties

such as optimality, low sensitivity, etc. In contrast, in the design algorithm

described in this paper, the normal mode controller C1 + C2 is obtained as

a by-product of the algorithm, and is only guaranteed to stabilize P, or

to regulate P. Still, it is hoped that the techniques presented in this

paper will eventually lead to a resolution of the above problem as well.
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FOOTNOTES

1The values of the integers n,m are unimportant, what is important is

that both AB and BA are well-defined and square.
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