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ABSTRACT 

 

Risk management in supply chains has been receiving increased attention in the past few years. 

In this paper, we present formulations for the strategic supply chain network design problem 

with dual objectives, which usually conflict with each other: minimizing cost and maximizing 

reliability. Quantifying the total reliability of a network design is not as straightforward as total 

cost calculation. We use reliability indices and develop analytical formulations that model the 

impact of upstream supply chain on individual entities’ reliability to quantify the total reliability 

of a network. The resulting multi-objective non-linear model is solved using a novel hybrid 

algorithm that utilizes a genetic algorithm for network design and linear programming for 

network flow optimization. We demonstrate the application of our approach through illustrative 

examples in establishing tradeoffs between cost and reliability in network design and present 

managerial implications.   
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Managing and controlling risk is an important aspect of effective supply chain management 

(Sodhi and Tang, 2012; Sodhi et al., 2012).  In order to control and mitigate negative effects 

caused by a variety of risks, a significant amount of work in the area of supply chain risk 

management has been undertaken in both academia and practitioner circles. The commonly 

identified and studied risk types include supply risk (Harland et al., 2003; Chopra and Sodhi, 

2004; Wu et al., 2006; Bogataj and Bogataj, 2007; Tang and Tomlin, 2008; Vakharia and 

Yenipazarli, 2009; Kumar et al., 2010; Tummala and Schoenherr, 2011), demand risk 

(Christopher and Peck, 2004; Blackhurst et al., 2008; Manuj and Mentzer, 2008; Wagner and 

Bode, 2008), manufacturing risk (Tang, 2006; Olson and Wu, 2010; Lin and Zhou, 2011), 

financial risk (Carvinato, 2004; Tsai, 2008; Liu and Nagurney, 2011), macro risk (e.g., 

environmental risk, natural disasters, terrorist attacks, political and social risk) (Jüttner et al., 

2003; Trkman and McCormack, 2009; Ravindran et al., 2010), and information risk (Tang and 

Musa, 2011). Moreover, increased global competition and the lingering effects of the 2008 

global financial crisis have placed tremendous pressure on firms to lower their operating costs. 

However, mitigating risks and lowering costs are goals that often conflict. The complexities of 

today’s supply chain networks, coupled with these conflicting goals, demand the use of new 

analytical approaches to effectively manage the tradeoffs that arise.  

In a typical network design problem, there exists an underlying network, consisting of 

suppliers, plants, distribution centers (DC), and transportation infrastructure and modes linking 

those entities. In addition, there are also potential new locations to choose from. In this context, 

the decisions that need to be made include: Which of the existing and new locations should be 

used? Which customers should be served from which DCs? Which suppliers should supply 

which plants? While making these decisions, there needs to be a method for quantifying 
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reliability of a network design so that different options can be compared based on total reliability 

and total cost. In addressing these important questions and related issues, we propose to assign a 

reliability index, based on multi-criteria modeling, to each entity and activity and simultaneously 

consider cost and reliability in identifying the best set of designs that achieve near Pareto 

optimality. In order to accomplish this, we develop analytical formulations based on multi-

objective optimization methods and use heuristics to solve these formulations. Since we are 

using a heuristic for solving our models, we are unable to measure how close our solutions are to 

the Pareto front. Because of this we refer to our solution set as near Pareto solutions. 

While reliability is a complex construct, the primary advantage of utilizing a single value to 

capture the reliability of an entity in a network is its practicality and the ease with which it can be 

incorporated into the decision-making process. Tomlin (2006) uses a single reliability measure 

for characterizing two different suppliers' reliabilities in managing supply chain disruptions. 

Parlar and Wang (1993) also apply a single parameter in a random yields model to capture the 

difference in reliability between two suppliers. On the other hand, the main disadvantage of 

using a single value is the loss of information due to aggregation. Chopra et al. (2007) point out 

the importance of decoupling different characteristics of one risk from another type of risk. They 

characterize two different types of risks, recurrent risk and disruption risk, using separate and 

independent parameters.  

Overall, we consider the usage of a single value as a reasonable way to capture the reliability 

of an entity since there are several techniques that can aggregate multiple criteria into one 

meaningful index without loss of valuable information. Khorramshahgol et al. (1998) integrate 

multiple perceptions into an overall synthesis by using analytic hierarchy process (AHP). Kull 
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and Talluri (2008) and Yoon et al. (2014) also apply the same approach to aggregate multiple 

risk factors in capturing suppliers’ reliability.   

To optimize our formulations, it is essential to develop a meaningful way of computing total 

reliability of a network, similar to the approach that is utilized to calculate the total cost. If we 

assume that each entity in a supply chain is independent of other entities, one can simply 

consider the summation of the reliability indices of a network design to obtain the total reliability, 

similar to a total cost calculation. In reality, however, the entities in a supply chain are very much 

interrelated. In fact, in alignment with the well-known phrase “A chain is only as strong as its 

weakest link”, it can be stated that an entity in a network is only as reliable as its upstream 

supply chain.  

The novelty of this paper lies in this attempt to analytically model the impact of upstream 

supply chain reliability while quantifying total reliability. For this, we separate the reliability 

index of an entity into two parts: inherent reliability (due to several factors, which we elaborate 

in more detail in the Appendix C) and reliability due to its upstream chain. We propose a 

compounding mechanism to capture the impact of upstream reliability on the entities in the 

downstream. Furthermore, we develop optimization methods to identify the best set of designs 

by simultaneously considering cost minimization and reliability maximization in establishing 

related tradeoffs and achieving near Pareto optimality.   

2. LITERATURE REVIEW  

Supply chain risk management is a relatively new area of study, which is continuing to expand 

with the volume of published research articles growing exponentially on a yearly basis. In the 

past decade, six review articles in supply chain risk management have been published (Tang, 

2006; Narasimhan and Talluri, 2009; Rao and Goldsby, 2009; Tang and Musa, 2011; Colicchia 
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and Strozzi, 2012; Sodhi et al., 2012). While most businesses used to ignore the risk of 

catastrophic events, a growing interest has been observed in the 21st century in focusing on such 

risks (e.g., Martha and Vratimos, 2002; Berger et al., 2004; Chopra and Sodhi, 2004; Simchi-

Levi et al., 2004; Tang, 2006; Wagner and Bode, 2008; Knemeyer et al., 2009; Meena et al., 

2011).  

In the early stages of the supply chain risk management research, risk has been addressed 

mainly in the context of internal factors such as manufacturing processes, which are subject to 

demand and lead-time uncertainties (e.g., Zipkin, 2000). Naylor et al. (1999) show that the 

combination of agile and lean manufacturing is able to reduce the risk of being out of stock 

under conditions of demand uncertainty. Gupta and Maranas (2003) propose an optimization 

model for manufacturing and distribution timing decisions in order to achieve cost reduction 

under demand uncertainty. In addition to manufacturing processes, vast literature considers 

safety stocks and warehouses between manufacturers and retailers as the means to reduce the 

effect of demand and lead-time uncertainties (Schwarz and Weng, 1989; Axsäter, 1993; 

Federgruen, 1993; Inderfurth, 1994; Diks et al., 1996; Van Houtum et al., 1996; Schwarz and 

Weng, 2000). 

As academic interest began to grow in supply chain risk management, external providers 

have also been considered as a major source of supply chain vulnerability (Klibi et al., 2010). 

Davis (1993) argues that suppliers’ performance plays a prominent role in the efficiency of a 

supply chain. In the same vein, an industrial survey conducted by Protiviti and American 

Production & Inventory Control Society (APICS) shows that 66% of supply chain managers 

consider supply interruption as one of their most significant concerns among all the supply chain 

related risks (O’Keeffe, 2006). Supplier’s unreliability is captured by two main approaches: (i) 
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supply disruption model and (ii) random-yield model. In the supply disruption model (e.g., Parlar 

and Perry, 1995; Parlar, 1997; Snyder et al., 2010), a supplier’s status is either “up” or “down”, 

where “up” means that the orders are fulfilled in full and on time, and “down” means no order 

can be fulfilled. Ruiz-Torres and Mahmoodi (2007) extend the model of Berger et al. (2004) to 

determine the optimal number of suppliers in the presence of supplier failure risks, and 

considered the partial costs resulting from having some of the suppliers down. Li et al. (2010) 

investigate the sourcing strategies of the retailer and the pricing game played between suppliers 

in a single-retailer and two-supplier supply chain in the presence of supply disruption. Gümüş et 

al. (2012) model a supply chain consisting of a single buyer and two suppliers, both of which 

compete for the buyer’s orders and face risk of supply disruption. Hendricks and Singhal (2003; 

2005a; 2005b) examined several hundred supply chain “glitches” reported in the Wall Street 

Journal and the Dow Jones News Service in the 1990s. They show that disruptions, even minor, 

lead to significant declines in sales growth, stock returns, and shareholder wealth of companies.  

Moreover, these effects tend to linger for at least two years after the disruption.  

In a random-yield model, it is assumed that the supply level is a random function of the input 

level (e.g., Yano and Lee, 1995; Gurnani et al., 2000; Grosfeld-Nir and Gerchak, 2004; He and 

Zhang, 2008). Graves (1987) provides a survey of many analytical models for determining 

production and inventory policies under this assumption with emphasis on random demand. Yu 

et al. (2009) evaluate the impact of supply disruption risks on the choice between single and dual 

sourcing methods in a two-stage supply chain with a non-stationary and price-sensitive demand. 

Schmitt et al. (2010) develop a closed-form approximate solution by focusing on a single 

stochastic period of demand, which can help firms proactively and cost effectively protect 

against supply disruption risk. Schmitt (2011) formulates a linear programming model for a 
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multi-echelon system to evaluate multiple strategies for minimizing expected lost sales if a 

supply disruption occurs. Shi et al. (2011) develop a multi-stage stochastic programming model 

to minimize the risk exposure of procurement decisions measured as conditional value-at-risk, 

while considering stochastic demand and the price volatility of the spot market. 

When it comes to transportation issues, contemporary supply chain studies treat 

transportation as a strategically interrelated but physically independent entity in the supply chain 

(i.e., 3PL provider), which implies that transportation issues also can be considered as an 

external factor of supply chain vulnerability (Yoon et al., 2014). In the same vein, Tang (2006) 

points out the importance of transportation issues in supply chain risk mitigation. Reliable and 

robust transportation network design is another important topic studied in this context (e.g., Liu 

and Tipper, 2001; Zabarabkin et al., 2001). Chen et al. (2007) propose a stochastic bi-level 

optimization model for minimizing the total travel time budget required to satisfy the predefined 

reliability constraint. Andreas et al. (2008) consider h-path network routing problem to minimize 

transportation cost subject to a specified reliability requirement such that at least one path retains 

reliability beyond minimum level. Desai and Sen (2010) apply a branch-and-bound algorithm for 

designing a reliable transportation network by assuming that there exists an arbitrary set of risk 

mitigation resources in each arc with its constraints.  

A few studies consider the design of supply chain networks under different aspects of 

uncertainty. Vidal and Goetschalckx (1997) and Goetschalckx (2000) survey the strategic supply 

chain design issues. Literature on reliability and robustness of supply chain networks is even 

scarce although these aspects can simultaneously deal with different elements of uncertainties 

mentioned earlier. Vidal and Goetschalckx (2000) present an approach that includes suppliers’ 

reliability as a criterion of supply chain design. Sheffi (2001) introduces dual supply 
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arrangements in a strategic supply chain design and provides an illustrative analytical 

formulation for the design. Snyder and Daskin (2005) present a facility location model that 

performs well under both normal operating conditions and when distribution centers in the 

network fail. Tomlin (2006) analytically presents a generalized supply chain design model by 

focusing on supplier selection and order allocation with consideration of disruptions under two 

different suppliers setting: one is perfectly reliable but expensive and the second being unreliable 

but cheaper. Chopra et al. (2007) utilize the same dual supplier setting (reliable and unreliable) 

and provide an analytical design model while considering not only disruption risks but also 

recurrent risks that cause random yield. Qi et al. (2010) consider a supply chain design problem 

that determines the locations of retailers and assignments of customers to retailers under supply 

disruption risk. Georgiadis et al. (2011) construct a mixed integer linear programming model for 

supply chain network design under uncertain transient demand variations. Qiang and Nagurney 

(2012) develop a linear programming model for the design and evaluation of distinct supply 

chain networks under capacity and demand disruptions.  

Our study focuses on supply chain network design while explicitly considering transportation 

risk in addition to other risks. Among the many previous studies on supply chain risk 

management, our work is closest to that of Neureuther and Kenyon (2008) and Bundschuh et al. 

(2006) and our research can be viewed, at some level, as a hybrid of the two. Neureuther and 

Kenyon (2008) define the risk index of an entity as the ratio of time to resume to time until the 

collapse of the supply chain. More specifically, they calculate the risk consequence 𝛼𝛼 ∈ (0, 1) by 

𝛿𝛿𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝛿𝛿𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑟𝑟, where 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 can be defined as the time required to restore a particular node to full 

functionality after a disruption and 𝛿𝛿𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 as the time a given service can fail to be delivered 

before the supply chain suffers the loss of a critical mass of its market share. Given this, they 
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calculate the total risk of a given supply chain network, without considering the design problem. 

Our paper also assigns indices to the entities and uses those indices to calculate the total 

reliability of the network but there are three main differences. First, we define the reliability 

indices based on multiple factors so that they can be more general. Second, we capture the 

impact of upstream supply chain on the reliability of the entities in the downstream through a 

compounding mechanism. Third, we not only calculate the total reliability of a given network 

design, we also identify the best network design based on a given parameter set including cost, 

reliability, and weights.  

Bundschuh et al. (2006) consider the strategic network design problem and propose several 

models. They consider the probabilities for reliability calculations and impose constraints for 

robustness (i.e., redundant suppliers, contingency inventory, etc.) to investigate the tradeoff 

between reliability, robustness, and cost. They present the reliability-contingency model to 

leverage all three distinct characteristics to create an optimal strategy. Their model recognizes 

the potential for supply failures and establishes an action plan to counteract the negative effects. 

Our approach differs from their work in the following ways. First, our model explicitly treats 

reliability maximization as a separate objective and models the problem as a multi-objective 

problem, whereas Bundschuh et al. (2006) model reliability as a constraint. Second, the 

reliability of the entities are assumed to be independent in Bundschuh et al. (2006), whereas we 

incorporate the inherent dependence of downstream entities’ reliability on the upstream chain. 

Third, the reliability of a node in Bundschuh et al. (2006) is defined as the probability of normal 

functioning of a node, whereas a failure is defined as the inability to ship any quantity of 

materials. We instead treat the reliability index as a more comprehensive value that takes into 

account not only the probability of failure but also a set of other relevant factors.  
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As noted earlier, we take a more comprehensive view of reliability when compared to the 

above approaches and, more importantly, develop a new approach to analytically model the 

impact of upstream reliability in a supply chain while quantifying total reliability by utilizing a 

compounding mechanism. In addition to addressing the near Pareto optimality decisions in 

network design, we identify possible risk mitigation strategies implied by the solutions obtained 

in our analysis. 

3. MODEL FORMULATION  

We initially define the parameters and indices utilized in the formulation followed by the 

decision variables, objective functions, and constraints. 

Parameters and Indices 𝐴𝐴 = set of arcs 𝑁𝑁 = set of nodes 𝑆𝑆 = set of raw material suppliers 𝐷𝐷 = set of final customer nodes 𝐼𝐼(𝑗𝑗) = set of nodes adjacent to node j with an incoming arc [𝑖𝑖, 𝑗𝑗] ∈ 𝐴𝐴 𝑂𝑂(𝑗𝑗) = set of nodes adjacent to node j with an outgoing arc [𝑗𝑗,𝑘𝑘] ∈ 𝐴𝐴 𝑐𝑐𝑖𝑖 = variable cost per unit offered by node 𝑖𝑖 𝑓𝑓𝑖𝑖 = fixed cost for node 𝑖𝑖 𝑏𝑏𝑖𝑖𝑖𝑖 = variable cost per unit offered by arc [𝑖𝑖, 𝑗𝑗] 𝑔𝑔𝑖𝑖𝑖𝑖 = fixed cost for arc [𝑖𝑖, 𝑗𝑗] ℎ𝑖𝑖 = holding cost per unit at node 𝑖𝑖 𝑠𝑠𝑖𝑖 = shortage cost per unit at node 𝑖𝑖 ∈ 𝐷𝐷 𝐾𝐾𝑖𝑖      = capacity of node 𝑖𝑖 ∈ 𝑁𝑁\𝐷𝐷  𝐷𝐷𝑖𝑖       = demand of node 𝑖𝑖 ∈ 𝐷𝐷  𝐷𝐷𝑆𝑆      = demand satisfaction level, 0 ≤ 𝐷𝐷𝑆𝑆 ≤ 1  𝑀𝑀𝑖𝑖  = minimum ordering quantity offered by node 𝑖𝑖 ∈ 𝑁𝑁\𝐷𝐷 𝑀𝑀 = a sufficiently large number, e.g. total demand of customers  
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𝑟𝑟𝑖𝑖      = per-unit reliability index of node 𝑖𝑖, 0 ≤ 𝑟𝑟𝑖𝑖 ≤ 1  𝑟𝑟𝑖𝑖𝑖𝑖      = per-unit reliability index of arc [𝑖𝑖, 𝑗𝑗], 0 ≤ 𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 1  𝑅𝑅𝑖𝑖      = per-unit cumulative reliability index of node 𝑖𝑖  𝑅𝑅𝑖𝑖𝑖𝑖       = per-unit cumulative reliability index of arc [𝑖𝑖, 𝑗𝑗] 𝑤𝑤𝑖𝑖      = weight of node 𝑖𝑖 in compounding calculations, 0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1  𝑤𝑤𝑖𝑖𝑖𝑖      = weight of arc [𝑖𝑖, 𝑗𝑗] in compounding calculations, 0 ≤ 𝑤𝑤𝑖𝑖𝑖𝑖 ≤ 1  

 

Decision variables 𝑋𝑋𝑖𝑖𝑖𝑖 =  integer ordering quantity from node 𝑖𝑖 to node 𝑗𝑗   ∀[𝑖𝑖, 𝑗𝑗] ∈ 𝐴𝐴    𝑆𝑆𝑖𝑖 =  shortage quantity at node 𝑖𝑖 ∀𝑖𝑖 ∈ 𝐷𝐷    𝑌𝑌𝑖𝑖 = �1 if node 𝑖𝑖 is selected
0 otherwise                  

 ∀𝑖𝑖 ∈ 𝑁𝑁\𝐷𝐷 𝑍𝑍𝑖𝑖𝑖𝑖 = �1 if arc [𝑖𝑖, 𝑗𝑗] is selected

0 otherwise                     
 ∀[𝑖𝑖, 𝑗𝑗] ∈ 𝐴𝐴 

 

Objective Functions 

Minimize Total Cost: 

min � �𝑓𝑓𝑖𝑖𝑌𝑌𝑖𝑖 + 𝑐𝑐𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁 �𝑖𝑖∈𝑁𝑁\𝐷𝐷 + � �𝑔𝑔𝑖𝑖𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖�
[𝑖𝑖,𝑖𝑖]∈𝐴𝐴                 

+ � ℎ𝑖𝑖 � � 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼(𝑖𝑖)

− � 𝑋𝑋𝑖𝑖𝑗𝑗𝑗𝑗∈𝑂𝑂(𝑖𝑖)

�𝑖𝑖∈𝑁𝑁\(𝐷𝐷∪𝑆𝑆)

+ �𝑠𝑠𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖∈𝐷𝐷  

(Obj 1) 

Maximize Total Reliability: 

max � 𝑅𝑅𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁𝑖𝑖∈𝑁𝑁\𝐷𝐷 + � 𝑅𝑅𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖
[𝑖𝑖,𝑖𝑖]∈𝐴𝐴  (Obj 2) 

 

(Obj 1) is the sum of fixed and variable costs for nodes and arcs, inventory holding costs and 

shortage costs. Inventory holding costs may be incurred because of minimum order quantities 

required by suppliers. Shortage costs may be incurred since full demand satisfaction is not 

required. (Obj 2) is the sum of node and arc reliability, both weighted with the order quantity.  
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To be more specific, in the consideration of (Obj 2) the following details are important. In 

this model, total reliability is calculated by summing the reliability indices of selected nodes and 

arcs, each multiplied by the total amount of flow that goes through the corresponding nodes and 

arcs. This is because of the observation that, without weighing the reliability indices with the 

flow amount, two nodes (or arcs) that have the same reliability index would have the same 

impact on the total reliability even when one may have much more flow-through (order quantity) 

than the other. In reality, if we want the supply chain design to be reliable, we would want to 

ship the most, if not all, of the orders through reliable nodes and arcs. (Obj 2) achieves this by 

weighting the reliability summations with total order quantities flowing through the nodes and 

arcs.  

Constraints � 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝑂𝑂(𝑖𝑖) ≤ 𝐾𝐾𝑖𝑖𝑌𝑌𝑖𝑖 ∀𝑖𝑖 ∈ 𝑂𝑂\𝐷𝐷 (1) 

� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼(𝑖𝑖)

− � 𝑋𝑋𝑖𝑖𝑗𝑗𝑗𝑗∈𝑂𝑂(𝑖𝑖)

≥ 0 ∀𝑗𝑗 ∈ 𝑁𝑁\(𝐷𝐷 ∪ 𝑆𝑆) (2) 

� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼(𝑖𝑖)

≤ 𝐷𝐷𝑖𝑖 ∀𝑗𝑗 ∈ 𝐷𝐷 (3) 𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀𝑍𝑍𝑖𝑖𝑖𝑖 ∀[𝑖𝑖, 𝑗𝑗] ∈ 𝐴𝐴 (4) 𝑍𝑍𝑖𝑖𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖𝑖𝑖 ∀[𝑖𝑖, 𝑗𝑗] ∈ 𝐴𝐴 (5) � 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝑂𝑂(𝑖𝑖) ≥ 𝑀𝑀𝑖𝑖𝑌𝑌𝑖𝑖 ∀𝑖𝑖 ∈ 𝑁𝑁\𝐷𝐷 (6) 

� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼(𝑖𝑖)

≥ 𝐷𝐷𝑖𝑖 − 𝑆𝑆𝑖𝑖 ∀𝑗𝑗 ∈ 𝐷𝐷 (7) 𝑆𝑆𝑖𝑖𝐷𝐷𝑖𝑖 ≤ 1 − 𝐷𝐷𝑆𝑆 ∀𝑖𝑖 ∈ 𝐷𝐷 (8) 𝑅𝑅𝑖𝑖𝑖𝑖 =  𝑤𝑤𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑖𝑖𝑅𝑅𝑖𝑖  (9) 
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𝑅𝑅𝑖𝑖 = 

 

⎩⎪⎨
⎪⎧𝑤𝑤𝑖𝑖′𝑟𝑟𝑖𝑖 + 𝑤𝑤𝑗𝑗𝑖𝑖′ min

(𝑗𝑗,𝑖𝑖)∈𝐴𝐴:𝑗𝑗∈𝐼𝐼(𝑖𝑖)(𝑍𝑍𝑗𝑗𝑖𝑖𝑅𝑅𝑗𝑗𝑖𝑖 + 𝑀𝑀(1 − 𝑍𝑍𝑗𝑗𝑖𝑖)𝑤𝑤𝑖𝑖′𝑟𝑟𝑖𝑖 + 𝑤𝑤𝑗𝑗𝑖𝑖′ max
(𝑗𝑗,𝑖𝑖)∈𝐴𝐴:𝑗𝑗∈𝐼𝐼(𝑖𝑖)(𝑍𝑍𝑗𝑗𝑖𝑖𝑅𝑅𝑗𝑗𝑖𝑖)𝑤𝑤𝑖𝑖′𝑟𝑟𝑖𝑖 + 𝑤𝑤𝑗𝑗𝑖𝑖′ ∑ 𝑅𝑅𝑗𝑗𝑖𝑖𝑍𝑍𝑗𝑗𝑖𝑖(𝑗𝑗,𝑖𝑖)∈𝐴𝐴:𝑗𝑗∈𝐼𝐼(𝑖𝑖)∑ 𝑍𝑍𝑗𝑗𝑖𝑖(𝑗𝑗,𝑖𝑖)∈𝐴𝐴:𝑗𝑗∈𝐼𝐼(𝑖𝑖)  

 

(MIN) 

(MAX) 

(AVERAGE) 

(10.1) 

(10.2) 

(10.3) 

𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑖𝑖 = 1  (11) 𝑤𝑤𝑖𝑖′ + 𝑤𝑤𝑗𝑗𝑖𝑖′ = 1  (12) 

 
 

Constraint (1) ensures that  flows through outgoing arcs from a certain node 𝑖𝑖 can occur only 

if node 𝑖𝑖 is selected and the total flow cannot exceed the capacity of node 𝑖𝑖, (2) ensures that 

outgoing flow of a node does not exceed the incoming flow to that node, (3) ensures that 

incoming flow to a customer node does not exceed the demand of that customer node, (4) 

considers that an arc is selected if a flow goes through that arc, (5) enforces the use of arc [𝑖𝑖, 𝑗𝑗], 
once it is selected. This constraint is redundant for optimization with only (Obj 1) but required 

for heuristics with (Obj 2). Constraint (6) forces minimum order requirement for each node. 

Constraints (7) and (8) are the shortage constraints for demand nodes. Constraint (7) ensures that 

the flow into a customer satisfies the demand minus the shortage, whereas (8) limits the 

maximum allowed shortage as a percentage of the demand. Constraint (9) defines the 

compounding mechanism used to calculate the cumulative reliability of an arc [𝑖𝑖, 𝑗𝑗]  as a 

weighted sum of its inherent reliability index and the cumulative reliability index of the node 𝑖𝑖 
that is incident to the arc. Similarly, Constraints (10.1-10.3) define the three different 

compounding mechanisms used individually to calculate the cumulative reliability index of node 𝑖𝑖 as a weighted sum of its inherent reliability index and a function of the cumulative reliability 

indices of the arcs that are inputs into node 𝑖𝑖 . Finally, Constraints (11) and (12) define the 

weights used in equations (9) and (10), respectively. 

Total Supply Chain Reliability Calculations 
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Given the inherent reliability indices of nodes and arcs in a network, quantifying the total 

reliability can be performed in a similar fashion as calculating the total flow cost of that network 

by summing up the products of reliability indices of entities with the flow through those entities. 

We refer to this as the “non-compounding” approach.  

However, this type of a calculation is trivial and it disregards the impact of upstream supply 

chain on downstream individual entities’ reliability. As mentioned earlier, to overcome this, we 

separate the reliability index of an entity into two parts: inherent reliability and reliability due to 

its upstream chain. We propose three different compounding mechanisms to capture the impact 

of upstream processes on the entities in the downstream. The first function (10.1) represents the 

“pessimistic” view on the impact of upstream supply chain since the least reliable arc (and its 

subsequent upstream) is used to calculate the cumulative reliability index of node i with the 

“minimum” function. 

An opposite “maximum” function is used in (10.2), which represents the “optimistic” view 

since the most reliable arc (and its subsequent upstream) is used to calculate the cumulative 

reliability index of node 𝑖𝑖.  
The last function used in (10.3) is the “middle ground” between the two extremes, where the 

“average” of all the reliability indices of incoming arcs is used to calculate the cumulative 

reliability index of node i. The three compounding mechanisms are illustrated through Figure 1, 

where node 𝑖𝑖’s inherent reliability index is 6 and arcs [𝑥𝑥, 𝑖𝑖] and [𝑦𝑦, 𝑖𝑖]’s cumulative reliability 

indices are 2 and 8, respectively. 

------------------------- 
Insert Figure 1 Here 
------------------------- 

With no compounding, node 𝑖𝑖’s index would remain 6. For illustration purposes, let’s assume 

that the weights of the upstream reliability and the inherent reliability are the same (have equal 
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weights of 0.5). With “min” compounding, 𝑅𝑅𝑖𝑖 = 0.5 × 6 + 0.5 × min(2,8) = 4 . Thus, it is 

evident that working with an unreliable entity in the upstream significantly reduces the reliability 

for node 𝑖𝑖 from 6 to 4.  

With “max” compounding, 𝑅𝑅𝑖𝑖 = 0.5 × 6 + 0.5 × max(2,8) = 7. Thus, we see that working 

with a reliable entity in the upstream increases the reliability for node i from 6 to 7. 

With “average” compounding, 𝑅𝑅𝑖𝑖 = 0.5 × 6 + 0.5 ×
2+8

2
= 5.5. In this last case, the impact of 

the upstream is as not as drastic as the two previous cases. 

In our model, we differentiate the weights used for the inherent reliability and that of the 

upstream chain since the focal firm and its upstream chain may have different level of impact on 

the overall reliability of the firm’s supply chain. To base the weights on industry data, we look at 

the value add of firms to their products with respect to the value add of their upstream chain and 

use this as a proxy for the relative impact of the firm and its upstream supply chain on its 

products.  Based on the U.S Census Bureau1, the ratio of total cost of material (including freight) 

to total value of shipment is about 60% ($3,240,477,063/$5,498,599,159). Thus we can attribute 

60% of the economic value of the products of the firms to their upstream chain and the 

remaining 40% can be attributed to the firm itself. Thus, we use a weight of 0.4 for the inherent 

reliability and a weight of 0.6 for the upstream chain of the node. 

4. SOLUTION METHODOLOGY  

As noted earlier, the problem we are considering is a multi-objective optimization problem with 

two conflicting objective functions. We try to balance the two objectives using a min-max 

strategy to obtain near Pareto optimal solutions. The min-max strategy compares relative 

1
 

http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ASM_2011_31GS101&prodTy

pe=table 
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deviations from the separately attainable optimum solutions by solving the optimization 

problems for each objective separately. We use the following master formulation to perform this: 

min𝑄𝑄 (13) 

s.t.  𝑤𝑤𝑟𝑟(𝐶𝐶𝑆𝑆 − 𝐵𝐵𝐶𝐶)𝐵𝐵𝐶𝐶 ≤ 𝑄𝑄 (14) 

−𝑤𝑤𝑟𝑟(𝑅𝑅𝐾𝐾 − 𝐵𝐵𝑅𝑅)𝐵𝐵𝑅𝑅 ≤ 𝑄𝑄 (15) 

And Constraint (1) through (12)  

, where  𝑄𝑄 = a variable to balance the two objectives 𝑤𝑤𝑟𝑟 = weight for the cost objective 𝑤𝑤𝑟𝑟 = weight for the reliability objective 𝐶𝐶𝑆𝑆 = the cost objective function (equation Obj 1) 𝑅𝑅𝐾𝐾 = the reliability objective function (equation Obj 2) 𝐵𝐵𝐶𝐶 = value of the cost achieved when Obj 1 is optimized in isolation 𝐵𝐵𝑅𝑅 = value of the reliability achieved when Obj 2 is optimized in isolation 

 

As stated earlier, the min-max strategy requires the separately attainable optimum solutions 

(𝐵𝐵𝐶𝐶  and 𝐵𝐵𝑅𝑅 ) by solving the optimization problems for each objective independently. To 

accomplish this, we solve the model with (Obj 1) and constraints (1-8) as an integer linear 

program (note that constraints (9-12) have no effect in this optimization and so they can be 

disregarded). Unfortunately, the same strategy cannot be used with (Obj 2) since constraints 

(10.1-10.3) are non-linear. Because of this, we develop a Genetic Algorithm (GA) to optimize 

the model comprised of (Obj 2) and constraints (1) – (12). Since constraints (14) and (15) in the 

min-max formulation are also non-linear, we again revert to the GA approach to solve this 

problem. GA has been successfully used for non-linear optimization problems in the literature. 

These include the works of Yokoto et al. (1996) on solving system reliability problems, Lin et 
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al.(1999) on mechanical design, Costa and Oliveira (2001) on chemical engineering problems, 

Deb (2001) on goal programming and engineering design problems. In their book on GA,  

Sivanandam and Deepa (2008)state that genetic algorithms (and other evolutionary computation 

techniques) have drawn attention due to the fact that GA do not have much mathematical 

requirements. Because of that, they are applied to non-linear problems in the fields of medicine, 

engineering, network design and routing, etc.GA is an adaptive heuristic search method based on 

population genetics. The GA consists of a population of solutions that evolve over a number of 

generations and are subject to genetic operators at each generation. Our heuristic is a hybrid of 

GA and Linear Programming (LP). In our heuristic, the network structure is handled by the GA 

and the flow quantity assignments are determined by optimizing an LP. To accomplish this, the 

algorithm first generates a set of feasible random network solutions by randomly fixing the 

binary decision variables. Once the binary variables are fixed, the rest of the problem becomes a 

LP, which is solved using a commercial optimization software. Once the solutions are obtained, 

crossover and mutation operators are applied to obtain new solutions. 

Most of the developmental work of GA theory was performed using a binary-coded GA 

(Holland (1975), Goldberg (1989, 1991), and, historically is the most widely used representation. 

In a binary coding, each solution is a vector comprised of zeroes and ones. We employ a binary 

coding as it fits well for the network design problems. In this coding, nodes of the network are 

assigned 0 or 1. In addition, all possible arcs between the node echelons (i.e., between suppliers 

and plants or between plants and DCs) are also assigned 0 or 1. The following example 

demonstrates the representation of a solution: 
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Example 1: Given three suppliers (1, 2, 3), four plants (4, 5, 6, 7), five DCs (8, 9, 10, 11, 12) and 

five customers (A, B, C, D, E), we present a sample solution, as shown in Figure 2, and its 

representation. 

------------------------- 
Insert Figure 2 Here 
------------------------- 

Node 1 2 3 4 5 6 7 8 9 10 11 12 

Coding 0 1 1 0 0 1 1 1 1 1 0 0 
  

Arc 13 14 15 16 17 18 19 20 21 22 23 24 

Connected 
nodes 

1,4 1,5 1,6 1,7 2,4 2,5 2,6 2,7 3,4 3,5 3,6 3,7 

Coding 0 0 0 0 0 0 1 0 0 0 0 1 
 

Arc 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

Connected 
nodes 

4, 
8 

4, 
9 

4, 
10 

4, 
11 

4, 
12 

5, 
8 

5, 
9 

5, 
10 

5, 
11 

5, 
12 

6, 
8 

6, 
9 

6, 
10 

6, 
11 

6, 
12 

7, 
8 

7, 
9 

7, 
10 

7, 
11 

7, 
12 

Selection 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 

4.1 Initial Population of Solutions 

The initial set of solutions is formed randomly with a corrective mechanism to create meaningful 

solutions. First the nodes are randomly selected and then the arcs between the selected nodes are 

randomly chosen. Finally, nodes that do not have any incoming arcs are removed from the 

solution. All arcs that were outgoing from such nodes are also eliminated. Similarly, nodes that 

do not have any outgoing arcs are also removed from the solution, along with the arcs that were 

incoming to such nodes. 

4.2 Genetic Operators  

4.2.1 Crossover 

A crossover operator is used to generate a new solution from two randomly selected parent 

solutions using a normal distribution. A solution that has a higher objective function value is 

more likely to be selected as a parent solution.  
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A single crossover point is selected, using a uniform distribution, for the part of the solution 

corresponding to the nodes, which is comprised of three segments: supplier nodes, plant nodes, 

and DC nodes. If the crossover point corresponds to suppliers, all other plant and DC nodes and 

arcs between the nodes are transferred based on the crossover performed at the supplier nodes 

segment using a simple procedure to ensure feasibility in the offspring. The basic idea is that if 

the offspring inherits supplier genes from its parents, it will also inherit the arcs starting from the 

supplier nodes, the plant nodes that the arcs are ending at, and the arcs starting from the plant 

nodes.  To illustrate this procedure, we use the solution given in Example 1 as a parent. We refer 

to this as Solution1. We use another solution, Solution2, as the second parent. 

Solution2: 

Node 1 2 3 4 5 6 7 8 9 10 11 12 

Coding 1 1 0 1 0 1 1 0 1 1 1 0 
  

Arc 13 14 15 16 17 18 19 20 21 22 23 24 

Connected 
nodes 

1,4 1,5 1,6 1,7 2,4 2,5 2,6 2,7 3,4 3,5 3,6 3,7 

Coding 1 0 0 1 1 0 1 0 0 0 0 0 
 

Arc 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

Connected 
nodes 

4, 
8 

4, 
9 

4, 
10 

4, 
11 

4, 
12 

5, 
8 

5, 
9 

5, 
10 

5, 
11 

5, 
12 

6, 
8 

6, 
9 

6, 
10 

6, 
11 

6, 
12 

7, 
8 

7, 
9 

7, 
10 

7, 
11 

7, 
12 

Selection 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 

Example 2: Given Solution1 and Solution2, we assume that crossover point is selected after the 

second supplier. First, only supplier nodes are transferred from parents to the offspring, based on 

the crossover point. 

 Supplier Plant DC 

Node 1 2 3 4 5 6 7 8 9 10 11 12 

Solution1 0 1 1 0 0 1 1 1 1 1 0 0 

Solution2 1 1 0 1 0 1 1 0 1 1 1 0 

Offspring 0 1 0          

Second, the arcs between suppliers and plants are transferred from the parent solution 

corresponding to the supplier origin. In our example, suppliers 1 and 2 are inherited from 
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Solution1 and all arcs leaving these suppliers, in Solution1, are also transferred. Same applies for 

supplier 3. 

Arc 13 14 15 16 17 18 19 20 21 22 23 24 

Connected 
nodes 

1,4 1,5 1,6 1,7 2,4 2,5 2,6 2,7 3,4 3,5 3,6 3,7 

Solution1 0 0 0 0 0 0 1 0 0 0 0 1 

Solution2 1 0 0 1 1 0 1 0 0 0 0 0 

Offspring 0 0 0 0 0 0 1 0 0 0 0 0 

Third, plant nodes are transferred in the following way: If there is at least one arc coming 

into a plant i, then plant i is selected. Otherwise, it is not selected. In this example, since only 

plant 6 has an incoming arc, it is the only one selected. 

 Supplier Plant DC 

Node 1 2 3 4 5 6 7 8 9 10 11 12 

Solution1 0 1 1 0 0 1 1 1 1 1 0 0 

Solution2 1 1 0 1 0 1 1 0 1 1 1 0 

Offspring 0 1 0 0 0 1 0      

The same sequence of steps is used to generate the set of arcs between the plants and the DCs. 

And then the DC nodes that have at least one incoming arc are selected. Finally, the arcs between 

the DCs and customers are generated. In our example, following the steps detailed here, the 

offspring solution is completed: 

Arc 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

Connected 
nodes 

4, 
8 

4, 
9 

4, 
10 

4, 
11 

4, 
12 

5, 
8 

5, 
9 

5, 
10 

5, 
11 

5, 
12 

6, 
8 

6, 
9 

6, 
10 

6, 
11 

6, 
12 

7, 
8 

7, 
9 

7, 
10 

7, 
11 

7, 
12 

Selection 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 
 

 Supplier Plant DC 

Node 1 2 3 4 5 6 7 8 9 10 11 12 

Solution1 0 1 1 0 0 1 1 1 1 1 0 0 

Solution2 1 1 0 1 0 1 1 0 1 1 1 0 

Offspring 0 1 0 0 0 1 0 1 0 1 0 0 

The same applies if the crossover point corresponds to plants or DCs.   

4.2.2 Mutation 
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A mutation operator randomly flips the value of arcs on a randomly selected solution. This 

randomly selects an unselected arc or it unselects a selected arc. Although this random change 

can worsen the quality of a solution, it can also allow the algorithm to get out of a local optimum.  

4.3 The Algorithm  

In this section we provide a high level pseudo-code for the multi-objective optimization 

algorithm, which uses the GA explained further in Appendix A. 

Begin 

• Calculate best cost by solving IP with (Obj 1)& constraints (1-12); 

• 𝐵𝐵𝐶𝐶⟵ value of (Obj 1)at optimal solution; 

• Calculate best reliability with GA using IP composed of (Obj 2)& 

constraints (1-12); 

• 𝐵𝐵𝑅𝑅⟵ the highest value of (Obj 2)in the final population of GA; 

• for all weight sets in predefined {(𝑤𝑤𝑟𝑟 ,𝑤𝑤𝑟𝑟)𝑖𝑖}, 𝑖𝑖 = 1 …𝑁𝑁 
find optimal solution with GA using Multi-objective Linear Program 

composed of objective function (13) & constraints (1-12) & (14-15) 

End 

5. PROBLEM SETTING  

5.1 Implementation Details  

We implemented our algorithms in Python 2.7.3 and used Gurobi 5.0.0 optimization software to 

solve the integer programs. The tests are performed on a cluster with eight quad-core 2.7GHz 

AMD Opteron 8384 processors and 256 GB of RAM.  

The parameters of the GA have been set empirically: We used an initial population size of 50. 

At each generation, we created 25 new solutions by applying our operators to the current 

solutions. Parent solutions are selected using the standard normal distribution. The crossover 
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point is selected using a uniform distribution defined on the range [0,2]. Mutation is applied with 

a probability of 0.5. The algorithm is terminated if the best solution cost is not improved in 100 

consecutive generations. 

5.2 Instance Description 

We created an instance on a network with 3 suppliers, 4 plants, 5 DCs, and 5 customers, where 

each echelon is connected with all possible arcs as shown in Figure 2. Each entity may have a 

limited capacity, a fixed and variable cost (C) and a reliability index (R), which can have a value 

between 1 and 10.  For instance, Supplier 1 has a capacity of 110, a fixed cost of $920.68 and a 

variable cost/unit of $4.81 and a reliability index of 2.83. A higher reliability index means that 

there is a lower risk associated with that entity. Similarly, the arc between nodes 3 and 7 has a 

capacity of 350, a fixed cost of $123.61, a variable cost/unit of $0.51 and a reliability index of 

8.11. For clarity of presentation, we only included the data of arc [3, 7] in Figure 2. 

The cost, capacity and reliability parameters are carefully set to mimic the realities of today’s 

supply chains and based on extant literature. The main principles we used for the nodes are as 

follows: 

• The capacity of one node in each echelon is set equal to or no less than 95% of the total 

demand of customers and the rest are set to significantly less than the demand. This allows 

for both single and multiple sourcing options as feasible solutions while allowing both full 

and partial demand satisfaction. 

• The fixed cost of a node increases at a decreasing rate as capacity increases, which captures 

the economies of scale in capital costs (Moore, 1953). 

• The variable cost of a node decreases at a decreasing rate as fixed cost increases, which 

captures the economies of scale in operating costs (Kim et al., 2008).  
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• Risk decreases at a decreasing rate as the sum of variable cost and per unit fixed cost (i.e., 

fixed cost/capacity) increases, which captures the generally established inverse relationship 

between risk and cost (Chopra and Sodhi, 2014; Lev, 1974; Olson, 2010) and the 

diminishing rate of returns. 

The arcs represent both the transportation between two nodes and also the buyer-supplier 

relationship between these two nodes. The main principles we used for the arcs, which are based 

on similar principles used for nodes and supported by related literature, are as follows: 

• Capacity of an arc is the same as the capacity of its origin, which means that transportation 

capacity is not an issue. 

• Fixed cost of an arc is independent of the capacity, as there is no major capital investment 

assumed for transportation and establishing a relationship. The fixed cost may be related to 

minimum amount charges of carriers or implicit costs due to establishing a new 

relationship and/or minimum order requirements. 

• Variable cost decreases at a decreasing rate as fixed cost increases (Kim et al., 2008).  

• Risk decreases at a decreasing rate as variable cost increases (Chopra and Sodhi, 2014; Lev, 

1974; Olson, 2010), which implies that premium transportation services that cost more are 

less risky. 

The actual parameters used in this instance and the functions used to generate these 

parameters are shown in the Appendix B. 

6. RESULTS, DISCUSSION, and MANAGERIAL IMPLICATIONS  

We ran our models for a combination of weights assigned to total cost and total reliability for 

three different cost and reliability parameter sets. We present detailed discussion of the results 

for one of these parameter sets (i.e. parameter set 1 as illustrated in Table A-1 in Appendix A) 
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and summary findings for the others, based on four formulations for cumulative reliability 

calculation: no compounding, compounding using “min”, “max” and “average” functions. Figure 

3 illustrates the tradeoff between total cost and total reliability for a 95% demand satisfaction 

level using the four different formulations for parameter set 1  The graphs in Figure 3 are 

obtained by connecting four solutions corresponding to the same cost-reliability weights for ease 

of presentation and illustration. We will refer to the three segments of lines connecting these four 

solutions as segments 1, 2 and 3 from left to right. The first observation we obtain from Figure 3 

is the importance of the compounding mechanism to total risk formulation. In this instance, the 

average reliability of the suppliers is lowest, which is followed by plants and distribution centers. 

With such a parameter setting, not incorporating the downstream supply chain’s reliability 

inflates the total reliability of the network. Because of this the graph corresponding to non-

compounding is significantly apart from the rest of the graphs in Figure 3. Similar disparities are 

realized as long as the reliability of the nodes across the echelons of the network is different from 

each other. Figure 3 illustratively justifies the need for using the compounding mechanism that 

captures the total reliability of a network design in a more accurate manner. The second 

observation is the rank order among the three compounding mechanisms. As discussed before, 

the max formulation represents an optimistic view of the impact of downstream supply chain, 

thus always providing a higher total reliability compared to the average and min formulations. 

Likewise, the min formulation represents the pessimistic view of the impact of downstream 

supply chain, thus always providing the lowest total reliability compared to the average and max 

formulations. In each graph, as the relative weight of reliability increases in the objective 

function, we are able to obtain more low risk solutions at higher costs. In all four graphs, the cost 

difference of the two extreme solutions is much larger than the difference in reliability, which is 
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better illustrated by the slopes of the graphs in Table 1. All but one of the slopes is strictly less 

than 1 and decrease as we go from segment 1 to segment 3. The slope analysis also provides 

information on how much reliability gain is obtained for a unit dollar spending. For instance, for 

Parameter set 1, with the max formulation, each dollar spent initially results in an increase of 

almost one unit of reliability. This, however, sharply decreases to 0.07 and then to 0.03, which 

illustrates diminishing rate of return in reliability gains. Similar trends are observed across the 

other formulations and other parameter sets as seen in Table 1. 

-------------------------------------- 
Insert Figure 3 and Table 1 Here 
-------------------------------------- 

Another interesting observation in Table 1 is the comparison of the formulations. In each 

parameter set, the non-compounding formulation underestimates the reliability gain obtained in 

segment 1 of the graphs, in which, the weight of reliability objective increases from zero to a 

non-zero weight, even though we observe significant design changes due to this weight change. 

This reinforces the benefit of using a compounding approach over a non-compounding approach.  

While subtle differences exist with results associated with the different formulations, the 

relative consistency associated with the general nature of the tradeoff curves (reliability vs. cost) 

across the various formulations is evident from our analysis, which validates the general 

phenomenon under different settings. For a managerial perspective, we provide the decision-

maker with robust options in choosing a formulation that best fits their company’s perspective on 

upstream supply chain’s impact on downstream nodes’ reliability. In addition, in each of the 

formulations, we provide the decision-maker with near Pareto optimal solutions that assist in 

supply network design and operational decisions. We expand on this more in subsequent sections.   

We consider Figure 3 in addressing some of the interesting results and related managerial 

insights. It is evident from Figure 3 that at the lower left corner of each of the four graphs, the 
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reliability increases relatively steeply as more weight is assigned to it. For illustrative purposes in 

our discussion below, we will focus on the solutions obtained by the Average formulation. The 

solutions are depicted on the networks in Figures 4-6, where a highlighted node represents a 

node that’s selected. The small numbers in the parentheses represents the quantity received by 

this node from upstream. 

In the least costly solution, reliability’s weight in the objective function is zero. This results 

in a solution that consists of using only the lowest costly supplier, plant, and distribution center 

to serve the customers as shown in Figure 4. Thus, the important managerial implication here is 

that if a company focuses on cost, the general direction is to move towards having few nodes and 

arcs that are active and least costly in the supply chain although this comes at the expense of 

reliability. Once the weight on reliability is increased, the solution obtained utilizes the two 

reliable suppliers and avoids the least reliable supplier to increase the total reliability of the 

design, as seen in Figure 5. Since the fixed cost of suppliers is the lowest among all 

nodes,working with multiple suppliers does not significantly increase the total cost.  

--------------------------------- 
Insert Figure 4 and 5 Here 
--------------------------------- 

The structure of the solution also changes significantly by adding more nodes to the supply 

chain to increase reliability. For instance, we see that plant 4 is used in addition to plant 7 as a 

means to increase reliability in Figure 5. This is a clear example of a multiple sourcing strategy. 

When the weight of reliability is increased to 98.8% and the weight of cost is decreased to 1.2%, 

the solution follows Figure 6, where the solution now uses multiple sourcing at each echelon, in 

contrast to single sourcing seen in Figure 4. Increased reliability in the upstream supply chain, 

especially the supply base, has a significant impact in the compounding formulations as it 

cascades through the network. 
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--------------------------- 
Insert Figure 6 Here 

--------------------------- 
In addition, when we focus on the actual flow of units for the network in Figure 6, we see 

that there is a flow of 108 units from Supplier 1 to Plant 5, but only a single unit from Supplier 1 

to Plant 4. Similarly, flow from Plant 4 to DC 12 is also only 1 unit. While a flow of a single unit 

is not practical in an actual setting, this can be interpreted as Plant 4 using Supplier 2 as its main 

supplier and Supplier 1 as a backup supplier. Similarly, DC 12 uses Plant 8 as its primary source, 

whereas Plant 4 as a backup source. This type of an arrangement is in line with using backup 

suppliers as a risk mitigation strategy (e.g., Chopra et al., 2007). 

To test the robustness of our formulations, we solve three instances with three different 

parameters sets. The results for the two compounding formulations are shown in Figure 7, where 

the results based on the three instances look very similar. This provides assurance about the 

robustness of our formulations to parameter changes. 

-------------------------------------- 
Insert Figure 7 Here 

-------------------------------------- 
6.1 Managerial Implications 

Several interesting managerial implications emerge from our analysis. First, we find that in 

situations where companies are interested in a higher level of reliability they must sacrifice cost, 

but the key question is by how much. As evident from our results, the supply chain becomes 

denser with more nodes and arcs as we focus on higher levels of reliability. Thus, moving from 

single sourcing to multiple sourcing is identified as a risk mitigation strategy. Given the level of 

reliability, our analysis provides a road map for decision-makers in terms of what the 

corresponding costs are, what supply chain structure must be considered, and how the product 

must be shipped in achieving the established targets and goals.   
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Second, our analysis also identifies fortification solutions in the form of back-up suppliers 

that companies ought to have in maintaining high levels of reliability, which comes at an extra 

cost. Thus, from a risk mitigation standpoint, we present structural (selection of nodes) and 

infrastructural (transportation) options in achieving higher levels of reliability in limiting risk.  It 

is important to note that, the use of back-up suppliers is clearly different from the multiple 

sourcing options obtained in some of our solutions.   

Another factor that has managerial importance is the demand satisfaction. It is interesting to 

note that differences exist among the solutions obtained from the four formulations in terms of 

demand satisfaction levels. All formulations result in solutions with complete demand 

satisfaction when the weight for reliability approaches 100%. This can be explained by the 

increase in the total reliability objective function value with the increase of flow in the network. 

However, this is not the case for some of the formulations where the weight on the cost objective 

is still significant. All solutions obtained with the non-compounding formulation and the “max” 

compounding formulation have 100% demand satisfaction, whereas the “min” and “average” 

compounding formulations result in solutions with shortages in some of the cases such as the one 

in Figure 5, which has a DS = 97.1%. In Figure 5, shortage (customer B-E) is a direct result of 

not selecting Supplier 3 in the solution, because the total capacity of Supplier 1 and Supplier 2 is 

not enough to meet all of the demand. With the “min” compounding approach, Supplier 3’s low 

reliability defines the downstream reliability as this approach emphasizes the least reliable entity 

in the upstream chain of a node. Similarly, with the “average” compounding, Supplier 3’s low 

reliability still impacts the downstream reliability, although not as much as the “min” case. Thus, 

the “min” and “average” formulations result in shortages to avoid a highly unreliable supplier. 

On the other hand, with the optimistic “max” compounding approach, avoiding Supplier 3 does 
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not pay-off as much, since the most reliable supplier selected, which is Supplier 1 in that 

scenario, defines the compounding reliability. With the non-compounding formulation, the 

reliability gain through increased flow with full demand satisfaction seems to outweigh any gains 

in the reliability increase in the supply base by avoiding Supplier 3, thus always resulting in 100% 

demand satisfaction in all solutions. 

The important managerial implication here is that if a company wants to place high 

importance on demand satisfaction then they must accordingly choose the appropriate 

formulation as detailed above.  In that sense, demand satisfaction and reliability maximization 

move along the same direction in our formulations.  Although not presented in this article, we 

found that the results seem to be robust to different values of demand satisfaction levels (DSL), 

with slight increase in total cost as DSL increases.  

Finally, we observe that in each of the parameters sets, the risk mitigation strategies are 

utilized in the following order as the weight of reliability objective is increased: First using 

reliable suppliers, then using multiple sourcing, and finally using back-up suppliers. This is 

important as it provides guidance in terms of the order of utilizing various risk mitigation 

strategies.  

7. CONCLUSIONS AND EXTENSIONS 

This study considers the supply chain network design problem and presents formulations with 

dual objectives, which usually conflict with each other: minimizing cost and maximizing 

reliability. Realizing the need for a method to quantify total reliability of a network design for 

comparing different options based on total reliability and total cost, we propose to assign a 

reliability index, based on multi-criteria modeling, to each entity and activity. Since the entities 

in a supply chain are interrelated, we attempt to model the impact of upstream supply chain’s 
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reliability on the reliability of the downstream entities through three different compounding 

mechanisms.  

This study establishes a clear tradeoff between reliability and cost in supply chain network 

design. While some differences exist with results associated with the various formulations, the 

relative robustness associated with the general nature of the tradeoff curves provide managers 

with options in choosing a formulation that best fits their company’s perspective on upstream 

supply chain’s impact on downstream nodes’ reliability.  

In choosing among the formulations, another factor that might be considered is the 

importance of demand satisfaction as the formulations differ in the solutions they produce in that 

aspect. In general, we observe that demand satisfaction and reliability maximization move along 

the same direction in our formulations. However, when capacity of reliable suppliers is limited, 

some formulations result in solutions with shortages to maximize reliability. 

Our work also identifies possible risk mitigation strategies implied by the solutions obtained 

in our analysis.  The first strategy is using more reliable suppliers. Second is moving from single 

sourcing to multiple sourcing. The network structure of the solutions reveals that the supply 

chain becomes denser with more nodes and arcs as we focus on higher levels of reliability. The 

third strategy is having back-up suppliers, even though no sourcing is made from those suppliers.  

While this study makes significant advances in the research of reliable supply chain network 

design, it is not devoid of limitations. First, we use a single value to represent the reliability of 

each entity and activity, which may result in loss of information due to aggregation. However, 

our research can easily be extended to have multiple reliability measures by decoupling different 

characteristics of one risk from another type of risk as suggested by Chopra et al. (2007). 
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Although we were able to obtain tradeoff curves that suggest Pareto efficiency, we cannot 

claim we actually achieved Pareto optimality since we used a Genetic Algorithm to obtain 

solutions. This was because of the non-linearity of our models. An improvement in the solution 

methodology that would guarantee optimality of the solutions would be useful in characterizing 

the actual Pareto frontier. 

Finally, the use of real data to validate our methodology and analysis would be useful. 

Although the instance we solve is not based on real data, the parameters for the instance are 

carefully selected as described in Appendix B. In the same tone, while we do not actually apply 

the AHP approach in determining the reliability indices, the framework to use this technique is 

explained.    

One other future research direction can be using Neureuter and Kenyon (2008)’s risk index 

definition focusing on disruptions and the time it would take for each node to be restored to full 

functionality after a disruption. Integrating this time to recovery data with information on 

operational and financial measures, one can assign a financial performance impact of the 

disruption to each node along the supply chain. This approach can provide a number of benefits 

in terms of managerial insights. It can, for example, assist in identifying the previously hidden 

nodes in the network that create the greatest risk exposure, to compare the costs and benefits of 

different alternatives for mitigating impact, and to make inventory and sourcing decisions that 

increase the robustness of the network. 
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APPENDIX A: Pseudo-code for the GA  

Begin 

• set generation 𝑡𝑡 ⟵ 0 and initialize the population, 𝑝𝑝𝑝𝑝(0), of parents; 

• while 𝑡𝑡 == target number of generations 

o for all parents in 𝑝𝑝𝑝𝑝(𝑡𝑡); 

 calculate objective by solving optimization programming; 

o recombine parents in 𝑝𝑝𝑝𝑝(𝑡𝑡) to yield the population of crossover-offspring, 𝑐𝑐(𝑡𝑡); 

o modify the parents in 𝑝𝑝𝑝𝑝(𝑡𝑡) to yield the population of mutant-offspring, 𝑚𝑚(𝑡𝑡); 
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o select good parents from 𝑝𝑝𝑝𝑝(𝑡𝑡)  based on objective function value at their optimal 

solution; 

o 𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) ⟵ {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑡𝑡𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑟𝑟𝑠𝑠𝑝𝑝𝑡𝑡𝑠𝑠 𝑖𝑖𝑝𝑝 𝑝𝑝𝑝𝑝(𝑡𝑡)}⋃𝑐𝑐(𝑡𝑡)⋃𝑚𝑚(𝑡𝑡); 

o 𝑡𝑡 ⟵ 𝑡𝑡 + 1  

End 

APPENDIX B: The Test Instance  

--------------------------------------- 
Insert Table A-1 Here 

--------------------------------------- 
Node capacities: In the parameter set 1, we assign the largest capacity of single (i) supplier, (ii) 

plant, and (iii) DC at total demand, and we set the capacity of (iv) sum of the rest of the suppliers, 

(v) sum of the rest of the plants, and (vi) sum of the rest of the DCs at strictly less than total 

demand. Subtracting some volumes from each node capacity in parameter set 1 modifies the 

node capacities in parameter sets 2 and 3. 

--------------------------------------- 
Insert Figure 8 

--------------------------------------- 
Fixed costs for nodes: We assume that fixed cost is increasing with decreasing rate as capacity 

increases and we use a log-function to represent this relationship. In parameter set 1, the ranges 

of supplier fixed cost, plant fixed cost, and DC fixed cost are [900, 1125], [2700, 3375], and 

[1800, 2250], respectively.  

min[range] ± 𝜀𝜀𝐿𝐿 = 𝐴𝐴𝑟𝑟 ∙ ln([min{capacity}]𝐶𝐶𝑟𝑟 ∙ 𝐵𝐵𝑟𝑟) 

max[range] ± 𝜀𝜀𝑈𝑈 = 𝐴𝐴𝑟𝑟 ∙ ln([max{capacity}]𝐶𝐶𝑟𝑟 ∙ 𝐵𝐵𝑟𝑟) 
(L1) 

,where 𝜀𝜀𝐿𝐿 and 𝜀𝜀𝑈𝑈 are random disturbance of lower bound and upper bound respectively and they 

are small enough, i.e., 0 ≤ 𝜀𝜀𝐿𝐿 , 𝜀𝜀𝑈𝑈 ≤ 25. 𝐴𝐴𝑟𝑟 , 𝐵𝐵𝑟𝑟 , and 𝐶𝐶𝑟𝑟  are positive random parameters and 
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subscript 𝑠𝑠 stands for echelons, 𝑠𝑠 = {supplier, plant, DC}. Substituting capacities of parameter 

set 2 and 3 modifies fixed costs of the parameter sets. 

---------------------------------- 
Insert Figure 9 & 10 Here 

---------------------------------- 
Variable costs for nodes: We assume that variable cost is decreasing with decreasing rate as 

fixed cost increases and we use a reverse log-function to capture this relationship. In parameter 

set 1, the ranges of supplier variable costs, plant variable costs, and DC variable costs are [4, 5], 

[4, 5], and [1, 1.25] respectively.  

min[range] ± 𝜀𝜀𝐿𝐿 = 𝐷𝐷𝑟𝑟 − 𝐴𝐴𝑟𝑟 ∙ [ln([max{fixed cost}]𝐶𝐶𝑟𝑟 ∙ 𝐵𝐵𝑟𝑟)] 

max[range] ± 𝜀𝜀𝑈𝑈 = 𝐷𝐷𝑟𝑟 − 𝐴𝐴𝑟𝑟 ∙ [ln([min{fixed cost}]𝐶𝐶𝑟𝑟 ∙ 𝐵𝐵𝑟𝑟)] 
(L2) 

, where 𝐷𝐷𝑟𝑟  is random parameter. Substituting fixed costs of parameter set 2 and 3 modifies 

variable costs of the parameter seta. 

Reliability Indices for Nodes: We assume that reliability is increasing with decreasing rate as 

sum of variable costs and per unit fixed cost (i.e., fixed cost / capacity) increases and we use a 

log-function to represent this relationship. In parameter set 1, the ranges of supplier reliability, 

plant reliability, and DC reliability are [1, 3], [4.5, 6.6], and [8, 10], respectively.  

min[range] ± 𝜀𝜀𝐿𝐿 = 𝐴𝐴𝑟𝑟 ∙ [ln([min{average cost}]𝐶𝐶𝑟𝑟 ∙ 𝐵𝐵𝑟𝑟)]− 𝐷𝐷𝑟𝑟 

max[range] ± 𝜀𝜀𝑈𝑈 = 𝐴𝐴𝑟𝑟 ∙ [ln([max{average cost}]𝐶𝐶𝑟𝑟 ∙ 𝐵𝐵𝑟𝑟)]− 𝐷𝐷𝑟𝑟 
(L3) 

, where average cost = variable cost +
fixed cost

capacity
. Substituting variable and fixed costs and 

capacities of parameter set 1 and 2 modifies reliability of the parameter sets. 

--------------------------------------- 
Insert Table A-2 Here 

--------------------------------------- 
Fixed costs for arcs: We assume that fixed cost for arcs is independent of the capacity. Thus, 

this fixed cost is generated by uniform distribution with support [100, 125]. 
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--------------------------------------- 
Insert Figure 11 & 12 Here 

--------------------------------------- 
Variable costs for arcs: We assume that variable cost is decreasing with decreasing rate as fixed 

cost increases. And the ranges of the supplier-plant variable cost, plant-DC variable cost, and 

DC-customer variable cost are [0.5, 0.625], [1, 1.25], and [1, 1.25] respectively. We apply 

reverse (L2) for this case as we executed in node variable cost generation. Note that we round off 

the variable costs to the nearest hundredths to reduce the computational time. 

Reliability indices for arcs: We assume that reliability is increasing with decreasing rate as 

variable cost increases. We further assume that across echelons, the reliability indices are 

comparable. So, all the ranges of arc reliabilities are [1, 3]. We apply log-function for this as 

follows. 

min[range] ± 𝜀𝜀𝐿𝐿 = 𝐴𝐴𝑟𝑟 ∙ [ln(min{variable cost}𝐶𝐶𝑟𝑟 ∙ 𝐵𝐵𝑟𝑟)] −𝐷𝐷𝑟𝑟  

max[range] ± 𝜀𝜀𝑈𝑈 = 𝐴𝐴𝑟𝑟 ∙ [ln(max{variable cost}𝐶𝐶𝑟𝑟 ∙ 𝐵𝐵𝑟𝑟)]− 𝐷𝐷𝑟𝑟 

(L4) 

APPENDIX C: A Framework for Assigning Reliability Indices  

Many reliability capturing models, including qualitative and quantitative approaches appear in 

the literature (e.g. Zsidisin et al., 2004; Tomlin, 2006; Chopra et al., 2007). Even with the large 

number of proposed models, capturing reliability remains problematic and few models have 

gained wide acceptance. The criteria in reliability assessment are often difficult to quantify and 

evaluate. In general, many reliability indices used in the literature make strong assumptions such 

as the underlying probability distribution, fail to reflect the multi-faceted nature of reliability 

(multiple interrelated criteria) and are generally difficult to operationalize. 

Analytical Hierarchy Process (AHP) is one of the techniques that can be utilized for 

reliability assessment by considering qualitative scales (Saaty, 1988).  Instead of using exact 

numbers, phrases such as "strongly more important than" can be used to extract the decision-
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makers' preferences. Kull and Talluri (2008) provide a good illustration of AHP to assess 

suppliers' reliability (risk). Although the methodology in Kull and Talluri (2008) focuses only on 

assessing suppliers’ reliability (risk), this can be easily applied to a supply chain network setting 

by observing that every echelon in the supply chain is a supplier to the next tier in the 

downstream. Thus, a sequential tier by tier application of the AHP-type approach is suggested. 

By modifying and utilizing the AHP construct illustrated in Figure 11, the reliabilities of entities 

in plant and DC levels can also be assessed. Table A-3 presents various risk factors that are 

identified through interviews and discussions with the supply chain executives of a Fortune 500 

apparel firm, which was in the process of redesigning its supply chain network for one of its 

product lines currently produced in Asia.  

While we do not actually apply the AHP approach in determining the reliability scores of 

various nodes and arcs in our network, as discussed above, such an approach has already been 

addressed in the literature and can easily be utilized in determining the relative reliability scores 

for each of the entities on a scale of 0 to 1 and be mapped into a scale of 1 to 10 as utilized in our 

study.   

--------------------------------------- 
Insert Figure 13 & Table A-3 Here 
--------------------------------------- 

Figures and Tables 

 
Figure 1: Example for reliability compounding 
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Figure 2: Network representation of a sample solution of instance with 3 suppliers, 4 plants, 5 DC's and 5 customers. C stands 

for fixed and variable costs, R stands for the reliability index. White boxes and blurred lines represent unselected nodes 
and arcs respectively. 

 
Figure 3: Trade-off between cost and reliability based on four formulations 
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Figure 4: Least costly solution for “avg.” compounding of 

parameter set 1 (delivered Qty.) 

 
Figure 5: Fourth least costly for “avg.” compounding of 

parameter set 1 (delivered Qty.) 
  

 
Figure 6: Solution with “avg.” compounding with reliability weight 98.8% in parameter set 1. Dashed lines represent backup 

sourcing (delivered Qty.) 
  

 
Figure 7: Solution with “avg.” and “max” compounding. 
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Figure 8: Example of fixed cost for supplier nodes in 

parameter set 1 

 
Figure 9: Example of variable cost supplier nodes in 

parameter set 1 

 
Figure 10: Example of reliability for supplier nodes in 

parameter set 1 

 
Figure 11: Example of variable cost for arcs between supplier 

and plant 

 
Figure 12: Example of reliability for arcs between supplier 

and plant 
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Figure 13: Example of AHP for evaluating supplier risk (Kull & Talluri, 2008) 

 

 
Table 1: Slopes of the four graphs in Figure 3 (unit reliability/$) 

 

 
Table A-1: Node parameters 

Seg. 1 Seg. 2 Seg. 3 Seg. 1 Seg. 2 Seg. 3 Seg. 1 Seg. 2 Seg. 3

Max. Compounding 0.9840 0.0743 0.0327 1.0461 0.0811 0.0305 0.6141 0.1023 0.0330

Avg. Compounding 0.4093 0.0694 0.0324 0.4375 0.0685 0.0338 0.4422 0.1135 0.0320

Min. Compounding 0.2126 0.0825 0.0398 0.2751 0.0759 0.0393 0.2886 0.1243 0.0319

Non. Compounding 0.2285 0.0911 0.0447 0.1678 0.0859 0.0491 0.2794 0.1276 0.0416

Parameter set 1 Parameter set 2 Parameter set 3

1 2 3 4 5 6 7 8 9 10 11 12

Capacity 110 230 350 90 110 140 350 55 70 90 125 350

Var. Cost $4.81 $4.28 $4.01 $4.89 $4.75 $4.58 $4.01 $1.24 $1.21 $1.18 $1.14 $1.03

Fix. Cost $920.68 $1,050.49 $1,124.39 $2,752.56 $2,840.35 $2,945.86 $3,346.74 $1,823.74 $1,879.21 $1,937.01 $2,012.57 $2,249.38

Ave. Cost $13.18 $8.85 $7.22 $35.47 $30.57 $25.62 $13.57 $34.40 $28.06 $22.70 $17.24 $7.46

Reliability 2.83 1.63 1.02 6.33 6.07 5.75 4.60 9.89 9.64 9.38 9.04 8.01

Capacity 100 220 350 80 105 135 350 50 65 85 120 350

Var. Cost $4.88 $4.31 $4.01 $4.97 $4.78 $4.61 $4.01 $1.25 $1.22 $1.19 $1.15 $1.03

Fix. Cost $903.90 $1,042.67 $1,124.39 $2,701.03 $2,820.00 $2,929.95 $3,346.74 $1,801.82 $1,862.16 $1,923.86 $2,003.18 $2,249.38

Ave. Cost $13.92 $9.05 $7.22 $38.73 $32.98 $26.31 $13.57 $37.29 $29.87 $23.82 $17.84 $7.46

Reliability 2.99 1.70 1.02 6.49 6.13 5.80 4.60 9.99 9.72 9.44 9.08 8.01

Capacity 95 210 335 75 100 130 335 50 60 75 110 335

Var. Cost $4.92 $4.34 $4.04 $5.02 $4.81 $4.63 $4.04 $1.25 $1.23 $1.20 $1.16 $1.04

Fix. Cost $894.87 $1,034.48 $1,116.68 $2,672.80 $2,798.66 $2,913.44 $3,327.58 $1,801.82 $1,843.75 $1,895.08 $1,983.16 $2,239.30

Ave. Cost $14.34 $9.27 $7.37 $40.66 $32.80 $27.04 $13.97 $37.29 $31.96 $26.47 $19.19 $7.72

Reliability 3.08 1.77 1.08 6.58 6.19 5.85 4.66 9.99 9.80 9.57 9.17 8.05
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Table A-2: Arc parameters 

 
Suppliers Manufacturers Distribution Centers Routes 

• Quality 

• Price Variability 

• Flexibility  

• On-time delivery 

• Disruptions (e.g. 
financial, natural)  

• Quality 

• Price Variability 

• Flexibility 

• Lead Time 

• Disruptions (e.g. labor 
availability, geopolitics) 

• Storage Quality 

• Price Variability 
(includes tax/duty 
status, theft) 

• Flexibility 

• Service level (% 
demand met) 

• On time delivery (% 
demand met on time) 

• Disruptions (e.g. 
location risk) 

• Flexibility (includes 
Capacity  & Mode 
Availability) 

• Distance/Time 

• Disruptions( e.g. 
Weather, Port, Piracy) 

 

Table A-3: Risk factors 

 

4 5 6 7 8 9 10 11 12 A B C D E

Var. Cost $0.53 $0.59 $0.60 $0.55 $1.24 $1.06 $1.21 $1.24 $1.24 $1.01 $1.04 $1.04 $1.04 $1.02

Fix. Cost $120.56 $109.18 $107.38 $115.31 $100.67 $116.75 $102.81 $100.27 $100.85 $121.76 $119.15 $119.03 $119.29 $121.54

Reliability 8.37 9.32 9.46 8.81 9.81 8.44 9.62 9.84 9.79 8.01 8.23 8.24 8.22 8.03

Var. Cost $0.53 $0.58 $0.52 $0.55 $1.13 $1.21 $1.14 $1.12 $1.05 $1.22 $1.01 $1.11 $1.08 $1.23

Fix. Cost $119.15 $109.43 $121.94 $116.21 $110.30 $103.00 $109.39 $111.58 $117.88 $102.48 $121.76 $111.81 $115.53 $101.53

Reliability 8.49 9.29 8.25 8.73 8.99 9.61 9.06 8.88 8.34 9.65 8.01 8.86 8.54 9.73

Var. Cost $0.52 $0.52 $0.55 $0.51 $1.06 $1.16 $1.02 $1.17 $1.18 $1.21 $1.01 $1.21 $1.06 $1.19

Fix. Cost $121.35 $121.94 $115.53 $123.61 $117.15 $107.55 $121.29 $107.08 $105.81 $103.42 $121.76 $102.82 $117.23 $104.78

Reliability 8.30 8.25 8.79 8.11 8.40 9.22 8.05 9.26 9.36 9.57 8.01 9.62 8.40 9.46

Var. Cost $1.04 $1.05 $1.13 $1.13 $1.21 $1.04 $1.05 $1.23 $1.04 $1.16

Fix. Cost $119.19 $118.22 $110.66 $110.56 $103.12 $118.59 $117.82 $101.11 $118.96 $107.98

Reliability 8.23 8.31 8.96 8.96 9.60 8.29 8.34 9.77 8.25 9.18

Var. Cost $1.15 $1.06 $1.09 $1.03 $1.02

Fix. Cost $108.73 $116.89 $114.60 $120.02 $120.73

Reliability 9.12 8.42 8.62 8.16 8.09
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