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Abstract-- Zusammenfassung 

Reliable Updated Residuals in Hybrid Bi-CG Methods. Many iterative methods for solving linear 
equations Ax = b aim for accurate approximations to x, and they do so by updating residuals 
iteratively. In finite precision arithmetic, these computed residuals may be inaccurate, that is, they 
may differ significantly fxom the (true) residuals that correspond to the computed approximations. In 
this paper we will propose variants on Neumaier's strategy, originally proposed for CGS, and explain 
its success. In particular, we will propose a more restrictive strategy for accumulating groups of 
updates for updating the residual and the approximation, and we will show that this may improve the 
accuracy significantly, while maintaining speed of convergence. This approach avoids restarts and 
allows for more reliable stopping criteria. We will discuss updating conditions and strategies that are 
efficient, lead to accurate residuals, and are easy to implement. For CGS and Bi-CG these strategies 
are particularly attractive, but they may also be used to improve Bi-CGSTAB, BiCGstab(l), as well 
as other methods. 
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ZuverliiBlich berechnete Residuen in hybriden Bi-CG Verfahren. Viele iterative Methoden zur 
L6sung linearer Gleichungssysteme berechnen die Iterierten fiber aufdatierte Residuen. In endlicher 
Arithmetik k6nnen diese Residuen sehr ungenau sein, d.h., sie kSnnen sich erheblich yon den 
tats/ichlichen unterscheiden. In dieser Arbeit stellen wir Varianten der Neumaier Strategie vor, die 
urspriinglich far das CGS-Verfahren vorgeschlagen wurde, uud erklSxen deren Effolge. Insbesondere 
werden wir eine Variante vorschlagen, bei der mehrere Aufdatierungsschritte zusammengefaBt 
werden. Wir zeigen, dab sich die Genanigkeit der berechneten Residuen dadurch erheblich 
verbessern l~iBt, otme dab die Konvergenzgeschwindigkeit beeintr/ichtigt wird. Dieser Ansatz ver- 
meidet Neustarts und ermSglicht zuverl~ssigere Abbruchkriterien. Wir diskutieren 
Aufdatierungsbedingungen und Strategien, die effizient und leicht zu implementieren sind. Diese 
Strategien fahren zu genaueren Residuen und sind insbesondere far CGS und Bi-CG-aber auch far 
Bi-CGSTAB, BiCGstab(l) und andere Verfahren-sehr attraktiv. 

1. Introduct ion 

W e  will  focus  on  t h e  i t e r a t ive  so lu t ion  o f  l i nea r  sys tems  

~ = b  (1)  

in wh ich  A is a n o n - s i n g u l a r  n • n m a t r i x  a n d  b a g iven  n -vec to r .  Typica l ly  n is 

l a rge  a n d  A is sparse .  T o  s impl i fy  o u r  p r e s e n t a t i o n ,  w e  will  a s s u m e  A and  b to  

b e  real .  T h e  class o f  i t e r a t ive  m e t h o d s  is c h a r a c t e r i z e d  by t h e  fac t  tha t  t h e  



142 G.L.G. Sleijpen and H. A. Van Der Vorst 

update for the residual vector is computed independently from the current 

approximation to the solution. This class includes Krylov-type methods, like 

Bi-CG, CGS, and Bi-CGSTAB. 

Of course, one is interested in an accurate approximation for the solution x. 

Since the exact solution is not known, the residual is usually used (in stopping 

criteria) to judge the quality of the approximation. Many iterative methods have 

recursively u p d a t e d  res iduals  available. These are usually exploited in stopping 

criteria, which is attractive, since the computation of a true residual b - A x  k for 

an approximation x k usually requires an additional matrix-vector (MV) product. 

Unfortunately, the true and the updated residual drift apart during the iteration 

process, and this leads to misleading impressions of the actual errors. When the 

method produces a small updated residual r k (as is the "purpose" of the 

method), then the true residual b - A x  k may not be small at all. In order to 

obtain small true residuals, we may have to restart the process, which is less 

attractive, since, by restarting, we may loose for instance the speed that has been 

accelerated by superlinear convergence. It may also be the case that we have 

done too many iteration steps, since the actual errors tend to stagnate in many 

cases where the updated residuals still further decrease beyond a certain value. 

We will discuss relatively simple strategies that lead to more accura te  u p d a t e d  

res iduals  (that is, to small [ [ b -Ax  k -rkl]), without giving up any speed of 

convergence. 

Our strategies and theoretical observations will be illuminated by applications to 

Bi-CG and to hybrid Bi-CG methods, like CGS, Bi-CGSTAB, and BiCGstab(l). 

However, they seem to be applicable to many other iterative methods as well. 

In Section 2 we will briefly recall some relevant properties of these Bi-CG type 

of methods. In Section 3, we will explain the critical points in the computation of 

accurate residuals, in particular we will discuss the accuracy that is required to 

maintain speed of convergence. Next, in Section 4, we translate our observations 

into practical strategies that we illustrate in our Section 5 on numerical 

experiments. 

2. Hybrid Bi-CG Methods 

Starting with an initial guess x 0 for the solution x and a "shadow" residual Fo, 

Bi-CG [2, 9] produces iteratively sequences of approximations Xk, residuals rk, 

and search directions u k by 

u k = r  k - [3kUk_l,  Xk+ 1 = X  k + O~kUk, rk+ 1 = r  k -- a k A U k ,  (2) 

where the Bi-CG coefficients % and /3 k are such that r k and A u  k are 

orthogonal to the shadow Krylov subspace X k ( A T ;  f0)" For any sequence of 

polynomials 0h of degree k with a non-trivial leading coefficient 0h, the vectors 
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tPo(AT)ro, .. .  , Ok- 1(AT)to form a basis of Y;~k(AT; r0) and we have (see [19] or 

[161): 

Ok- 1 Pk Pk 
/3 k and a k = - -  where 

Ok Ok- 1 O'k 

pk:= (r~, tPk( AT)~o), 

O-k:= (Auk,  Ok( AT)Fo). 
(3) 

We can rewrite the inner products so as to avoid the operations with A r, e.g., 

Pk = (rk, Ok(AT)~o) = (rk, f0) where r k := t~k(A)rk, (4) 

and generate recursions for the vectors rk, hoping that the operator ~Pk(A) 

would lead to a further reduction of the Bi-CG residual. The corresponding 

search directions for the corresponding approximation x k can be constructed in 

a similar way. In this approach the Bi-CG residuals and search directions are 

not computed explicitly. 

Sonneveld [19] suggested to take 0k = 0k, with Ok such that r k = Ok(A)ro, 
which led to the CGS method: r k = 02(A)ro . The matrix polynomial Ok(A) 
reduces the initial residual r 0 (in case of convergence) and one may hope that 

this polynomial reduces Ck(A)ro as well. Unfortunately, especially in the early 

phases of the process, there is often an amplification in Bi-CG that is squared in 

CGS, leading to large intermediate residuals which may affect the accuracy of 

the final residual (cf. Section 3 and [18], Section 2.1). A more subtle approach, in 

which 0k was taken as the Bi-CG polynomial for a 'nearby' process, was 

followed in [3] for the construction of GCGS. 

Bi-CGSTAB [20] in Algorithm 1 attempts to avoid large intermediate residuals 

by selecting Ok as a product of linear factors that minimize residuals locally. 

Unfortunately, products of locally minimizing degree one polynomials may lead 

to inaccurate Bi-CG coefficients [17], and this may lead to poor convergence. By 

taking products of locally minimal degree l polynomials as in BiCGstab(/) 

[16,18], one can often maintain the speed of convergence of the underlying 

Bi-CG process and avoid large intermediate residuals at the same time. The 

m-th sweep of BiCGstab(l) starts with increasing the index k of Oj(A)r k in l 

steps from k = ml to k = ml + l, using the relations in (2), and then the index j 

is increased from j = ml to j = ml + l, by l steps of, say, GMRES [15]. 

3. Improving the Accuracy 

3.1. Errors in the Residuals 

For Bi-CG methods, Bi-CGSTAB and CGS, one expects (and often observes 

indeed) that they inherit the attractive convergence properties (as super-linear 

convergence) from Bi-CG. 

However, in finite precision arithmetic, evaluation errors can not be avoided. 

The best one can hope for is that these errors introduced in one iteration step 
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are relatively small, i.e. the new errors in steps as in (2) are small with respect to 

Ilu~ll and Ilrk+lll, say less than ~/(~)llukll and r respectively, where ~ is 

the relative machine floating point precision. Surprisingly, as we have learned 

from actual computations (see, for instance, [5,17]) and from theoretical results 

for symmetric matrices A [7,12], this is also sufficient for exhibiting the Bi-CG 

type of convergence behavior (see also [1]). This makes the methods attractive 

even when possibly relatively large global errors occur: For convergence we need 

local errors that are locally relati~ly small. 

However, for an accurate updated residual it is not enough to have relatively 

small local errors: the accumulation of these Iocal errors should be small as well 

[18]. For our discussion we recall arguments in [18], Section 3, that led to 

estimate (6). We restrict our analysis to the effect of rounding errors from the 

matrix-vector multiplications. For the accuracy results, other sources of round- 

hag errors are of lesser importance and will not affect essentially the conclu- 

sions. For a more rigorous analysis, we refer to [8]. 

In the methods that we are interested in, the updates for x k and r k are related 

as follows 

xk+t = xk +Pk,  and rk+ ~ = r k - A p  k 

(in exact arithmetic), and the update Apk for r k is computed from the update p~ 

of x k by explicit matrix multiplication. In finite precision arithmetic, for some 

matrix A A that may depend on k, we actually have that 

rk+ 1 = r k - - A P k - - A A p  k with ][AAII<nA~II IAI II, (5) 

where n A is the maximum number of non-zero elements per row of A and the 

l" I refers to the element-wise absolute value. Therefore, 

Ilk -Axk - rkll-< ~nAII IAI II ~ IIP~ll-< ~F]~ IIApjll 
j<k i<k 

_< ~ 2 F  ~ Ilrj[[ with F :=  nail A[ II [IA-1[I. (6) 
j_<k 

We have skipped higher order terms in ~. 

Except for the factor F this estimate seems to be sharp m practice. In order to 

understand why we do not see the factor F in actual computations, we slightly 

rewrite (5) as 

rk+l = rk - fl(APk) = rk -#tPk --fk" 

We have that 

[fk[ < 1.01~nAIAI Ipkl- 

Since we are interested in the domiilant parts of the error, we wonder la~w large 

the largest elements (]AI [Pkl)j may be with respect to ([Apkl)j. 

In particular, we wonder whether it may happen that 

[1 IN[ [Phi II~ >> [l/phil=. 
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We may expect significant influence of rounding errors if 

IIApklL << 11 IAI Ipkl IL -< II IAI 1Lll Ipkl IL = IIAILIIpklL, 

or 

IIAp~IL 

llpkll~ 
- -  << ILAIL = IA~I. 

Now note that r k = t)k(A)dpk(A)ro, and that the zeros of 4~k are the Ritz values 

(for Bi-CG: ~k(t) = 1, for CGS: q5 k = 0h)- In the 'normal' case the Ritz values 

tend to converge most rapidly to the extremal eigenvalues. That means that 

ah'eady after modest numbers of iteration steps we will see that 4~k and ~bk+ 1 

have nearby zeros, close to the extremal eigenvalues of A (extremal in the sense 

of close to the convex hull). 

This implies that the major contributions of Apk are with respect to eigenvec- 

tors inside the hull (at least they may not be expected to be small). 

Therefore, 

[IApklL 

Ilpkll:o ~/~average 

and in the context of discretized PDEs, this average A will be not far from 

�89 (in a relative sense). 

This means that the largest elements of the vector Apk are not much smaller 

than the largest elements of [IAII Irp~ll, and therefore the norm of fk will be in 

the order of 2nA~-llApk[I, so that the factor "condition number" of A in the 

formula (6) for F will not show up (except possibly in rather special situations, 

for instance when there is not much reduction in the residual (Apk is small), but 

at the same time considerable variation in x~ (Pn not small)). 

For the BiCGstab(/) methods we note that Oh is a product of low degree 

polynomials of which the zeros can be interpreted as harmonic Ritz values [13]. 

Also these harmonic Ritz values tend to converge most rapidly to extremal 

eigenvalues, so that the same way of reasoning as above carries over. 

One may encounter sometimes convergence histories without large intermediate 

residuals and nevertheless still an inaccurate final residual, which seems to be in 

contradiction with our theory. This can happen for instance with BiCGstab(/), 

for larger values of l. The explanation for this is the following. For some 

methods, it is natural not to show all intermediate residuals; one may show only 

residuals at the end of a sweep that consists of more than one residual update. 

This is the case for BiCGstab(/), where the residuals are usually only reported at 

the end of a sweep of l internal updates. The shown residuals may then be small 

while the hidden intermediate ones may be large and this may explain the 

observed discrepancies. 
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Estimate (6) suggests a stopping criterion that may help to avoid superfluous 

steps (see also [18], Section 2.1): 

stop if [[rk][ < tol or IIr~ll ~ ~K ~ Ilrjll, (7) 
j<k 

for some modest constant K >_ 1. Throughout this paper K wil always represent 

such a constant of modest size. 

The local errors ZlApy are relatively small (IIAA&II ~ ~F(llrjll + Ilrj+lll), but the 

global ones b - A x  k - r k can still be absolutely large with respect to, say, [[r0][ (if 

Ilrjll >> IIr0ll for some j < k): we should avoid large local errors and, of lesser 

importance, an accumulation of local errors. For an accurate residual we should 

have local errors that are globally absolutely small (say 1, < K~[lr0[I). 

We will suggest some modifications to existing algorithms that lead to locally 

relatively and globally absolutely accurate computations. 

We proceed in two steps: 

(a) In Section 3.2, we will explain how the approximations and the residuals can 

be updated by a process in which groups of updates are taken together so that 

the actual updating of the approximations takes place only every once in a while, 

such that the updated residuals reflect accurately the group-wise updated 

approximations. 

(b) For Bi-CG type algorithms, it is tempting to replace the recursively com- 

puted residuals by the actual residuals. This would introduce relatively large 

local errors in the recursions, but, as we will show, this can be avoided by 

replacing occasionally the recursively computed residuals by "true" residuals. 

We will identify the proper stages in the iteration process where this can be 

done safely (Section 3.4). 

Remark. We can not simply replace the recursively computed residuals by the 

"true" ones, that is, by those computed as b --Axk, because, if IIrkl[ << [Ir0[I, this 

approach would introduce relatively non-small errors (of order ~F [Ir011) and may 

decelerate the speed of convergence. 

3.2. Improving Accuracy by Group-Wise Updating 

As an alternative for the usual updating process, we may compute the x k and r~ 

as follows. 

1Even if  x is the  exact  so lu t ion  of  (1) t hen  the  res idua l  c o m p u t e d  f rom b - A x  may  be  = K~ltbll. Fo r  

ease  of p resen ta t ion ,  we  will  assume tha t  x 0 = O, r 0 = b. 
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We select some increasing sequence (~-(j)) in N, ~r(0) = 0, and, for k = ~-(j + 1), 

compute x k and r k by a cumulative or group-wise update: 

. _  ~ - ( j )  _ , ~  

x k = X~r(j ) + qj where qj .--.~k --~'~(j) +P,r(j)+ 1 + ... +Plc-1 

r k = r~(/) - A q j .  (8) 

The x! j) can be computed iteratively: "-(J) = 0 and x (j) =x~ j) +Pi if ~-(j) < i < "*~r(j) i + 1 -- 

�9 -(j + 1) (the intermediate approximations for x need not be computed). 

Then, for k = 7r(j + 1), 

I I b - A x k -  rkll-  ~O ~ IIAQ/I, 
j, ~r(j)<k 

where O < F (in relevant situations, often (9 = @(1), see Section 3.1). 

(9) 

If we take ~-(j) such that the accumulated values of qj are not too large in a 

global sense (say, such that IIAqjll- Kllr0[I), then we may expect an accurate 

residual. Of course, the intermediate P~(j)+i should not be too large either, 

since then the rounding errors in the addition process may accumulate and spoil 

the result qi" We will return to this in Section 3.3. 

However, for good convergence, qj should be locally small too (say, IIAQjl[ _< 
K lira(j+ 1)11). These requirements can be conflicting. For instance, if ~-(1) = k and 

Ilrkl[ << [[r0l[ then IIAqyll--IIr0 - rkll ~ IIr011 ~ KIIrklI. 

Neumaier [11] suggested a compromise for CGS (see also [3], Section 4), but it 

also seems to work well for other methods. He suggested to select the ~-(j) such 

that 

Ilr~(j+l)[I < IIr~(j)ll-< [Irkll if ~r(j) < k < ~-(j + 1), (10) 

that is, the approximation x,~(j) is updated by the accumulation qj of the local 

updates Pi as soon as the residual norm becomes smaller than r.(/). Then the qj 

can be expected to be small with respect to both the local and the global 

residuals. Similar effects can be accomplished with a sequence ~-(j) such that 

Ilr,~(j+ a)ll < IIr0[l and IIr,~(j+ x)_ 111 >-IIr011 (11) 

or any other strategy that updates by accumulated local updates when the norm 

of the residual r,~(/+ ~ decreases with respect to r 0 (for globally absolutely small 

errors) but also the norm of r~(j+l)_ a is not too small with respect to r,~(j) (for 

locally relatively small errors). 

3.3. Considerations on the Norm of  the Updates 

In this section we will try to give an impression of the size of Apk in some 

realistic cases. This gives a motivation to take measures to prevent cancellation 
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effects to spoil the updated solution. Of course, it is necessary that the 

intermediate p=(j)+~ be not too large either, for instance, if a W of these vectors 

is much larger than, say, IIr01]/~, then qj will be large and IIAqjll will be large. 

We will now argue that this is normally not the case. 

The residuals of Bi-CG, r BiCG, satisfy the following relation [6]: 

1 
Ilr~iC~ = ~7~llr0ll Is1 "s2" "'sel, 

[ci 

where c i and s t are the cosine and sine of the rotation that eliminates the 

bottom element in the tridiagonal Lanczos matrix at step k. Note, that when ri 

is significantly smaller than ri_ 1 then c~ = 1. The sines describe essentially the 

reducation of the residual. We also have from [6] that 

1 
Ilryi-cGII _< i--~/i ~/i + 1 IIr011. 

This means that, unless Ic~l is very small, r/Bi'co cannot be very large, and hence 

Ap~ cannot be very large (except when r, B~-cG. is very small w.r.t, r Bi-cG3i_l ,. The 

case where [c~l is very small is known as a near break-down situation and it 

should be cured appropriately, for instance with look-ahead techniques [5, 6]. 

In the Bi-CGSTAB algorithms Bi-CG is combined with low degree GMRES 

processes, which can only further decrease the norm of r i, so that, apart from 

near break-down situations, the Api cannot be very large either. 

CGS has a bad reputation for its high peaks in its residual plots, and we wonder 

how high these peaks may be. Suppose that the vj form a complete set of 

normalized eigenvectors of A, with associated eigenvalues Aj (we assume A not 

to be nearly defect). Write r o = Eyjvj. Then with 

r? i-CG =  ,(a)ro 

we have that r/BicG = Eq~(aj)Tjvj, and hence 

[qS~( Aj)'yj] < ]]r?i-CG [I. 

Therefore, [4~i(hj)[ _< Ilr/Bi'co[[/yj. 

The worst case will be yj = ~[[r0[[ (of course ~,j may be smaller in theory, but in 

the presence of rounding errors ours is a realistic worst case scenario). This 

leads to 

1 Ilrp 'C~ 

I+,(aj)l  _< ,r0 i_c+l[, 

so that for the residual components of CGS we have that 

1 (['rBiC~][) 2 

Iq~(hj)3,fl_< ~-7 [ir~-COll ~llrg *cGIl" 
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This means that 

IIr5~ iir0 i-cGll IIr0 i-~176 

In practice, i can not be small if we encounter a large value for qSi(Aj). This 

means that the factor [[r Bi-CG [l/][r0Bi-cGIl will not be very large typically. Never- 

theless, apart from near break-down situations ]lrCGSll can be of the order of 

[Ir0l]/~ at most. Hence, even in worst case situations we may expect that the 

group-wise update approach leaves just enough accuracy for accurate residuals. 

3.4. Maintaining the Speed of Convergence 

We have seen how to compute locally and globally accurate residuals for 

k = ~-(j) from approximations and intermediate "search directions". However, it 

is not clear whether we may simply replace the residuals as computed by the 

algorithm (the standard updated residuals) by the residuals computed in this new 

way (the group-wise updated residuals). Indeed, by doing so, we introduce local 

errors in the recurrence relations: for maintaining convergence, the standard 

updated and the group-wise updated residuals should be locally relatively close 

together. 

If we compute the residuals as r k = r,~(j)-Ax(k j) also for k > ~-(j) and k < 

~-(j + 1), and the ~ ( j )  have been chosen strategically, then the local errors can 

be relatively small. Unfortunately, this approach may require many additional 

MVs (see also Section 4.6). On the other hand the use of the recurrence 

relations for k ~ ~-(j) and of the relation (8) for k = ~-(j + 1) may introduce 

locally relatively large errors in the recurrence relations for the residuals (see 

Fig. 1). As a compromise we may compute r~ as the true local residual r i = r~(j) 

-Ax(~ j~ for a few strategically chosen values of k, between ~r(j) and zr(j + 1), 

say, k = k0, . . . ,  kin. The problem of how to choose these values is similar to the 

one we had before: using the recurrences, we update x k and r k (in exact 

arithmetic) as xk+ 1 = x k + p k ,  rk+ 1 = r k + A P k .  But now, rki is the true local 

residual and the recursively computed "rki+" should be relatively close to the 

"exact" one r,~(j~-Ax(~+l (the true local residual): "r~+i" is computed by the 

recurrence in a few steps from the "exact" rk. 

Now, there are two sources of errors that are of interest: (i) as argued before, 

the updating steps can introduce relatively non-small errors and, (ii) the true 

local residual rki+~ that will replace the recursively computed residual can have a 

relatively non-smaU error. As we know, for locally relatively small errors (Sub. 

(i)), the size of the updates Pk, for k = k  i . . . . .  ki+ 1 - 1 ,  should be relatively 

non-large with respect to [Irk~.lll. For a good true local residual rk~+i (Sub. (ii)), 

IIr~(j~ll should be non-large as compared with Ilrki+~ll. Hence, the sizes Ilrkll, for 

k = k  i . . . . .  ki+l, and IIr~(J should be non-large as compared with Ilrki+lll. In 

particular, this means that it may harm to use true local residuals for k > 
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1, with residuals r k computed in different ways 

maxj  7r(j). W e  expect to mainta in  the speed of convergence,  for  instance, by 

comput ing  and using the t rue  local residual r~ = r,~(j) --AX(k j) for  those 

k ~ ( T r ( j ) ,  ~r( j  + 1)] for which IIr0[I- llrkll < Ilrk_l[[ (12) 

if the 7r(j)  are such that  (11) holds. 

Algor i thm 1. The  B i -CGSTAB algori thm 

C h o o s e  x o a n d  F o. Set x = x o. 

C o m p u t e  b = b - A x  o 

y = O ,  

u = O ~  

While 

e n d  w h i l e  

x = x + y  

r = b  

[Ir[I > tol d o  

p = (r, Fo), 

u = r -  3 u ,  

~ =  (C, r0 ), 

y = y +  OeU 

r = r - -  ~c,  

~o = (r, s ) / ( s ,  s )  

U = U - -  o ) e  

y = y +  ~or 

r = r - -  r 

3 = ( -  p ) / ( o ~ )  
e : A u  

a = p/o-  

S = A r  



Reliable Updated Residuals in Hybrid Bi-CG Methods 151 

3.5. Towards Smooth  Con vergence 

The updating condition in (10) leads quite naturally to a smooth convergence 

history, since only the best results [Ir~<j>ll have to be plotted (the intermediate 

results now no longer affect the solution with accumulated rounding errors and 

they are not very relevant anymore) as well as to more accurate residuals. Other  

residual smoothing strategies (as in [21]), based on norm-minimization of convex 

combinations of residuals, do not always lead to more accurate residuals, 

because the intermediate updates may already have polluted the process. 

However, these strategies do not require additional MVs and a comparison 

would only be fair if the strategies in (10) and (11) can be performed efficiently 

too. We will address this issue in Section 4.6. 

4. Efficient Methods for Improving the Accuracy 

We will illustrate our strategies and conditions for Bi-CGSTAB (cf. Algorithm 

1), but they can be applied to other Bi-CG based methods as well (cf. Section 2; 

see also [8]). As a matter of fact, they usually are more helpful for other 

methods, since Bi-CGSTAB produces most often already rather accurate residu- 

als by itself. 

Algorithm 2. A simple update strategy 

set ' c o m p u t e _ r e s '  and 'flying_restart' 

i f  ' compute_res' = ' true' 

r = b - A y ,  

if 'flying_restart' = ' t rue '  

x = x + y ,  y = 0 ,  b = r  

end if 

end if 

' compute_res' = 'flying_restart' = 'false' 

4.1. Shifting the Problem 

In Algorithm 1, we actually give the Bi-CGSTAB algorithm for a shifted 

problem, allowing us to assume that 0 is the initial guess: if x k are the 

Bi-CGSTAB approximations with initial approximation x 0 for the original 

problem "Ax = b", and y~ are the Bi-CGSTAB approximations with initial 

approximation Y0 = 0 for the shifted problem A y  = b := b - A x  0, then 

x = x o + y ,  xk = X0 + Yk and r~ = b - A x t  = b - A y  k. 

The form in Algorithm 1 simplifies the explanation of our approach. In the first 

two lines of Algorithm 1 we shift the problem, in the third line we "select" our 

initial approximation Y0 = 0 and "compute" the initial residual r 0 = b. In the last 

line, we "undo"  the shift. We skipped the indices, since the new values are 

allowed to overwrite the old ones. 
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4. 2. Flying Restarts 

If a restart strategy is used, one also has to deal with group-wise updated 

approximations (cf. the last line in Algorithm 1). The convergence of the 

methods of interest tends to accelerate during the iteration (super-linear conver- 

gence). This speed-up may be lost when restarting in the obvious way (i.e., by 

resetting the vector u and the scalars w and o- to trivial values). The vectors r, u 

and the scalars o), o- determine the speed of convergence (of r towards 0). At 

least in exact arithmetic, these quantities do not change if, by restart, the 

auxiliary quantities u, oJ and o- are not reset (or, equivalently, if the fourth line 

is skipped after restart). Therefore, after such a "flying restart", the same 

accelerated speed may be expected with continued acceleration as before the 

restart. Our strategy of group-wise updated approximations and residuals, as 

discussed in Section 3.2, can be viewed as a strategy for flying restarts. 

4.3. The Basic Strategy 

Now, our updating strategy is characterized by the following modification in 

Algorithm 1: 

. At the end of the iteration (just before the 'end while') we update x and 

recompute r as in Algorithm 2, where 'compute_res' and 'flying_restart' are 

Boolean valued functions that depend on the norm of the residuals computed 

so far. 'compute_res' has to be 'true' when 'flying.restart' is 'true'. These 

conditions will be discussed in Section 4.4. 

With " x = x + y "  the previous shift is undone, with "b = r" (=  b - A y )  the 

problem is shifted and "y = 0" marks the restart. Since the auxiliary quantities 

u, o) and o- are not reset, the new start is "flying". In exact arithmetic 

b - A y  = b - A x ,  but in finite precision arithmetic the differences can be very 

significant (if lib]] << Hbl[; el. Section 3.2). 

Eventually we are interested in the approximation x. Shifting the problem (and, 

hence, our modification in Algorithm 2) requires two additional vector arrays, 

and, besides the additonal MV if 'compute_res' is 'true', it also requires three 

additional vector updates whenever 'flying.restart' is 'true'. Note that each flying 

restart requires the computation of a true local residual. 

If the cumulative updating or flying restart has been performed j times ('flying_ 
restart' has been 'true' j times) then, the y, r, x and b are related to the 

quantities in Section 3 as follows: 

X = X,rr(j  ) and b = b - A x  = r,~(j), 

and after k iteration steps: 

k>~r(j),y=x(kJ)+~=p,~(j)+...+pk, and r = r ~ + l ,  
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where Pi =Xi+l--Xi(=Yi+I--Y i) is the difference between two consecutive 

regular Bi-CGSTAB approximations x i (or Yi, in the ith step). 

It would not be wise to update as in Algorithm 2 in each iteration (i.e., 

'flying_restart' = 'compute_res' = 'true'), since, as we have argued in Section 3, this 

does not improve the accuracy of the computed residual and it also requires an 

additional (expensive) MV in each step. 

Our basic strategy with 'flying_restart' =' t rue '  at steps ~-(j) as defined by 

condition (10) or (11) helps to improve the accuracy, while, in combination with 

a permanent condition 'compute_res' =' t rue '  or with 'compute_res' =' t rue '  in 

steps k as defined by (12), it may be expected to maintain the speed of 

convergence (although this may still be expensive). 

We may try to limit the additional computational costs by a restrictive number 

of computations of true local residuals (see Section 3.4 and Section 4.5) or by a 

reformulation of the algorithm in order to gain one MV whenever a true local 

residual is desirable (see Section 4.6). However, in order to restrict the number 

of true local residuals we also have to restrict the number of flying restarts (as 

explained in Section 3.4). 

4. 4. Conditions for Flying Restarts 

In the restart conditions below, b is the residual after the latest restart and we 

take the maximum of the norm of the residuals since the latest restart. All 

restarts are assumed to be "flying". 

In the notation of this section and Section 4.3, condition (10) leads to 

if Ilrl[ < Ilbll then 'flying_restart' = 'true', (13) 

and condition (11) leads to 

if Ilrll < Ilbll & I[bll_ maxllrj[[ then 'flying_restart'= 'true'. (14) 

Condition (14) will limit the number of restarts considerably as compared with 

condition (13), but this may still require too many additional MVs if the 

residuals converge very irregularly. 

Therefore, we propose to perform the restart only when the norm of the 

residual has decreased significantly since the latest restart 

if Ilrll < ~llbl[, with, say 6 = 10 -z then 'flying_restart'= 'true', (15) 

Algorithm 3. MV-saving strategy for CGS 

set " c o m p u t e _ r e s '  and 'flying_restart' 
if 'compute_res' is 'false' 

r ~ r - A p  
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else 

r = b - A y ,  

if 'flying.restart' ' true' 

x = x + y ,  y=O,  b = r  

end i f  

end i f  

' compute.res' = 'flying.restart' = 'false' 

or when the norm of one of the residuals since the last restart has been larger 

than Ilb][ and when there has been a significant decrease since then, 

if Ilrll < ~llb]l and Ilbll-< maxllrjll then 'flying_restart' = 'true'. 

(16) 

4.5. Conditions on When to Compute the True Residual 

One may compute the true local residual r = b - A y  in each step (as Neumaier 

[11] has suggested for CGS): 

'comput_res' is always 'true'. (17) 

However, in combination with our update strategy in Algorithm 2, this condition 

will increase the number of MVs by 50%. A way out is to impose the following 

condition (in combination with (16)), which may be true only a few times during 

a run and it still maintains local accurate computations: 

[ tlrll,< ~ maxllr/l,& llbl] < maxllr/I } 

if ~ or flying_restart = 'true' then 'compute_res' = 'true', (18) 

where the maximum is taken over all residual norms since the previous compu- 

tation of a true local residual. This condition slightly relaxes (12), just as (16) 

relaxes (14). 

The function "compute_res', as defined by (18), depends on Ilrl[, but we may not 

have computed (approximately) r so far (as will be the case in our strategy in 

Section 4.6, Algorithm 3). In our experiments, we have used the norm of the 

previous residual. We may expect that this will work fairly well unless there is a 

huge difference between the norms of two consecutive residuals. 

4.6. Sa~ng Matrix-Vector Multiplications 

In a cumulative update version of CGS, we may simply replace the line 

" r  = r - A p " ,  where the residual r is updated by some linear combination p of 

two search directions, by the lines in Algorithm 3. This strategy is very efficient 

even when 'compute_res' is always 'true': the MV 'Ap' is replaced by another 

MV 'Ay'. 
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Neumaier  [11] suggested the strategy in Algorithm 3 for CGS, with ' c o m p u t e . r e s '  

always ' true' ,  and imposing (13) on ' f lying_restart ' .  

A similar MV-saving modification can be incorporated in other Bi-CG based 

type algorithms, but one has to proceed with a little more care. For  instance, if 

we would like to replace the line "rk+ 1 = r  k - - a k A u ~ "  in Bi-CG (see, (2)) by a 

"conditional . . . .  rk+ 1 = b - A y " ,  then we should realize that we need A u  k any- 

way, since the usual formulation of Bi-CG requires A u  k for the update of y via 

a k and o h. However, note that o-~ = ( A u k ,  F k)  = ( u k ,  Arfik) so that o-~ can also 

be computed from u k and Arfik . This last vector is availabe in Bi-CG since it is 

required for the update of the shadow residual F k. 

In Bi-CGSTAB, two lines are candidate for replacement by a conditional 

update. Since we need s for o) (see Algorithm 1), since ~o is required for 

updating y, the line "'r = r - o~s" does not seem to be accessible for modifica- 

tions. As for the other line " r  = r - ae" ,  we have to figure out how to compute 

~r without e. To this end we note that because o-= (u, Arf0) we need only u and 

an additional vector g :=Arf0 that has to be stored z. This vector needs to be 

computed only once in the initialization phase of the process.Once we have r, as 

r = rn~ w = b - A y  and y -- 0, b = r~w, we can compute e at relatively low costs as 

e = (rnl d - r~ew)/a. So, in addition to our earlier modifications in the initializa- 

tion part  and at the end, we propose to add ~ =ArF0 to the second line and to 

replace the statements "c = A f t ' , . . . ,  " r  = r - a e "  in the Bi-CGSTAB algorithm 

(In Algorithm 2) by the lines in Algorithm 4. 

Algor i thm 4. MV-saving strategy for BiCGstab(l)  

o =  (u ,~ ) ,  a = p / o  
y = y + a u  

set  ' c o m p u t e _ r e s  and ' f ly ing.restart '  

if  ' compute_res '  = 'false' 

c = A n ,  r = r - ozc, 

else 

= b - A y  

c = (r - ~ ) / a ,  r = 

if  ' f lying_restart '  = ' t rue '  

x = x + y ,  y = 0 ,  b = r  

end if  

end if 

' compute_res '  = ' f lying_restart '  = 'false' 

BiCGstab(l)  can be implemented in several ways, as explained in [18]. The 

strategy of conditional updating, as proposed above for Bi-CGSTAB, can be 

2 
p can be computed from r and g too. Therefore, this approach does not require additional vector 
storage. 
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used for any of these implementations (perform the conditional updating and 

adapted computation of Au for the first residual and the first Au that has to be 

computed in the Bi-CG part of the BiCGstab(l) sweep). 

It works well for the orthonormal basis approach (see [18], Section 5) in the 

sense that it does not seem to affect the speed of convergence, while it improves 

the accuracy of the computed residual. For this version we even do not have to 

compute and store an additional vector g =ATf0, since we can use one of the 

available l initial shadow residuals 70,. . . ,F i_ 1 (take g =  rl). 

For the power basis variant (see [18], Section 4 and [16]), our modification does 

not lead to any improvement (see the left figure in Fig. 5 in Section 5.1). This 

can be understood as follows. While, in the orthonormal basis variant, each 

ul=AOk(A)uk+j, with k = m l  and j = 0  . . . . .  l - 1 ,  is computed by explicitly 

multiplying u = Okuk+j by A, it is computed recursively in the power basis 

variant as: 

(U = Ok( A)Uk_l, r = ~bk( A)rk) 

u = u - - / 3 u ,  u 1 =Au, 

f o r j  = 1 , . . . , l -  1 

u = r - / 3 u ,  

u 1 = r 1 - ] 3 u l ,  

where the r =  tp~(A)r~+ 2 and r 1 =Atpk(A)rk+ j are computed simultaneously, 

using similar recursive relations. Only the first u l ( = A  $k(A)uk) and the first r 1 

(= tPk(A)rk+ 1) are computed by explicit matrix multiplication. This computatio- 

nal scheme decouples the updating of the approximation and the residual: y is 

updated by a u  and r by a u  1 rather than by aAu.  Replacing the first u 1 by 

(rol a - r n e w ) / a  ~ shifts the accumulated inaccuracy in Ok(A)r k to ~b~(A)rk+ 2. 

Because, the new u 1 contains the accumulated inaccuracies and this u 1 and Au 

may differ significantly. Consequently, the next u 1 and A times the next u differ 

significantly, resulting in an inaccurate next residual. Since in this version, old 

inaccuracies are shifted (to the search directions) rather than diminished, a 

further degradation in the speed of convergence may be expected. 

5.  N u m e r i c a l  E x p e r i m e n t s  

5.1. The Effect of Updating Strategies and Conditions 

In this section we illustrate by numerical experiments the effects of our update 

strategies and conditions. We have tested them on a number of problems from 

the Harwell-Boeing collection (matrices A plus a right hand side vector b), and 

from example sections in [4,10,14]. Since all our experiments led to essentially 

similar conclusions, we will only show the results for one problem: Sherman4 

from the Harwell-Boeing collection. 
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Of course, for some examples and some methods, the improvements are more 

impressive than for others. How much the improvement may be depends on how 

accurate the method is itself, without modification. Since, in this study, we are 

interested in inexpensive modifications to existing methods, we did not attempt 

to identify the best iterative method nor did we try to find a good precondi- 

tioner. In fact, we have not used preconditioning in these experiments. We did 

our experiments in MATLAB with ~ = 2.2 10 -16. 

The figures show the convergence histories of the true residuals on a logarithmic 

scale (that is, they show the graphs of logl0llb-Axl[)  as a function of the 

number o f  MVs (2 MVs for one CGS sweep; none of the additional MVs for 

computing true residuals have been taken into account). As an initial approxi- 

mation we took x 0 = 0, and for the (initial) shadow residual F 0 in the BiCG-type 

methods we simply took the initial residual F 0 = r 0 = b - A x .  

Figures 2 -4  illustrate the effect of different updating conditions. We present the 

results only for CGS. Since CGS amplifies the residuals in the initial phase of 

the process and exhibits an irregular convergence behavior (as is quite typical 

for CGS) it is well suited for demonstrating the characteristics of the updating 

conditions, but our conclusions hold for other methods as well (although the 

effects may be less pronounced). We return to this issue when discussing Fig. 

5 -6  below. 
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Figure 2. Convergence history of the true residuals of standard CGS and of CGS versions with true 
local residuals and various conditions for flying restarts 
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The dotted curve ('. .... ') in Fig. 2 shows the convergence history of the 

unmodified CGS process. Due to the large initial residuals (of ~ 10 +9) there is 

a loss of 7 digits ( [ ]b -Axk[ [~  10 -7 instead of ~ ~[[b[] ~ 10-14) .  The other 

curves show the convergence history of CGS modified as in Algorithm 3 with 

'compute_res' is ' true'  in each step. For the condition for flying restart ('flying.re- 
start' is ' true') we took (13) (solid curve ' '; Neumaier approach), (15) 

(dash-dot curve '- .... ') and (16) (dashed curve '- . . . .  '). Apparently, all restart 

conditions lead to the same fast convergence. Note that in the modifications that 

we discuss here (where r = b - A x )  errors in x may affect the speed of conver- 

gence, in contrast to the situation for the unmodified CGS algorithm. All the 

updating conditions also lead to similar accurate residuals (lib -Axk]I  ~ 10-12). 

However, there is some difference in efficiency: the number of flying restarts 

(that is, additional vector updates) is 29, 5, 1, respectively. 

In Figs. 3 and 4, we report on the effects of different conditions for the 

replacement of the recursively computed residual by true local residuals. 

Sherman4 

50 tOO 150 200 250 300 350 400 
CGS 

Figure 3. CGS versions with a few flying restarts and various conditions for true local residuals with 
simple and with the MV-saving strategy 

The dotted curve ('- .... ') corresponds with Neumaier's approach: the MV saving 

modification in Algorithm 3 with conditions "'compute_res' = ' true' in each step" 

and (13). This curve is given here as a reference. 

In Fig. 3 we have used the MV-saving strategy in Algorithm 3 (the solid curve ' 

- - 9  and the simple strategy of Algorithm 2 (the dash-dot curve '- .... '). In both 

cases we have combined this strategy with the "most inexpensive" conditions 

(16) and (18). All shown approaches perform equally well as far as it concerns 

speed of convergence and accuracy of the residuals. However, the number of 
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Figure 4. The CGS version with the MV saving strategy using a few flying restarts without any 
intermediate true local residual 
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Figure 5. Flying restart with simple and with the MV-saving strategy for the power bases version of 

BiCGstab(4) (left) and BiCGstab(6) (right) 

additional residual computations r = b - A x  dropped dramatically from 364 (if 

'compute_res' is always 'true') to 7 (if condition (18) holds) for both strategies. 

For the MV-saving strategy in Algorithm 3 there is no gain in efficiency, but for 

the simple strategy of Algorithm 2 the gain is considerable. Since we can apply 

this simple strategy also for other iterative methods, our conclusion is relevant: 

at the cost of a few (7 in this case) additional MVs, we may improve the 

accuracy of the residual considerably. 
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Figure 6. Flying restart with the simple and with the MV-saving strategy for the orthogonal bases 
version of BiCGstab(6) 

In Fig. 4, we have applied the MV-saving strategy and we performed flying 

restarts under the condition (16). We have allowed 'cornpute_res' to be 'true' if 

and only if 'flying_restart' is 'true' (solid curve ' '). Locally non-small (in a 

relative sense) errors may be introduced, through the new true local residuals, in 

the recursions, and the speed of convergence may be affected (see the discussion 

on (ii) in Section 3.4). Indeed, as we can see from the figure, there is some 

degradation in the speed of convergence. 

The convergence histories of BiCGstab(/) for Sherman4 do not show large 

residuals (see Figs. 5-6). However, especially for the power basis variant there 

may be large intermediate residuals (cf. [18], Section 3.3), and they are not 

shown in the figures. Computation of the norm of these residuals would have 

required one additional inner product per 2 MV. Therefore, it is normally not 

natural to present these intermediate norms. Nevertheless, these large residuals 

affect the accuracy and our updating strategies seem to work well even without 

computing the intermediate norms. 

As argued in Section 4.6, the power basis variant of BiCGstab(1) is not suitable 

for the MV-saving strategy in Algorithm 4 (the solid curves ' ' in Fig. 5), but 

the simple strategy of Algorithm 2 (the dash-dot curves '- .... ' in Fig. 5) works 

well. In both figures in Fig. 5 the dotted curve ('. .... ') represents the conver- 

gence history of the unmodified BiCGstab(1) algorithm�9 We used the "most 

inexpensive" updating conditions (16) and (18). We only had to compute the 
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true local residual r = b - A x  once and we had to perform a flying restart only 

once for both strategies. 

The additional costs, even for the simple strategy, are insignificant (1 MV and 1 

vector update) but the gain in accuracy is considerable. 

BiCGstab(/), in the orthogonal basis variant, is rather accurate without any 

modification (see [18]), but still we may gain a few digits almost for free by 

modifying the methods. Figure 6 shows the convergence history of BiCGstab(6) 

without modification (the dotted curve '- .... ') with the MV-saving strategy in 

Algorithm 4 and expensive conditions (13) and (17) (the solid curve '  '), with 

the MV-saving strategy and 'inexpensive' conditions (16) and (18) (the dash-dot 

curve '- ..... '), and with the simple strategy and cheap conditions (the dashed 

curve '- . . . .  '; here, the dash-dot curve '- .... ' and the dashed curve '- . . . .  ' coincide). 

The 'inexpensive' conditions were fulfilled only once during the whole run. 

5.2. A Stopping Criterion 

Figure 7 shows the convergence history of the true and computed residuals of 

CGS (unmodified), applied to the Sherman4 problem: the solid curve (' ') for 

the true residual, and the circles ( 'o ')  for the computed residual. The dotted 

curve ('...') represents the values of 2~Ej<kllrjll as a function of k (=  0.5# MV) 

on a logarithmic scale. Criterion (7) (with, say, tol < 10 -14) would have termi- 
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Figure 7. Estimating the inaccuracy in the computed residual of standard CGS 
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nated the iteration at about 250 MVs. As the figure shows, the CGS algorithm 

could not improve the approximation after that point. 

6. Concluding Remarks 

The combination of updating conditions (13) and (17) together with the updating 

strategy in Algorithm 3 of Neumaier is very attractive for CGS and Bi-CG. It 

can also successfully be incorporated in Bi-CGSTAB and in the orthonormal 

basis variant of BiCGstab(l). 

For Bi-CGSTAB this would require a multiplication by the transpose of A, 

which might be a serious disadvantage. Since the BiCGstab(l) methods converge 

rather smoothly (in contrast to CGS and Bi-CG), the combination of updating 

conditions (as in (16) and (18)) may be expected to be fulfilled only a few times 

in one convergence history. Therefore, a simple updating strategy as in Algo- 

rithm 2, is attractive as well. The power basis variant of BiCGstab(/) may have 

large intermediate residuals and condition (15) in combination with (18) may do 

better in this case. 

Of course, there is no need for special update schemes if the BiCGstab(/) 

methods produce accurate residuals (as is often the case). 
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