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Abstract

Reliably erasing data from storage media (sanitizing the

media) is a critical component of secure data manage-

ment. While sanitizing entire disks and individual files is

well-understood for hard drives, flash-based solid state

disks have a very different internal architecture, so it

is unclear whether hard drive techniques will work for

SSDs as well.

We empirically evaluate the effectiveness of hard

drive-oriented techniques and of the SSDs’ built-in san-

itization commands by extracting raw data from the

SSD’s flash chips after applying these techniques and

commands. Our results lead to three conclusions:

First, built-in commands are effective, but manufactur-

ers sometimes implement them incorrectly. Second,

overwriting the entire visible address space of an SSD

twice is usually, but not always, sufficient to sanitize the

drive. Third, none of the existing hard drive-oriented

techniques for individual file sanitization are effective on

SSDs.

This third conclusion leads us to develop flash trans-

lation layer extensions that exploit the details of flash

memory’s behavior to efficiently support file sanitization.

Overall, we find that reliable SSD sanitization requires

built-in, verifiable sanitize operations.

1 Introduction

As users, corporations, and government agencies store

more data in digital media, managing that data and access

to it becomes increasingly important. Reliably remov-

ing data from persistent storage is an essential aspect of

this management process, and several techniques that re-

liably delete data from hard disks are available as built-in

ATA or SCSI commands, software tools, and government

standards.

These techniques provide effective means of sanitiz-

ing hard disk drives (HDDs) – either individual files they

store or the drive in their entirety. Software methods typ-

ically involve overwriting all or part of the drive multiple

times with patterns specifically designed to obscure any

remnant data. The ATA and SCSI command sets include

“secure erase” commands that should sanitize an entire

disk. Physical destruction and degaussing are also effec-

tive.

Flash-based solid-state drives (SSDs) differ from hard

drives in both the technology they use to store data (flash

chips vs. magnetic disks) and the algorithms they use

to manage and access that data. SSDs maintain a layer

of indirection between the logical block addresses that

computer systems use to access data and the raw flash

addresses that identify physical storage. The layer of in-

direction enhances SSD performance and reliability by

hiding flash memory’s idiosyncratic interface and man-

aging its limited lifetime, but it can also produce copies

of the data that are invisible to the user but that a sophis-

ticated attacker can recover.

The differences between SSDs and hard drives make it

uncertain whether techniques and commands developed

for hard drives willl be effective on SSDs. We have de-

veloped a procedure to determine whether a sanitization

procedure is effective on an SSDs: We write a structured

data pattern to the drive, apply the sanitization technique,

dismantle the drive, and extract the raw data directly

from the flash chips using a custom flash testing system.

We tested ATA commands for sanitizing an entire

SSD, software techniques to do the same, and software

techniques for sanitizing individual files. We find that

while most implementations of the ATA commands are

correct, others contain serious bugs that can, in some

cases, result in all the data remaining intact on the drive.

Our data shows software-based full-disk techniques are

usually, but not always, effective, and we have found evi-

dence that the data pattern used may impact the effective-

ness of overwriting. Single-file sanitization techniques,

however, consistently fail to remove data from the SSD.

Enabling single-file sanitization requires changes to

the flash translation layer that manages the mapping be-

tween logical and physical addresses. We have devel-



oped three mechanisms to support single-file sanitization

and implemented them in a simulated SSD. The mecha-

nisms rely on a detailed understanding of flash memory’s

behavior beyond what datasheets typically supply. The

techniques can either sacrifice a small amount of perfor-

mance for continuous sanitization or they can preserve

common case performance and support sanitization on

demand.

We conclude that the complexity of SSDs relative to

hard drives requires that they provide built-in sanitiza-

tion commands. Our tests show that since manufacturers

do not always implement these commands correctly, the

commands should be verifiable as well. Current and pro-

posed ATA and SCSI standards provide no mechanism

for verification and the current trend toward encrypting

SSDs makes verification even harder.

The remainder of this paper is organized as follows:

Section 2 describes the sanitization problem in detail.

Section 3 presents our verification methodology and re-

sults for existing hard disk-oriented techniques. Sec-

tion 4 describes our FTL extensions to support single-file

sanitization, and Section 5 presents our conclusions.

2 Sanitizing SSDs

The ability to reliably erase data from a storage device

is critical to maintaining the security of that data. This

paper identifies and develops effective methods for eras-

ing data from solid-state drives (SSDs). Before we can

address these goals, however, we must understand what

it means to sanitize storage. This section establishes

that definition while briefly describing techniques used

to erase hard drives. Then, it explains why those tech-

niques may not apply to SSDs.

2.1 Defining “sanitized”

In this work, we use the term “sanitize” to describe the

process of erasing all or part of a storage device so that

the data it contained is difficult or impossible to recover.

Below we describe five different levels of sanitization

storage can undergo. We will use these terms to catego-

rize and evaluate the sanitization techniques in Sections 3

and 4.

The first level is logical sanitization. Data in log-

ically sanitized storage is not recoverable via standard

hardware interfaces such as standard ATA or SCSI com-

mands. Users can logically sanitize an entire hard drive

or an individual file by overwriting all or part of the

drive, respectively. Logical sanitization corresponds

to “clearing” as defined in NIST 800-88 [25], one of

several documents from governments around the world

[11, 26, 9, 13, 17, 10] that provide guidance for data de-

struction.

The next level is digital sanitization. It is not possible

to recover data from digitally sanitized storage via any

digital means, including undocumented drive commands

or subversion of the device’s controller or firmware. On

disks, overwriting and then deleting a file suffices for

both logical and digital sanitization with the caveat that

overwriting may not digitally sanitize bad blocks that the

drive has retired from use. As we shall see, the complex-

ity of SSDs makes digitally sanitizing them more com-

plicated.

The next level of sanitization is analog sanitization.

Analog sanitization degrades the analog signal that en-

codes the data so that reconstructing the signal is effec-

tively impossible even with the most advanced sensing

equipment and expertise. NIST 800-88 refers to analog

sanitization as “purging.”

An alternative approach to overwriting or otherwise

obliterating bits is to cryptographically sanitize storage.

Here, the drive uses a cryptographic key to encrypt and

decrypt incoming and outgoing data. To sanitize the

drive, the user issues a command to sanitize the storage

that holds the key. The effectiveness of cryptographic

sanitization relies on the security of the encryption sys-

tem used (e.g., AES [24]), and upon the designer’s abil-

ity to eliminate “side channel” attacks that might allow

an adversary to extract the key or otherwise bypass the

encryption.

The correct choice of sanitization level for a partic-

ular application depends on the sensitivity of the data

and the means and expertise of the expected adversary.

Many government standards [11, 26, 9, 13, 17, 10] and

secure erase software programs use multiple overwrites

to erase data on hard drives. As a result many individuals

and companies rely on software-based overwrite tech-

niques for disposing of data. To our knowledge (based

on working closely with several government agencies),

no one has ever publicly demonstrated bulk recovery of

data from an HDD after such erasure, so this confidence

is probably well-placed.1.

2.2 SSD challenges

The internals of an SSD differ in almost every respect

from a hard drive, so assuming that the erasure tech-

niques that work for hard drives will also work for SSDs

is dangerous.

SSDs use flash memory to store data. Flash memory is

divided into pages and blocks. Program operations apply

to pages and can only change 1s to 0s. Erase operations

apply to blocks and set all the bits in a block to 1. As a

result, in-place update is not possible. There are typically

64-256 pages in a block (see Table 5).

A flash translation layer (FTL) [15] manages the map-

ping between logical block addresses (LBAs) that are

visible via the ATA or SCSI interface and physical pages

1Of course, there may have been non-public demonstration.



of flash memory. Because of the mismatch in granular-

ity between erase operations and program operations in

flash, in-place update of the sector at an LBA is not pos-

sible.

Instead, to modify a sector, the FTL will write the new

contents for the sector to another location and update the

map so that the new data appears at the target LBA. As a

result, the old version of the data remains in digital form

in the flash memory. We refer to these “left over” data as

digital remnants.

Since in-place updates are not possible in SSDs, the

overwrite-based erasure techniques that work well for

hard drives may not work properly for SSDs. Those

techniques assume that overwriting a portion of the LBA

space results in overwriting the same physical media that

stored the original data. Overwriting data on an SSD re-

sults in logical sanitization (i.e., the data is not retrievable

via the SATA or SCSI interface) but not digital sanitiza-

tion.

Analog sanitization is more complex for SSDs than for

hard drives as well. Gutmann [20, 19] examines the prob-

lem of data remnants in flash, DRAM, SRAM, and EEP-

ROM, and recently, so-called “cold boot” attacks [21] re-

covered data from powered-down DRAM devices. The

analysis in these papers suggests that verifying analog

sanitization in memories is challenging because there are

many mechanisms that can imprint remnant data on the

devices.

The simplest of these is that the voltage level on an

erased flash cell’s floating gate may vary depending on

the value it held before the erase command. Multi-level

cell devices (MLC), which store more than one bit per

floating gate, already provide stringent control the volt-

age in an erased cell, and our conversations with industry

[1] suggest that a single erasure may be sufficient. For

devices that store a single bit per cell (SLC) a single era-

sure may not suffice. We do not address analog erasure

further in this work.

The quantity of digital remnant data in an SSD can be

quite large. The SSDs we tested contain between 6 and

25% more physical flash storage than they advertise as

their logical capacity. Figure 1 demonstrates the exis-

tence of the remnants in an SSD. We created 1000 small

files on an SSD, dismantled the drive, and searched for

the files’ contents. The SSD contained up to 16 stale

copies of some of the files. The FTL created the copies

during garbage collection and out-of-place updates.

Complicating matters further, many drives encrypt

data and some appear to compress data as well to im-

prove write performance: one of our drives rumored to

use compression is 25% faster for writes of highly com-

pressible data than incompressible data. This adds an

additional level of complexity not present in hard drives.

Unless the drive is encrypted, recovering remnant data
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Figure 1: Multiple copies This graph shows The FTL

duplicating files up to 16 times. The graph exhibits a

spiking pattern which is probably due to the page-level

management by the FTL.

Figure 2: Ming the Merciless Our custom FPGA-based

flash testing hardware provides direct access to flash

chips without interference from an FTL.

from the flash is not difficult. Figure 2 shows the FPGA-

based hardware we built to extract remnants. It cost

$1000 to build, but a simpler, microcontroller-based ver-

sion would cost as little as $200, and would require only

a moderate amount of technical skill to construct.

These differences between hard drives and SSDs po-

tentially lead to a dangerous disconnect between user

expectations and the drive’s actual behavior: An SSD’s

owner might apply a hard drive-centric sanitization tech-

nique under the misguided belief that it will render the

data essentially irrecoverable. In truth, data may remain

on the drive and require only moderate sophistication to

extract. The next section quantifies this risk by applying

commonly-used hard drive-oriented techniques to SSDs

and attempting to recover the “deleted” data.



“Magic” Header (8 bytes)

 Generation # (8 bytes)

 LBA (8 bytes)

 Iteration # (8 bytes)

 Bit Pattern (44 bytes)

 Checksum (4 bytes)

 GUID (8 bytes)

Fingerprint 0 (88 bytes)

Fingerprint 1 (88 bytes)

Fingerprint 2 (88 bytes)

Fingerprint 3 (88 bytes)

 Padding (72 bytes)

Fingerprint 4 (88 bytes)

512-Byte ATA Sector
88-byte fingerprint

Figure 3: Fingerprint structure The easily-identified

fingerprint simplifies the task of identifying and recon-

structing remnant data.

3 Existing techniques

This section describes our procedure for testing sanitiza-

tion techniques and then uses it to determine how well

hard drive sanitization techniques work for SSDs. We

consider both sanitizing an entire drive at once and se-

lectively sanitizing individual files. Then we briefly dis-

cuss our findings in relation to government standards for

sanitizing flash media.

3.1 Validation methodology

Our method for verifying digital sanitization operations

uses the lowest-level digital interface to the data in an

SSD: the pins of the individual flash chips.

To verify a sanitization operation, we write an iden-

tifiable data pattern called a fingerprint (Figure 3) to the

SSD and then apply the sanitization technique under test.

The fingerprint makes it easy to identify remnant digi-

tal data on the flash chips. It includes a sequence num-

ber that is unique across all fingerprints, byte patterns to

help in identifying and reassembling fingerprints, and a

checksum. It also includes an identifier that we use to

identify different sets of fingerprints. For instance, all

the fingerprints written as part of one overwrite pass or

to a particular file will have the same identifier. Each

fingerprint is 88 bytes long and repeats fives times in a

512-byte ATA sector.

Once we have applied the fingerprint and sanitized the

drive, we dismantle it. We use the flash testing system

in Figure 2 to extract raw data from its flash chips. The

testing system uses an FPGA running a Linux software

stack to provide direct access to the flash chips.

Finally, we assemble the fingerprints and analyze them

to determine if the sanitization was successful. SSDs

vary in how they spread and store data across flash chips:

some interleave bytes between chips (e.g., odd bytes on

one chip and even bytes on another) and others invert

data before writing. The fingerprint’s regularity makes

it easy to identify and reassemble them, despite these

complications. Counting the number of fingerprints that

remain and categorizing them by their IDs allows us to

SSD Ctlr # SECURITY SEC. ERASE

# & Type ERASE UNIT UNIT ENH

A 1-MLC Not Supported Not Supported

B 2-SLC Failed∗ Not Supported

C 1-MLC Failed† Not Supported

D 3-MLC Failed† Not Supported

E 4-MLC Encrypted‡ Encrypted‡

F 5-MLC Success Success

G 6-MLC Success Success

H 7-MLC Success Success

I 8-MLC Success Success

J⋆ 9-TLC Not Supported Not Supported

K⋆ 10-MLC Not Supported Not Supported

L⋆ 11-MLC Not Supported Not Supported

∗Drive reported success but all data remained on drive

†Sanitization only successful under certain conditions

‡Drive encrypted, unable to verify if keys were deleted

⋆USB mass storage device does not support ATA security [30]

Table 1: Built-in ATA sanitize commands Support for

built-in ATA security commands varied among drives,

and three of the drives tested did not properly execute

a sanitize command it reported to support.

measure the sanitization’s effectiveness.

3.2 Whole-drive sanitization

We evaluate three different techniques for sanitizing an

entire SSD: issuing a built-in sanitize command, repeat-

edly writing over the drive using normal IO operations,

and degaussing the drive. Then we briefly discuss lever-

aging encryption to sanitize SSDs.

3.2.1 Built-in sanitize commands

Most modern drives have built-in sanitize commands that

instruct on-board firmware to run a sanitization proto-

col on the drive. Since the manufacturer has full knowl-

edge of the drive’s design, these techniques should be

very reliable. However, implementing these commands

is optional in the drive specification standards. For in-

stance, removable USB drives do not support them as

they are not supported under the USB Mass Storage De-

vice class [30].

The ATA security command set specifies an “ERASE

UNIT” command that erases all user-accessible areas on

the drive by writing all binary zeros or ones [3]. There is

also an enhanced “ERASE UNIT ENH” command that

writes a vendor-defined pattern (presumably because the

vendor knows the best pattern to eliminate analog rem-

nants). The new ACS-2 specification [4], which is still

in draft at the time of this writing, specifies a “BLOCK

ERASE” command that is part of its SANITIZE feature

set. It instructs a drive to perform a block erase on all

memory blocks containing user data even if they are not

user-accessible.



We collected 12 different SSDs and determined if they

supported the security and sanitize feature sets. If the

SSD supported the command, we verified effectiveness

by writing a fingerprint to the entire drive several times

and then issuing the command. Overwriting several

times fills as much of the over-provision area as possi-

ble with fingerprint data.

Support and implementation of the built in commands

varied across vendors and firmware revisions (Table 1).

Of the 12 drives we tested, none supported the ACS-2

“SANITIZE BLOCK ERASE” command. This is not

surprising, since the standard is not yet final. Eight of the

drives reported that they supported the ATA SECURITY

feature set. One of these encrypts data, so we could not

verify if the sanitization was successful. Of the remain-

ing seven, only four executed the “ERASE UNIT” com-

mand reliably.

Drive B’s behavior is the most disturbing: it reported

that sanitization was successful, but all the data remained

intact. In fact, the filesystem was still mountable. Two

more drives suffered a bug that prevented the ERASE

UNIT command from working unless the drive firmware

was recently reset, otherwise the command would only

erase the first LBA. However, they accurately reported

that the command failed.

The wide variance among the drives leads us to con-

clude that each implementation of the security com-

mands must be individually tested before it can be trusted

to properly sanitize the drive.

In addition to the standard commands, several drive

manufacturers also provide special utilities that issue

non-standard erasure commands. We did not test these

commands, but we expect that results would be similar

to those for the ATA commands: most would work cor-

rectly but some may be buggy. Regardless, we feel these

non-standard commands are of limited use: the typical

user may not know which model of SSD they own, let

alone have the wherewithal to download specialized util-

ities for them. In addition, the usefulness of the utility

depends on the manufacture keeping it up-to-date and

available online. Standardized commands should work

correctly almost indefinitely.

3.2.2 Overwrite techniques

The second sanitization method is to use normal IO com-

mands to overwrite each logical block address on the

drive. Repeated software overwrite is at the heart of

many disk sanitization standards [11, 26, 9, 13, 17, 10]

and tools [23, 8, 16, 5]. All of the standards and tools

we have examined use a similar approach: They sequen-

tially overwrite the entire drive with between 1 and 35 bit

patterns. The US Air Force System Instruction 5020 [2]

is typical: It first fills the drive with binary zeros, then

binary ones, and finally an arbitrary character. The data

SSD Seq. 20 Pass Rand. 20 Pass

Init: Seq. Rand. Seq. Rand.

A >20 N/A∗ N/A∗ N/A∗

B 1 N/A∗ N/A∗ N/A∗

C 2 2 2 2

D 2 2 N/A∗ N/A∗

F 2 121 hr.⋆ 121 hr.⋆ 121 hr.⋆

J 2 70 hr.⋆ 70 hr.⋆ 70 hr.⋆

K 2 140 hr.⋆ 140 hr.⋆ 140 hr.⋆

L 2 58 hr.⋆ 58 hr.⋆ 58 hr.⋆

∗Insufficient drives to perform test

⋆ Test took too long to perform, time for single pass indicated.

Table 2: Whole-disk software overwrite. The number

in each column indicates the number of passes needed to

erase data on the drive. Drives G through I encrypt, so

we could not conclude anything about the success of the

techniques.

is then read back to confirm that only the character is

present.

The varied bit patterns aim to switch as many of the

physical bits on the drive as possible and, therefore, make

it more difficult to recover the data via analog means.

Bit patterns are potentially important for SSDs as well,

but for different reasons. Since some SSDs compress

data before storing, they will write fewer bits to the flash

if the data is highly compressible. This suggests that

for maximum effectiveness, SSD overwrite procedures

should use random data. However, only one of the drives

we tested (Drive G) appeared to use compression, and

since it also encrypts data we could not verify sanitiza-

tion.

Since our focus is on digital erasure, the bit patterns

are not relevant for drives that store unencrypted, un-

compressed data. This means we can evaluate overwrite

techniques in general by simply overwriting a drive with

many generations of fingerprints, extracting its contents,

and counting the number of generations still present on

the drive. If k generations remain, and the first genera-

tion is completely erased, then k passes are sufficient to

erase the drive.

The complexity of SSD FTLs means that the usage

history before the overwrite passes may impact the ef-

fectiveness of the technique. To account for this, we pre-

pared SSDs by writing the first pass of data either se-

quentially or randomly. Then, we performed 20 sequen-

tial overwrites. For the random writes, we wrote every

LBA exactly once, but in a pseudo-random order.

Table 2 shows the results for the eight non-encrypting

drives we tested. The numbers indicate how many gen-

erations of data were necessary to erase the drive. For

some drives, random writes were prohibitively slow, tak-

ing as long as 121 hours for a single pass, so we do not



perform the random write test on these drives. In most

cases, overwriting the entire disk twice was sufficient to

sanitize the disk, regardless of the previous state of the

drive. There were three exceptions: about 1% (1 GB)

of the data remained on Drive A after twenty passes. We

also tested a commercial implementation of the four-pass

5220.22-M standard [12] on Drive C. For the sequential

initialization case, it removed all the data, but with ran-

dom initialization, a single fingerprint remained. Since

our testing procedure destroys the drive, we did not per-

form some test combinations.

Overall, the results for overwriting are poor: while

overwriting appears to be effective in some cases across a

wide range of drives, it is clearly not universally reliable.

It seems unlikely that an individual or organization ex-

pending the effort to sanitize a device would be satisfied

with this level of performance.

3.2.3 Degaussing

We also evaluated degaussing as a method for erasing

SSDs. Degaussing is a fast, effective means of destroy-

ing hard drives, since it removes the disks low-level for-

matting (along with all the data) and damages the drive

motor. The mechanism flash memories use to store data

is not magnetism-based, so we did not expect the de-

gausser to erase the flash cells directly. However, the

strong alternating magnetic fields that the degausser pro-

duces will induce powerful eddy currents in chip’s metal

layers. These currents may damage the chips, leaving

them unreadable.

We degaussed individual flash chips written with our

fingerprint rather than entire SSDs. We used seven chips

(marked with † in Table 5) that covered SLC, MLC and

TLC (triple-level cell) devices across a range of process

generation feature sizes. The degausser was a Security,

Inc. HD-3D hard drive degausser that has been evalu-

ated for the NSA and can thoroughly sanitize modern

hard drives. It degaussed the chips by applying a rotating

14,000 gauss field co-planar to the chips and an 8,000

gauss perpendicular alternating field. In all cases, the

data remained intact.

3.2.4 Encryption

Many recently-introduced SSDs encrypt data by default,

because it provides increased security. It also provides a

quick means to sanitize the device, since deleting the en-

cryption key will, in theory, render the data on the drive

irretrievable. Drive E takes this approach.

The advantage of this approach is that it is very fast:

The sanitization command takes less than a second for

Drive E. The danger, however, is that it relies on the con-

troller to properly sanitize the internal storage location

that holds the encryption key and any other derived val-

ues that might be useful in cryptanalysis. Given the bugs

we found in some implementations of secure erase com-

mands, it is unduly optimistic to assume that SSD ven-

dors will properly sanitize the key store. Further, there is

no way verify that erasure has occurred (e.g., by disman-

tling the drive).

A hybrid approach called SAFE [29] can provide both

speed and verifiability. SAFE sanitizes the key store and

then performs an erase on each block in a flash storage

array. When the erase is finished, the drive enters a “ver-

ifiable” state. In this state, it is possible to dismantle the

drive and verify that the erasure portion of the sanitiza-

tion process was successful.

3.3 Single-file sanitization

Sanitizing single files while leaving the rest of the data

in the drive intact is important for maintaining data se-

curity in drives that are still in use. For instance, users

may wish to destroy data such as encryption keys, finan-

cial records, or legal documents when they are no longer

needed. Furthermore, for systems such as personal com-

puters and cell phone where the operating system, pro-

grams, and user data all reside on the same SSD, sani-

tizing single files is the only sanitization option that will

leave the system in a usable state.

Erasing a file is a more delicate operation than eras-

ing the entire drive. It requires erasing data from one

or more ranges of LBAs while leaving the rest of the

drive’s contents untouched. Neither hard disks nor SSDs

include specialized commands to erase specific regions

of the drive2.

Many software utilities [14, 5, 28, 23] attempt to san-

itize individual files. All of them use the same approach

as the software-based full-disk erasure tools: they over-

write the file multiple times with multiple bit patterns and

then delete it. Other programs will repeatedly overwrite

the free space (i.e., space that the file system has not allo-

cated to a file) on the drive to securely erase any deleted

files.

We test 13 protocols, published as a variety of gov-

ernment standards, as well as commercial software de-

signed to erase single files. To reduce the number of

drives needed to tests these techniques, we tested multi-

ple techniques simultaneously on one drive. We format-

ted the drive under windows and filled a series of 1 GB

files with different fingerprints. We then applied one era-

sure technique to each file, disassembled the drive, and

searched for the fingerprints.

Because we applied multiple techniques to the drive at

once, the techniques may interact: If the first technique

leaves data behind, a later technique might overwrite it.

However, the amount of data we recover from each file

2The ACS-2 draft standard [4] provide a “TRIM” command that

informs drive that a range of LBAs is no longer in use, but this does not

have any reliable effect on data security.



Overwrite operation Data recovered

SSDs USB

Filesystem delete 4.3 - 91.3% 99.4%

Gutmann [19] 0.8 - 4.3% 71.7%

Gutmann “Lite” [19] 0.02 - 8.7% 84.9%

US DoD 5220.22-M (7) [11] 0.01 - 4.1% 0.0 - 8.9%

RCMP TSSIT OPS-II [26] 0.01 - 9.0% 0.0 - 23.5%

Schneier 7 Pass [27] 1.7 - 8.0% 0.0 - 16.2%

German VSITR [9] 5.3 - 5.7% 0.0 - 9.3%

US DoD 5220.22-M (4) [11] 5.6 - 6.5% 0.0 - 11.5%

British HMG IS5 (Enh.) [14] 4.3 - 7.6% 0.0 - 34.7%

US Air Force 5020 [2] 5.8 - 7.3% 0.0 - 63.5%

US Army AR380-19 [6] 6.91 - 7.07% 1.1%

Russian GOST P50739-95 [14] 7.07 - 13.86% 1.1%

British HMG IS5 (Base.) [14] 6.3 - 58.3% 0.6%

Pseudorandom Data [14] 6.16 - 75.7% 1.1%

Mac OS X Sec. Erase Trash [5] 67.0% 9.8%

Table 3: Single-file overwriting. None of the protocols

tested successfully sanitized the SSDs or the USB drive

in all cases. The ranges represent multiple experiments

with the same algorithm (see text).

Drive Overwrites Free Space Recovered

C (SSD) 100× 20 MB 87%

C 100× 19,800 MB 79%

C 100× + defrag. 20 MB 86%

L (USB key) 100× 6 MB 64%

L 100× 500 MB 53%

L 100× + defrag. 6 MB 62%

Table 4: Free space overwriting Free space overwrit-

ing left most of the data on the drive, even with varying

amounts of free space. Defragmenting the data had only

a small effect on the data left over (1%).

is a lower bound on amount left after the technique com-

pleted. To moderate this effect, we ran the experiment

three times, applying the techniques in different orders.

One protocol, described in 1996 by Gutmann [19], in-

cludes 35 passes and had a very large effect on mea-

surements for protocols run immediately before it, so we

measured its effectiveness on its own drive.

All single-file overwrite sanitization protocols failed

(Table 3): between 4% and 75% of the files’ contents

remained on the SATA SSDs. USB drives performed no

better: between 0.57% and 84.9% of the data remained.

Next, we tried overwriting the free space on the drive.

In order to simulate a used drive, we filled the drive

with small (4 KB) and large files (512 KB+). Then, we

deleted all the small files and overwrote the free space

100 times. Table 4 shows that regardless of the amount

of free space on the drive, overwriting free space was not

successful. Finally, we tried defragmenting the drive,

reasoning that rearranging the files in the file system

might encourage the FTL to reuse more physical storage

locations. The table shows this was also ineffective.

3.4 Sanitization standards

Although many government standards provide guidance

on storage sanitization, only one [25] (that we are aware

of) provides guidance specifically for SSDs and that is

limited to “USB Removable Disks.” Most standards,

however, provide separate guidance for magnetic media

and flash memory.

For magnetic media such as hard disks, the standards

are consistent: overwrite the drive a number of times,

execute the built-in secure erase command and destroy

the drive, or degauss the drive. For flash memory, how-

ever, the standards do not agree. For example, NIST 800-

88 [25] suggests overwriting the drive, Air Force Sys-

tem Security Instruction 5020 suggests ‘[using] the erase

procedures provided by the manufacturer” [2], and the

DSS Clearing & Sanitization matrix [11] suggests “per-

form[ing] a full chip erase per manufacturer’s datasheet.”

None of these solutions are satisfactory: Our data

shows that overwriting is ineffective and that the “erase

procedures provided by the manufacturer” may not work

properly in all cases. The final suggestion to perform a

chip erase seems to apply to chips rather than drives, and

it is easy to imagine it being interpreted incorrectly or

applied to SSDs inappropriately. Should the user consult

the chip manufacturer, the controller manufacturer, or the

drive manufacturer for guidance on sanitization?

We conclude that the complexity of SSDs relative to

hard drives requires that they provide built-in sanitiza-

tion commands. Since our tests show that manufacturers

do not always implement these commands correctly, they

should be verifiable as well. Current and proposed ATA

and SCSI standards provide no mechanism for verifica-

tion and the current trend toward encrypting SSDs makes

verification even harder.

Built-in commands for whole disk sanitization appear

to be effective, if implemented correctly. However, no

drives provide support for sanitizing a single file in iso-

lation. The next section explores how an FTL might sup-

port this operation.

4 Erasing files

The software-only techniques for sanitizing a single file

we evaluated in Section 3 failed because FTL complexity

makes it difficult to reliably access a particular physical

storage location. Circumventing this problem requires

changes in the FTL. Previous work in this area [22] used

encryption to support sanitizing individual files in a file

system custom built for flash memory. This approach

makes recovery from file system corruption difficult and

it does not apply to generic SSDs.

This section describes FTL support for sanitizing ar-

bitrary regions of an SSD’s logical block address space.

The extensions we describe leverage detailed measure-

ments of flash memory characteristics. We briefly de-



Chip Name Max Tech Cap. Page Pages Blocks Planes Dies Die

Cycles Node (Gb) Size (B) /Block /Plane /Die Cap (Gb)

C-TLC16†
⋆ 43nm 16 8192 ⋆ 8192 ⋆ 1 16

B-MLC32-4∗ 5,000 34 nm 128 4096 256 2048 2 4 32

B-MLC32-1∗ 5,000 34 nm 32 4096 256 2048 2 1 32

F-MLC16∗ 5,000 41 nm 16 4096 128 2048 2 1 16

A-MLC16∗ 10,000 ⋆ 16 4096 128 2048 2 1 16

B-MLC16∗ 10,000 50 nm 32 4096 128 2048 2 2 16

C-MLC16†
⋆ ⋆ 32 4096 ⋆ ⋆ ⋆ 2 16

D-MLC16∗ 10,000 ⋆ 32 4096 128 4096 1 2 16

E-MLC16†∗ TBD ⋆ 64 4096 128 2048 2 4 16

B-MLC8∗ 10,000 72 nm 8 2048 128 4096 1 1 8

E-MLC4∗ 10,000 ⋆ 8 4096 128 1024 1 2 4

E-SLC8†∗ 100,000 ⋆ 16 4096 64 2048 2 2 8

A-SLC8∗ 100,000 ⋆ 8 2048 64 4096 2 1 8

A-SLC4∗ 100,000 ⋆ 4 2048 64 4096 1 1 4

B-SLC2∗ 100,000 50 nm 2 2048 64 2048 1 1 2

B-SLC4∗ 100,000 72 nm 4 2048 64 2048 2 1 4

E-SLC4∗ 100,000 ⋆ 8 2048 64 4096 1 2 4

A-SLC2∗ 100,000 ⋆ 2 2048 64 1024 2 1 2

∗Chips tested for data scrubbing. †Chips tested for degaussing. ⋆ No data available

Table 5: Flash Chip Parameters. Each name encodes the manufacturer, cell type and die capacity in Gbits. Parame-

ters are drawn from datasheets where available. We studied 18 chips from 6 manufacturers.

scribe our baseline FTL and the details of flash behav-

ior that our technique relies upon. Then, we present and

evaluate three ways an FTL can support single-file sani-

tization.

4.1 The flash translation layer

We use the FTL described in [7] as a starting point. The

FTL is page-based, which means that LBAs map to in-

dividual pages rather than blocks. It uses log-structured

writes, filling up one block with write data as it arrives,

before moving on to another. As it writes new data for

an LBA, the old version of the data becomes invalid but

remains in the array (i.e., it becomes remnant data).

When a block is full, the FTL must locate a new,

erased block to continue writing. It keeps a pool of

erased blocks for this purpose. If the FTL starts to

run short of erased blocks, further incoming accesses

will stall while it performs garbage collection by con-

solidating valid data and freeing up additional blocks.

Once its supply of empty blocks is replenished, it re-

sumes processing requests. During idle periods, it per-

forms garbage collection in the background, so blocking

is rarely needed.

To rebuild the map on startup, the FTL stores a reverse

map (from physical address to LBA) in a distributed fash-

ion. When the FTL writes data to a page, the FTL writes

the corresponding LBA to the page’s out-of-band sec-

tion. To accelerate the start-up scan, the FTL stores a

summary of this information for the entire block in the

block’s last page. This complete reverse map will also

enable efficiently locating all copies of an LBA’s data in

our scan-based scrub technique (See Section 4.4).

4.2 Scrubbing LBAs

Sanitizing an individual LBA is difficult because the

flash page it resides in may be part of a block that con-

tains useful data. Since flash only supports erasure at the

block level, it is not possible to erase the LBA’s contents

in isolation without incurring the high cost of copying the

entire contents of the block (except the page containing

the target LBA) and erasing it.

However, programming individual pages is possible,

so an alternative would be to re-program the page to turn

all the remaining 1s into 0s. We call this scrubbing the

page. A scrubbing FTL could remove remnant data by

scrubbing pages that contain stale copies of data in the

flash array, or it could prevent their creation by scrubbing

the page that contained the previous version whenever it

wrote a new one.

The catch with scrubbing is that manufacturer
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Figure 4: Testing data scrubbing To determine whether

flash devices can support scrubbing we programmed

them with random data, randomly scrubbed pages one

at a time, and then checked for errors.

datasheets require programming the pages within a block

in order to reduce the impact of program disturb effects

that can increase error rates. Scrubbing would violate

this requirement. However, previous work [18] shows

that the impact of reprogramming varies widely between

pages and between flash devices, and that, in some cases,

reprogramming (or scrubbing) pages would have no ef-

fect.

To test this hypothesis, we use our flash testing board

to scrub pages on 16 of the chips in Table 5 and measure

the impact on error rate. The chips span six manufac-

turers, five technology nodes and include both MLC and

SLC chips.

Figure 4 describes the test we ran. First, we erase the

block and program random data to each of its pages to

represent user data. Then, we scrub the pages in ran-

dom order. After each scrub we read all pages in the

block to check for errors. Flash blocks are independent,

so checking for errors only within the block is sufficient.

We repeated the test across 16 blocks spread across each

chip.

The results showed that, for SLC devices, scrubbing

did not cause any errors at all. This means that the num-

ber scrubs that are acceptable – the scrub budget – for

SLC chips is equal to the number of pages in a block.

For MLC devices determining the scrub budget is

more complicated. First, scrubbing one page invariably

caused severe corruption in exactly one other page. This

occurred because each transistor in an MLC array holds

two bits that belong to different pages, and scrubbing one

page reliably corrupts the other. Fortunately, it is easy to

determine the paired page layout in all the chips we have

tested, and the location of the paired page of a given page

is fixed for a particular chip model. The paired page ef-
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Figure 5: Behavior under data scrubbing Scrubbing

causes more errors in some chips than others, resulting

in wide variation of scrub budgets for MLC devices.

fect means that the FTL must scrub both pages in a pair

at the same time, relocating the data in the page that was

not the primary target of the scrub.

Figure 5 shows bit error rates for MLC devices as a

function of scrub count, but excluding errors in paired

pages. The data show that for three of the nine chips we

tested, scrubbing caused errors in the unscrubbed data in

the block. For five of the remaining devices errors start to

appear after between 2 and 46 scrubs. The final chip, B-

MLC32-1, showed errors without any scrubbing. For all

the chips that showed errors, error rates increase steeply

with more scrubbing (the vertical axis is a log scale).

It may be possible to reduce the impact of scrubbing

(and, therefore, increase the scrub budget) by carefully

measuring the location of errors caused by scrubbing a

particular page. Program disturb effects are strongest

between physically adjacent cells, so the distribution of

scrubs should affect the errors they cause. As a result,

whether scrubbing page is safe would depend on which

other pages the FTL has scrubbed in the block, not the

number of scrubs.

The data in the figure also show that denser flash de-

vices are less amenable to scrubbing. The chips that

showed no errors (B-MLC16, D-MLC16, and B-MLC8)

are 50 nm or 70 nm devices, while the chips with the

lowest scrub budgets (F-MLC16, B-MLC32-4, and B-

MLC32-1) are 34 or 41 nm devices.

4.3 Sanitizing files in the FTL

The next step is to use scrubbing to add file sanitization

support to our FTL. We consider three different methods

that make different trade-offs between performance and

data security – immediate scrubbing, background scrub-

bing, and scan-based scrubbing.



Name Total Accesses Reads Description

Patch 64 GB 83% Applies patches to the Linux kernel from version 2.6.0 to 2.6.29

OLTP 34 GB 80% Real-time processing of SQL transactions

Berkeley-DB Btree 34 GB 34% Transactional updates to a B+tree key/value store

Financial 17 GB 15% Live OLTP trace for financial transactions.

Build 5.5 GB 94% Compilation of the Linux 2.6 kernel

Software devel. 1.1 GB 65% 24 hour trace of a software development work station.

Swap 800 MB 84% Virtual memory trace for desktop applications.

Table 6: Benchmark and application traces We use traces from eight benchmarks and workloads to evaluate scrub-

bing.

These methods will eliminate all remnants in the

drive’s spare area (i.e., that are not reachable via a log-

ical block address). As a result, if a file system does

not create remnants on a normal hard drive (e.g., if the

file system overwrite a file’s LBAs when it performs a

delete), it will not create remnants when running on our

FTL.

Immediate scrubbing provides the highest level of se-

curity: write operations do not complete until the scrub-

bing is finished – that is, until FTL has scrubbed the page

that contained the old version of the LBA’s contents. In

most cases, the performance impact will be minimal be-

cause the FTL can perform the scrub and the program in

parallel.

When the FTL exceeds the scrub budget for a block,

it must copy the contents of the block’s valid pages to a

new block and then erase the block before the operation

can complete. As a result, small scrub budgets (as we

saw for some MLC devices) can degrade performance.

We measure this effect below.

Background scrubbing provides better performance by

allowing writes to complete and then performing the

scrubbing in the background. This results in a brief win-

dow when remnant data remains on the drive. Back-

ground scrubbing can still degrade performance because

the scrub operations will compete with other requests for

access to the flash.

Scan-based scrubbing incurs no performance overhead

on normal write operations but adds a command to sani-

tize a range of LBAs by overwriting the current contents

of the LBAs with zero and then scrubbing any storage

that previously held data for the LBAs. This technique

exploits the reverse (physical to logical) address map

that the SSD stores to reconstruct the logical-to-physical

map.

To execute a scan-based scrubbing command, the FTL

reads the summary page from each block and checks if

any of the pages in the block hold a copy of an LBA that

the scrub command targets. If it does, the FTL scrubs

that page. If it exceeds the scrub budget, the FTL will

need to relocate the block’s contents.

We also considered an SSD command that would ap-

ply scrubbing to specific write operations that the op-

erating system or file system marked as “sanitizing.”

However, immediate and background scrubbing work by

guaranteeing that only one valid copy of an LBA exists

by always scrubbing old version when writing the new

version. Applying scrubbing to only a subset of writes

would violate this invariant and allow the creation of

remnants that a single scrub could not remove.

4.4 Results

To understand the performance impact of our scrubbing

techniques, we implemented them in a trace-based FTL

simulator. The simulator implements the baseline FTL

described above and includes detailed modeling of com-

mand latencies (based on measurements of the chips in

Table 5) and garbage collection overheads. For these ex-

periments we used E-SLC8 to collect SLC data and F-

MLC16 to for MLC data. We simulate a small, 16 GB

SSD with 15% spare area to ensure that the FTL does

frequent garbage collection even on the shorter traces.

Table 6 summarizes the eight traces we used in our

experiments. They cover a wide range of applications

from web-based services to software development to

databases. We ran each trace on our simulator and report

the latency of each FTL-level page-sized access and trace

run time. Since the traces include information about

when each the application performed each IO, the change

in trace run-time corresponds to application-level perfor-

mance changes.

Immediate and background scrubbing Figure 6

compares the write latency for immediate and back-

ground scrubbing on SLC and MLC devices. For MLC,

we varied the number of scrubs allowed before the FTL

must copy out the contents of the block. The figure nor-

malizes the data to the baseline configuration that does

not perform scrubbing or provide any protection against

remnant data.

For SLC-based SSDs, immediate scrubbing causes no

decrease in performance, because scrubs frequently exe-

cute in parallel with the normal write access.
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Figure 6: Immediate and background scrubbing performance For chips that can withstand at least 64 scrub opera-

tions, both background and immediate scrubbing can prevent the creation of data remnants with minimal performance

impact. For SLC devices (which can support unlimited scrubbing), background scrubbing has almost no effect and

immediate scrubbing increases write latency by about 2×.

In MLC devices, the cost of immediate scrubbing can

be very high if the chip can tolerate only a few scrubs be-

fore an erase. For 16 scrubs, operation latency increases

by 6.4× on average and total runtime increases by up to

11.0×, depending on the application. For 64 scrubs, the

cost drops to 2.0× and 3.2×, respectively.

However, even a small scrub budget reduces latency

significantly compared relying on using erases (and the

associated copy operations) to prevent remnants. Tm-

plementing immediate sanitization with just erase com-

mands increases operation latency by 130× on average

(as shown by the “Scrub 0” data in Figure 5).

If the application allows time for background opera-

tions (e.g., Build, Swap and Dev), background scrub-

bing with a scrub budget of 16 or 64 has a negligible ef-

fect on performance. However, when the application is-

sues many requests in quick succession (e.g., OLTP and

BDB), scrubbing in the background strains the garbage

collection system and write latencies increase by 126×

for 16 scrubs and 85× for 64 scrubs. In contrast, slow-

down for immediate scrubbing range from just 1.9 to

2.0× for a scrub budget of 64 and from 4.1 to 7.9× for

16 scrubs.

Scrubbing also increases the number of erases re-

quired and, therefore, speeds up program/erase-induced

wear out. Our results for MLC devices show that scrub-

bing increased wear by 5.1× for 16 scrubs per block and

2.0× with 64 scrubs per block. Depending on the appli-

cation, the increased wear for chips that can tolerate only

a few scrubs may or may not be acceptable. Scrubbing

SLC devices does not require additional erase operations.

Finally, scrubbing may impact the long-term integrity

of data stored in the SSD in two ways. First, although

manufactures guarantee that data in brand new flash de-

vices will remain intact for at least 10 years, as the chip

ages data retention time drops. As a result, the increase

in wear that scrubbing causes will reduce data retention

time over the lifetime of the SSD. Second, even when

scrubbing does not cause errors immediately, it may af-

fect the analog state of other cells, making it more likely

that they give rise to errors later. Figure 6 demonstrates

the analog nature of the effect: B-MLC32-4 shows errors

that come and go for eight scrubs.

Overall, both immediate and background scrubbing

are useful options for SLC-based SSDs and for MLC-

based drives that can tolerate at least 64 scrubs per block.

For smaller scrub budgets, both the increase in wear

and the increase in write latency make these techniques

costly. Below, we describe another approach to sanitiz-

ing files that does not incur these costs.

Scan-based scrubbing Figure 7 measures the latency

for a scan-based scrubbing operation in our FTL. We ran

each trace to completion and then issued a scrub com-

mand to 1 GB worth of LBAs from the middle of the de-

vice. The amount of scrubbing that the chips can tolerate

affects performance here as well: scrubbing can reduce

the scan time by as much as 47%. However, even for the

case where we must use only erase commands (MLC-

scrub-0), the operation takes a maximum of 22 seconds.

This latency breaks down into two parts – the time re-

quired to scan the summary pages in each block (0.64 s
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Figure 7: Scan-based scrubbing latency The time to

scrub 1 GB varies with the number of scrubs each block

can withstand, but in all cases the operation takes less

than 30 seconds.

for our SLC SSD and 1.3 s for MLC) and the time to per-

form the scrubbing operations and the resulting garbage

collection. The summary scan time will scale with SSD

size, but the scrubbing and garbage collection time are

primarily a function of the size of the target LBA region.

As a result, scan-based scrubbing even on large drives

will be quick (e.g., ∼62 s for a 512 GB drive).

5 Conclusion

Sanitizing storage media to reliably destroy data is an

essential aspect of overall data security. We have em-

pirically measured the effectiveness of hard drive-centric

sanitization techniques on flash-based SSDs. For san-

itizing entire disks, built-in sanitize commands are ef-

fective when implemented correctly, and software tech-

niques work most, but not all, of the time. We found that

none of the available software techniques for sanitizing

individual files were effective. To remedy this problem,

we described and evaluated three simple extensions to an

existing FTL that make file sanitization fast and effec-

tive. Overall, we conclude that the increased complexity

of SSDs relative to hard drives requires that SSDs pro-

vide verifiable sanitization operations.
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