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Surfaces play an important role in visual perception. They are perceived as "(per-
ceptual) reliefs", that are surfaces in 2+1D perceptual space, that is the product
space of the 2D visual field and the *D "depth dimension". It is in many respects
irrelevant whether the observer views a true 3D scene or a flat (2D) picture of
a scene. In both cases the percepts are reliefs in 2+1D perceptual space. In the
latter case one speaks of "pictorial relief". We discuss how perceptual reliefs can
be measured and which aspects of these reliefs are especially robust against day
to day intraobserver variations, changes of viewing conditions, and interobserver
differences. It turns out that only aspects of the partial depth order (based on
depth precedence in infinitesimal regions) are stable. Thus features of the relief are
invariants of general "relief preserving transformations" that may actually scram-
ble depth values at different locations. This is evident from the fact that human
observers can only judge depth precedence with some degree of certainty for points
that are on a single slope. We discuss the formal structure of these relief invari-
ants. Important ones are the Morse critical points and the ridges and courses of
the relief.

1 The notion of "pictorial relief"

The concept of "relief" originally derives from the arts of sculpting and
painting. Sculpture designed for a particular vantage point (the generic sit-
uation for classical sculpture[22], e.g., pieces designed to be placed against
a wall) need not be worked "in the round" in order to look natural, it can
be squashed in depth to various degrees, even to almost flat work, and
still appear as true threedimensional structure. Paintings are by nature
totally "flat", nevertheless vivid relief may appear due to shading, etc. For
instance, the work by the dutch painter Jacob de Wit[18] can hardly be
distinguished from sculpted relief from its intended viewing position. (He
made a successful living on this type of "illusion".) The concept of relief
has been important in the theory of sculpture from renaissance times (vide

Vasari's discusssion[21] of "Michelangelo's method"). Its general signifi-
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cance for the visual arts and indeed vision in general was recognized by the
sculptor Adolf Hildebrand[7]. Hildebrand's book "Das Problem der Form
in der bildenden Kunst" from 1893 has become extremely influential.

In Hildebrand's view there is indeed little difference between sculpted
relief and "pictorial relief", that is the threedimensionality obtained from
the viewing of pictures. In all these cases the observer is aware of a "depth
flow", described by Hildebrand in terms of ridges (divides) and courses
flowing around islands to the eventual depth of the background. The fea-
tures he mentions ("ridges", "courses", "islands") appear as invariants of
the depth flow that define the spatial shape relative to the observer.

It is easy enough to flesh out Hildebrand's intuitive notions with straight
mathematics. However, in order to arrive at his invariant features one
needs an idea of the types of transformations that conserve the relief. (Of
course we have something of a chicken and egg problem here: In order
to define the invariants we need the transformations, in order to know the
transformations we need the invariants. Here we use both intuive notions as
well as evidence from psychophysics to arrive at reasonable descriptions.) In
computer vision one may think of an uncalibrated stereo rig that allows the
construction of relief up to collinearities[5]. In this paper we are interested
in the transformations that conserve pictorial relief for human observers.
We use psychophysical methods to obtain an idea of these. Our resulting
treatment is general though and applies equally well to various aspects of
machine vision.

2 Psychophysics

In science we typically look for correlations between various physical enti-
ties. In the psychophysics of pictorial relief we have a physical entity (the
2D picture) and a mental entity: The 2+1D "percept" of an observer. In
order to make science possible we have to find a physical entity that cor-
responds to the percept. Various methods are available, for instance, one
may ask the observer to produce a 3D replica of the percept (by kneading
a lump of clay say). Other possibilities include the recording of answers
to questions put to the observer that require reference to the percept {e.g.,
"is this angle—an angle is pointed out in the picture—acute or obtuse in
(3D!) pictorial space?").

A very general method is the following: One places a test object ("gauge
figure") in the scene (or a picture of a gauge figure in a picture of the scene,
it makes—at least conceptually-no difference) and asks whether the test
figure fits the scene in some a priori agreed way. This is typical for many
physical measurements. For instance, in measuring length one places a
yardstick next to the object and judges whether certain locations on the
object coincide with certain marks on the yardstick.



2.1 Methods of probing pictorial relief

One easily thinks of dozens of methods to probe various aspects of pictorial
relief. We will discuss two examples here. In one example we place a gauge
figure in the scene and ask the subject to adjust it to a perfect fit[8]. In
the other method we indicate two points and ask for a relation between the
pictorial relief at those points[9].

2.1.1 Attitude probing

Local surface attitude is the orientation of the local tangent plane relative
to the vantage point. Convenient parameters are the slant, that is the angle
the tangent plane subtends with the line of sight, and the tilt, that is the
angle of the direction of steepest ascent along the tangent plane relative
to a fiducial direction e.g., the vertical), measured in a plane orthogonal
to the line of sight. Figure 1 illustrates this: The eye (e) views a surface
element (S). The slant (a) is the angle subtended by the surface normal
(n) and the line of sight. The tilt (r) is defined with respect to the fiducial
orientation (r) in the frontoparallel plane. In figure 2 we depict a family of
gauge figures parametrized in this way. If you superimpose a gauge figure
(rendered as wireframe) over a picture surface (e.g., a photographic quality
halftone rendering), most observers will readily tell you whether the gauge
figure is in the pictorial surface or not.

1. Slant and tilt.
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2. Gauge figures.

In this paper we report on a single stimulus, a monochrome photograph
of a mannikin in en dos pose under fairly diffuse but somewhat directional,



oblique illumination (Figure 3). The picture is rendered in 8 bit graytone
on a CRT screen. (Figure 3 only approximates the original which is of
photographic quality.) We triangulate the area in the picture that defines
a certain pictorial surface, then superimpose gauge figures (rendered in red
wireframe) on the picture centered at the vertices of this triangulation.
(The subject is never directly aware of the triangulation, however, the tri-
angulation determines where the probe will appear.) We visit the vertices
in random order. For each vertex the subject adjusts the shape of the gauge
figure so as to fit the pictorial surface. Subjects report that if the setting
is satisfactory the gauge figure "sucks" to the surface and appears as a red
circle painted upon it. Figure 4 shows the result of such a session (although
all gauge figures are shown simultaneously in this figure, the subject saw
only one at a time during the actual experiment!) for the picture shown
in figure 3: We obtain a set of samples of the orientation of "the pictorial
surface", or better, the measurements operationally define what we will
subsequently call the "pictorial surface". We repeat this several times in
order to obtain a measure of the standard error. Subjects can perform
hundreds of such settings an hour. Afterwards we analyze the resulting
discrete field of pictorial surface attitudes.
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3. Stimulus picture. 4. Attitude field.



We find that the empirical field of attitudes is indeed consistent with
a surface interpretation (a gradient field, vanishing curl). This is most re-
markable in itself and indicates that a "22D-sketch" model[15] does not
apply. In a 22D-sketch one obtains a set of mutually independent local
estimates. Chances are slim that such a discrete field will turn out to be
fully consistent with any surface. Of course the statement that "the em-
pirical field of attitudes is indeed consistent with a surface interpretation"
needs to be backed up with statistical arguments. We have reported on
this elsewhere[8]. Just for reference, the total depth variation over a face
of the triangulation ranges from zero to up to 60 pixels (in this method we
measure depth in the same units as distance in the frontoparallel plane!),
whereas the violations over the boundary of a face are typically of subpixel
dimensions.

5. Pictorial relief. 6. Depth isocontours.

As a consequence of this surface consistency we may proceed to obtain
the (3D!) pictorial relief by integration of the field of attitudes. Figure 5
shows a generic view of the pictorial surface. Notice that we have trans-
formed the 2D picture into a surface immersed in 3D by this psychophysical
method. In figure 6 we show a congruence of isodepth curves that perhaps
defines the result somewhat more precisely. From such data we may com-
pute profile renderings and thus confront the subjects with their own depth



image translated into frontoparallel distances. Subjects are typically satis-
fied with the result, whatever value one may attach to this observation.

2.1.1.1 Effects of viewing conditions and variation over subjects
Different subjects produce different surfaces. Moreover, even a single ob-
server produces different surfaces when the viewing conditions are varied
(e.g., monocular versus binocular, or frontal versus oblique viewing). For
both inter- and intra-observer variations we find that typically the results
differ by a depth scaling which is often quite large (up to a factor of five).
The depth scale appears to be a rather "elastic" one[ll]. Moreover, when
we analyse the day to day variations in settings it turns out that most of
the variance is in the depth dimension: Subjects are dead sure about the
tilt, but sloppy in the slant domain. This is equally true for intersubject
comparisons: Subjects tend to agree on the tilt but differ on the slant.

In the interobserver comparisons we sometimes find ideosyncratic devi-
ations that are apparently not of a stochastic character. For instance, one
subject may produce an additional twist of the lumbar with respect to the
pelvic region as compared to another one.

2.1.2 Depth precedence probing

We superimpose two distinguishable (e.g., through their hue) dots on the
picture and require the subject to answer which one is closer (forcing un-
ambiguous answers). Repeated trials allow the determination of the prob-
ability of the first dot being judged closer than the second dot for a great
number of ordered dot pairs. (In practice several professional psychophys-
ical tricks have to be played, for instance one has to balance presentations
to allow for the fact that some hues have a tendency to look closer than
other ones. We skip many of such conceptually trivial—though practically
crucial—psychophysical details in this paper!)

When we perform this task on the edges of the triangulation (of course
again visited in random order) we obtain a probability of the depth prece-
dence conforming to the orientation of the edge for each edge. Assuming
a fixed depth difference limen we may convert these probabilities to depth
differences between the endpoints of the edge (at least if the probabilities
are not identically zero or one). Again, we may test for surface consistency
(for (A —> B) A (B —> C) should imply A —> C, where the arrow indicates
depth precedence). We find perfect consistency within the experimental
tolerances. This means, of course, that the judgments for different point
pairs are by no means independent: They are constrained by something
not completely local, the pictorial relief.

We end up with many (perhaps a 1000) mutually consistent depth dif-
ference inequalities and equalities and may proceed to solve this set for the
pictorial relief[9]. (In practice we use the method of iterative projection on



convex sets to solve this problem. In theory at least linear programming
would also work.) Figure 7 shows such a pictorial surface reconstructed
from depth order judgments. In figure 8 we show the corresponding con-
gruence of isodepth curves.

7. Pictorial relief. 8. Depth isocontours.

2.1.3 Depth precedence judgments for large separations

Although observers readily judge depth precedence if the two dots are not
very widely separated in the picture, they often tend to hesitate or merely
guess if the pair is widely separated in the frontoparallel plane. We have
measured probabilities of judging every vertex (not just the nearest neigh-
bors) of the triangulation as closer than a (limited) number of fiducial
vertices. (The judgments were done in interleaved fashion in randomized
order.) Figures 9, 12 and 15 show the result for such an experiment for
three particular fiducial vertices (these vertices are most easily identified in
figures 10 and 11, 13 and 14, 16 and 17). Notice that it would be out of the
question to measure all combinations: The subject would have to perform
millions of judgments, consuming thousands of hours.



Figures 9-11: Fiducial vertex #101. Upper: 9. Probabilities (graylevel
indicates probability of being in front. White= 1, Black= 0), Lower
left: 10. Thresholded pictorial relief (White=hither, Black=yonder), Lower
right: 11. Prediction from partial depth order (White=hither, Black=yonder,
Gray=don't know).



Figures 12-14: Fiducial vertex #156. Upper: 12. Probabilities (graylevel
indicates probability of being in front. White= 1, Black= 0), Lower
left: 13. Thresholded pictorial relief (White=hither, Black=yonder), Lower
right: 14. Prediction from partial depth order (White=hither, Black=yonder,
Gray=don't know).
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Figures 15-17: Fiducial vertex #211. Upper: 15. Probabilities (graylevel
indicates probability of being in front. White= 1, Black= 0), Lower
left: 16. Thresholded pictorial relief (White=hither, Black^yonder), Lower
right: 17. Prediction from partial depth order (White=hither, Black=yonder,
Gray=don't know).
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These results may be compared with the pictorial relief obtained by
other methods thresholded with respect to the depths of the fiducial ver-
tices. Figures 10,13 and 16 (fiducial vertices #101, #156 and #211 respec-
tively) show such decompositions in "hither" and "yonder" areas of the
pictorial surface. One would perhaps expect subjects to respond on this
basis, after all the pictorial relief has been obtained from subject judgments
in the first place, thus one expects subjects should be in the possession of
this information. However, we find that subjects fail miserably on this task.
In many cases they cannot judge depth precedence of two points reliably,
despite the fact that the depths are well separated in the pictorial relief.
Apparently we have detected a rather serious limitation of the human mind
here.

It would appear that human observers can only judge depth precedence
for points that are on a single slope, not if the points are separated by (we
use the terms in an informal sense at this place) a ridge or course. Indeed,
if we don't threshold the relief surface (which is a global method in the
sense that one assumes that the depths at arbitrarily separations can be
judged) but follow the empirically established depth precedence order for
the edges (this is very much like keeping only track of the direction of the
depth gradient) the predictions conform somewhat better to our findings.
(Notice that this method is purely local in the sense that only closely spaced
points need be compared at any time.) Figures 11, 14 and 17 show this
prediction for the examples presented here. The picture is parsed in a
"hither", a "yonder" and a "somewhere" (or "don't know") region. Notice
how-at least by "eye-measure"—this prediction conforms more closely to
the actual data (figures 9, 12 and 15) than the thresholded pictorial reliefs
(figures 10, 13 and 16) do. It is not so easy to back this up with numbers
though. We may for instance correlate the predictions with the empirical
probabilities. For the predictions via the thresholded relief the correlation
extends over all vertices (251), for the predictions via the partial depth order
the don't knows are not included in the correlation. Correlations are: #101,
correlation with thresholded relief 0.73, with partial order 0.53 (based on
36 samples); #156, correlation with thresholded relief 0.69, with partial
order 0.92 (based on 50 samples); #211, correlation with thresholded relief
0.77, with partial order 0.88 (based on 72 samples). The predictions from
the partial depth order are significantly better except for the fiducial vertex
#101, for which both correlations are fairly low. However, one really needs
an in depth analysis of the residuals to make sense of these numbers and a
perusal of the patterns apparent in figures 9-17 will do as well.

Clearly the actual result is somewhat "in between" these two extreme
predictions, tending perhaps more closely to the prediction from the local
depth order alone. Apparently observers can do linear depth order judg-
ments to some extent, though they are doubtless bad at it. On the other
hand the partial depth order is readily available to the observers.
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The failure of the human observer to make effective use of the slope
magnitude and the observer's sole reliance on local depth order have been
predicted more than a decade ago[ll]. This was first empirically demon-
strated by Todd and Reichl[20], though these authors lacked our present
powerful methods to probe pictorial relief.

3 Invariants of relief preserving transformations

In this section we change gears and discuss invariants of relief preserving
transformations in the formal sense. We use the psychophysical results
(v.s.) to guide our selection of interesting transformations.

Classical "relief preserving transformations" are collineations that move
the plane at oo to a frontoparallel plane at some arbitrary distance. Such
transformations have been used in the design of stage decors where one
meets the problem of accommodating all the space in front of an observer
in some finite depth slice. The method is at least two centuries old and is
mentioned in the 19</lc. vision literature[6].

Special cases include depth scalings. Apparently depth scalings describe
the differences between many of our psychophysical results quite well.

More general transformations that might be said to "preserve relief"
are general monotonic transformations of the depth scale. Such transforma-
tions are quite common in the image intensity domain: If you display a pic-
ture on different monitors then the photometric radiances at corresponding
points are—almost certainly—related by some nonlinear monotonic trans-
formation. So called "gamma corrections" are just power functions of this
type.

One may consider even more general transformations for which it might
be said that—in a certain sense—that they "conserve relief". Suppose
I hand you a depth gradient field, but suppress slope information (i.e.,
specify only the field lines). Then the surfaces that are described by this
information are in general not related by any monotonic transformation of
the depth scale. In fact, depths at different points (in the frontoparallel
plane) may be scrambled.

If the gradient direction field is e(x) (with e.e = 1), then a field g(x) =
s(x)e(x) (for some slope function s) is a gradient field if the curl vanishes,
i.e., if Vlogs A e + V A e = 0. Thus logs has to satisfy a linear partial
differential equation determined by the gradient direction field. Though
this severely constrains the possibilities, there is still quite a bit of leeway
left.

If the relief is subject to such general relief preserving transformations
we cannot find a linear order for the points (on the basis of depth prece-
dence), instead one obtains merely a partial order. The points can be
divided into "natural districts" (hills and dales[3,16]) in such a way that all
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points of a dale are above its immit, whereas all points of a hill are below its
summit. Figure 18 shows an example of a slope defined by a single summit
(disk) and a single immit (open circle). (In this case the boundary of the
slope contains two saddle points (circles with crosses), some slopes contain
only a single saddle though!) All the slopelines run between summit and
immit and are homotopic; this is the largest possible region of this na-
ture and thus represents the natural definition of the intuitive notion of "a
slope". The union of all slopes on a summit form a "hill", of all slopes on an
immit a "dale": Thus the landscape naturally divides into hills or in dales.
These are Maxwell's "natural districts" and are the formal equivalents of
Hildebrand's "islands".

18. Schematic slope.

3.1 Isocontours, slope lines and Morse critical points

General relief preserving transformations are evidently defined by the fact
that they conserve the curvilinear congruence of isocontours (loci of equal
depth[14]), or—equivalently—the slopelines, that are the integral curves
of the depth gradient field. Notice that though the natural order of the
isocontours is conserved, the actual labels of the isocontours are lost.

Clearly the immits, summits and saddles are also conserved, since they
are just singular isocontours. These topological invariants of general relief
preserving transformations are the so called Morse critical points[17]: The
extrema (near- and far-points) as well as the saddlepoints of the depth.

3.2 Ridges and courses

Apart from the Morse critical points there also exist invariant curves, the so
called ridges and courses of the relief. These are defined as certain singular
solutions of the slope line equation. In short, if z(x,y) denotes depth as
a function of the Cartesian coordinates (x,y), then the slopeline equation
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is q(x,y)dx - p{x,y)dy = 0, with p(x,y) = ff and q(x,y) = | | . Let its
general solution be w(x,y). Then we introduce a function d(x,y) such that
•d(x,y)dw = q(x,y)dx - p(x,y)dy, thus -d is an integrating divisor of the
slope line equation. (Notice that the one-form[2] dw cannot possibly be
exact.) The curves i)(x,y) = 0 with the additional condition dw A d-d —
(fsf §^ ~~ f r | f ) ^

x
 ^ dy / 0 are singular solutions of the slopeline equation

that possess the intuitive properties of "ridges" and "courses". For instance,
the slopelines approach a course from both sides and the direction of the
slopelines approaches that of the course arbitrarily close. One may impose
additional constraints, e.g., that the slopelines should approach the course
asymptotically, otherwise one might obtain an extended marshland instead
of a narrow rivulet.

The definition (essentially $ = 0) of ridges and courses is based upon
the same physical principle (local extremal slope along an isocontour) as
the classical definition[4]. However, one usually derives a nongeneric (and
generally false) conclusion from this (thus essentially following de Saint-
Venant[4]'s reasoning). That this method is not correct is evident from the
fact that the solutions of de Saint-Venant's differential equation are—in the
general case—curves that are transverse to the slope lines. This violates
a simple principle (due to Boussinesq[l]) that water always runs downhill:
Thus the direction of the ridges and courses should everywhere coincide
with that of the slope lines. However, this doesn't constrain the ridges and
courses to be slopelines, Boussinesq's condition is satisfied by the singular
solutions too.

The present definition coincides with the classical one (solutions of
de Saint-Venant's differential equation) for the special case of straight
courses and ridges. Although the correct solution was already published
(by Rothe[19]) in 1915, the erroneous solution still runs at large. (See
discussion in Koenderink et a/[12,13].) The various so called "ridge find-
ers" from the literature of computer vision and image processing either
are tweaked to find entities quite unlike the topographical ridges or sim-
ply compute the wrong thing (that is: the de Saint-Venant's solution,
though usually without reference). This is illustrated in figures 19 and 20.
Figure 19 shows the topography (isocontours) of the landscape z(x,y) =
arctan ^ + \{\/x

2 + y
2 — I)2. This "landscape" is actually a helicoidal gut-

ter, a bit like an infinite parking garage. The thick circle (unit radius) is
the course, the thin circle (radius 1.38028...) is the solution of de Saint-
Venant's equation. Figure 20 shows the depth flow. Notice that the flow
crosses the "official solution" (de Saint-Venant's equation) transversely,
thus violating Boussinesq's condition[l] (the water doesn't run downhill
but rather takes an oblique course). The flow asymptotically approaches
the course and eventually everything is bound to join this streambed.

Notice that the ridges and courses are in many respects reminescent of
one-dimensional analogues of the (zero-dimensional) Morse critical points.
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The Morse critical points define the sources and sinks and the ridges and
courses the separatrices of the slope field or "creep".

19. Topography. 20. Depth flow.

In figures 21 and 22 (next page) we show the isodepth curves, Morse
critical points (circles with center dots: far points, circles with center cir-
cles: near points, circles with crosses: saddles), ridges (black linesegments)
and courses (gray line segments) for the pictorial reliefs obtained from atti-
tude gauge figure adjustments and depth precedence judgments. They are
seen to be very similar, though subtle differences exist. Major near points
define the right shoulder blade and the buttocks, far points occur mainly
on the boundary of the triangulation, alternating with saddles which are
near points of that boundary. An internal saddle is seen in the middle
of the figure. The main ridge defines the vertical body axis, minor ridges
define the shoulder girdle and the arms and legs. The major course runs
on the back and separates the thorax from the pelvic region. These relief
structures formally describe the "depth flow" as considered intuitively by
Hildebrand[7].

4 Discussion

We have presented psychophysical evidence for the fact that human ob-
servers can address globally consistent range maps and/or attitude fields,
thus clearly refuting the utility of the hypothesis of the classical " 2 2D-
sketch" for the interpretation of our psychophysical results. However, we
have also shown that human observers are not able to use these data-
structures in a fully general way. Apparently they can only establish depth
precedence to any reasonable extent if the locations to be compared are
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members of a single hill or dale, more likely even members of the points
common to a certain hill and a certain dale, or in other words "a single
slope".

21. Refief from attitudes. 22. Relief from depth order.

We have briefly indicated the mathematical framework needed to deal
with these types of datastructures. The "relief" available to human ob-
servers is only fully specified up to arbitrarily "general relief preserving
transformations", that are transformations than merely conserve the par-
tial order denned by the hills and dales. Important topological invariants
of these transformations are the Morse critical points and the courses and
ridges. These are a priori important "features" of pictorial relief.

Of course there also exist metrical invariants, such as the curvature
of the isocontours and slopelines. In the literature on image processing
the loci of extremal curvature along the isocontours have been implied as
natural courses and ridges. However, it is easily demonstated that such
loci are not necessarily separatrices of the creep at all and that they in
general violate Boussinesq's condition[l]. The relevance of these invariants
for human perception remains as yet unsettled.
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