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Abstract: Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can
directly detect the brain dynamics in response to different emotional states. Emotion recognition
from EEG signals has attracted broad attention, partly due to the rapid development of wearable
computing and the needs of a more immersive human-computer interface (HCI) environment.
To improve the recognition performance, multi-channel EEG signals are usually used. A large set
of EEG sensor channels will add to the computational complexity and cause users inconvenience.
ReliefF-based channel selection methods were systematically investigated for EEG-based emotion
recognition on a database for emotion analysis using physiological signals (DEAP). Three strategies
were employed to select the best channels in classifying four emotional states (joy, fear, sadness
and relaxation). Furthermore, support vector machine (SVM) was used as a classifier to validate
the performance of the channel selection results. The experimental results showed the effectiveness
of our methods and the comparison with the similar strategies, based on the F-score, was given.
Strategies to evaluate a channel as a unity gave better performance in channel reduction with an
acceptable loss of accuracy. In the third strategy, after adjusting channels’ weights according to their
contribution to the classification accuracy, the number of channels was reduced to eight with a slight
loss of accuracy (58.51% ± 10.05% versus the best classification accuracy 59.13% ± 11.00% using
19 channels). In addition, the study of selecting subject-independent channels, related to emotion
processing, was also implemented. The sensors, selected subject-independently from frontal, parietal
lobes, have been identified to provide more discriminative information associated with emotion
processing, and are distributed symmetrically over the scalp, which is consistent with the existing
literature. The results will make a contribution to the realization of a practical EEG-based emotion
recognition system.
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1. Introduction

The effort to integrate emotions into a human-computer interaction (HCI) system has attracted
broad attention for a long time and has resulted in a new research field of affective computing [1].
Affective computing aims to give computers the ability to perceive human emotions and then make
proper decisions to respond. Affective computing has been becoming a worldwide research hotspot
in recent years, partly due to the quick development of wearable computing and the urgent needs
of a more immersive HCI environment. The key element in affective computing is to detect human
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emotions accurately in real time by employing pattern recognition and machine learning techniques.
Although numerous studies have been performed, emotion recognition is still an extremely challenging
task, especially for the purpose of practical usage.

A variety of methods for detecting human emotion have been proposed using physical or
physiological measurements in the past few decades, such as facial expression, speech, body gesture,
electrocardiograph (ECG), skin conductance (SC), electromyogram (EMG), respiration, pulse, etc. [2–4].
Although some encouraging results have been achieved, these measurements are an indirect mapping
of human emotions. Recently, electroencephalogram (EEG)-based emotion recognition has received
increasing attention. In comparison with the aforementioned measurements, EEG technique can
directly detect the brain’s dynamics in response to different emotional states, so it is expected to
provide more objective and comprehensive information for emotion recognition. Furthermore, with
the advantages of non-invasion, low-cost, portability and high temporal resolution, it is possible to use
an EEG-based emotion recognition system for real-world applications.

Although the excellent temporal resolution makes EEG a primary option for a real-time emotion
recognition system, the poor spatial resolution of EEG presents a big challenge for the task. To overcome
this problem, multi-channel EEG sensor signals are used, often acquired from 32, 64 or even more
sensor electrodes distributed on the whole scalp according to the International 10–20 system. It is
supposed that the wealthy sensors can provide more discriminative information of different emotional
states and improve the recognition performance. Unfortunately, the rule of “the more the better” is not
always right in this situation. In fact, additional EEG channels usually include noisy and redundant
channels, which would instead deteriorate the recognition performance [5–7]. Moreover, a large
set of sensor channels will increase the computational complexity and cause users inconvenience.
Two solutions have been used to tackle this problem, consisting of feature selection and EEG sensor
channel selection. So far, related studies are mainly focused on selecting the least useful features to
achieve the best performance. Even if the reduction of features usually leads to a reduction of channels
involved, it cannot guarantee the selected channels are optimum. In addition, reduction in channels is
more important than features reduction from a practical point of view. Fewer channels can not only
reduce the computational complexity and improve the performance, but also facilitate the practical
usage. It is therefore necessary to investigate the problem of sensor channel selection directly.

Various strategies have been used for sensor selection in research of EEG-based emotion
recognition. In some studies, sensors were selected according to the expert’s experience. Bos [8], Zhang
and Lee [9] and Schmidt et al. [10] selected sensors for classifying two emotional states according to
the well-known frontal asymmetry of the alpha power for valence. A set of symmetric sensor electrode
pairs were used to recognize more emotional states by Valenzi et al. [11] and Lin et al. [12], employing
hemisphere asymmetrical characteristics of emotion processing in the human brain. These works
mainly focused on few specific features at specific scalp locations. However, the state-of-the-art
findings in neuroscience recommend investigating the correspondence between emotional states and
whole brain regions [13]. Therefore, finding the optimal subset of sensor channels from the full set
automatically has attracted increasing attention recently. Two main approaches have been used in
sensor selection algorithms for EEG signal processing [14]. One of them was directly based on a feature
selection algorithm. Firstly, a specific feature selection method was used to find the top-N features
according to some criteria, and then the electrodes containing these selected features were chosen.
Wang et al. [15] applied minimum redundancy maximum relevance (mRMR) feature selection method
to find the best electrode positions of TOP-30 features among all 64 electrodes. The average selected
sensor number was 25 with five subjects. Employing a feature selection method based on the F-score
index, Lin et al. [12] reduced the number of required electrodes from 24 to 18 at the expense of a slight
decrease in classification accuracy. The results of this kind of approach showed its effectiveness, but not
its optimum for channel selection in most cases. Another kind of approach for sensor channel selection
in literature adopted a classification algorithm to evaluate the candidate sensor subsets generated by
a search algorithm. In Jatupaiboon et al. [16], support vector machine (SVM) was used to evaluate
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a different electrode montage from seven pairs (14 channels) for classifying positive and negative
emotions. Finally, the number of electrodes was reduced from seven pairs to five pairs almost without
any loss of accuracy. With sufficient searching, optimal results could be obtained with this kind of
approach, but it depends on the specific classification algorithm and is computationally expensive.

In the present study, we systematically investigated a channel selection scheme based on
ReliefF [17] in EEG-based emotion recognition. The ReliefF algorithm is a widely used feature selection
method. Different to the aforementioned feature-selection-based channel selection method, after
obtaining the weights of all features by ReliefF, two strategies were used to quantify the importance
of every sensor channel as a unity by considering the weights of all features belonging to this
channel. Then the channels were directly selected according to their quantified importance in emotion
recognition. SVM as classifier was used to evaluate the effectiveness and performance of our methods.
Furthermore, similar strategies using the F-score as a feature selection method were also investigated
and compared.

The rest of this paper is structured as follows. Section 2 presents the material and methods,
including the description of the database for emotion analysis using physiological signals (DEAP),
feature extraction, channel selection based on an ReliefF algorithm, and the an SVM classifier. Section 3
is dedicated to the obtained results. The proposed methods are assessed in the task of classifying
four emotional states with SVM and compared with the F-score methods. The problem of selecting
subject-independent channels for emotion recognition is also investigated. Related discussion is given
in Section 4. Finally, we conclude the proposed approach in Section 5.

2. Materials and Methods

2.1. DEAP Database

This study was performed on the publicly available database DEAP [18], which consists of a
multimodal dataset for the analysis of human emotional states. A total of 32 EEG channels and eight
peripheral physiological signals of 32 subjects (aged between 19 and 37) were recorded whilst watching
music videos. The 40 one-minute long videos were carefully selected to elicit different emotional
states according to the dimensional, valence-arousal, emotion model. The valence-arousal emotion
model, first proposed by Russell [19], places each emotional state on a two-dimensional scale. The first
dimension represents valence, ranged from negative to positive, and the second dimension is arousal,
ranged from calm to exciting. In DEAP, each video clip is rated from 1 to 9 for arousal and valence
by each subject after the viewing, and the discrete rating value can be used as a classification label in
emotion recognition [20–22].

In this study, for simplicity, the preprocessed DEAP dataset in MATLAB format was used to test
our channel selection algorithms for classifying four emotional states (joy: valence ≥5, arousal ≥5; fear:
valence <5, arousal ≥5; sadness: valence <5, arousal <5; relaxation: valence ≥5, arousal <5). In the
preprocessing procedure, the sampling rate of the EEG signal was down sampled from 512 Hz to
128 Hz and a band pass frequency filter from 4.0–45.0 Hz was applied. In addition, electrooculography
(EOG) artifacts have been removed from the EEG signal. For each subject, there are 40 one-minute trials
which were divided into four categories labeled as joy, fear, sadness or relaxation, separately. In our
experiment, about half of the trials for each category were randomly selected for channel selection
(channel-selection dataset), and the rest were used to test the performance of the channel selection
results (performance-validation dataset). To make sure that there are relatively enough data in every
category for the channel selection and the test, only the subjects in their dataset, with a number of
trials for every category that is no less than 5, were considered. Thus, sixteen subjects (1, 2, 5, 7–11,
14–19, 22, 25) were chosen. Candra et al. [23] reported that the effective window size for arousal and
valence recognition using the DEAP database was between 3–10 and 3–12 seconds respectively. So,
each 60-s trial was segmented into 15 4-s samples with non-overlapping for the purpose of increasing
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the number of samples. Finally, we got a total of 600 (40 trials × 15 samples) samples for each subject.
All the samples derived from the same trial share the same category label.

2.2. Feature Extraction

Different types of features have been used in EEG-based emotion recognition, including time,
frequency or time-frequency domain features [24]. However, power features from different frequency
bands are still the most popular in the context of emotion recognition. In this work, a series of band
pass filters were used to translate the raw EEG data from 32 channels of each sample to the ta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–45 Hz). Then, the power of every specific frequency
band was calculated using a 512-point fast Fourier transform (FFT), so 128 (32 channels × four features)
features were obtained for each sample.

The power of a specific frequency band corresponding to channel T in sample R is calculated as

bpRT =
1
N

N

∑
k=1

∣

∣

∣
XRT

N (k)
∣

∣

∣

2

, (1)

where, XRT
N (k) is the FFT of the EEG signals for channel T in sample R, N is the length of FFT and

equals the sample length 512 (4 s). Z-score normalization was adopted for each feature [25]. For a
feature fR belonging to sample R, the normalized value was computed by

f norm
R =

fR − µ f

σf
, (2)

where, µf and σf are, respectively, the mean and the standard deviation of feature f over all samples.

2.3. Channel Selection Based on ReliefF

ReliefF is a widely used feature selection method in classification problems, due to its effectiveness
and simplicity of computation. A key idea of ReliefF is to evaluate the quality of features according to
their abilities to discriminate among samples that are near to each other. The ability is quantified as a
weight of every feature. Channel selection can be performed based on the results of ReliefF feature
selection, just as the typical feature-selection-based channel selection method aforementioned.

In our work, 128 features were used to discriminate four emotional states (joy, fear, sadness,
relaxation) with the channel-selection dataset—about 300 samples of every subject. Firstly, a ReliefF
algorithm was used to rank all the 128 features according to their weights. At the beginning, all the
weights for 128 features were set to zero. For each sample Ri, the k nearest neighbors from the same
class of Ri (nearest hits Hj) and k nearest neighbors from each of the different classes (nearest misses
Mj(C)) were found in terms of the features’ Euclidean distance between two samples. Then, the weights
W(F) for all features were updated according to Equation (3). The above process was repeated until all
the samples in the channel-selection dataset had been chosen, and the final W(F) was our estimations
of the qualities of 128 features. The whole process is implemented with the following steps:

1. set all the weights of 128 features to zero, W(F) = W[ f1, f2, . . . , f128] := 0.0;
2. for i = 1 to the number of samples in the channel-selection dataset do
3. select a sample Ri;
4. find k nearest hits Hj(j = 1, 2, . . . , k);
5. for each class C 6= class(Ri) do
6. find k nearest misses Mj(C)(j = 1, 2, . . . , k) from class C;
7. end;
8. for l = 1 to 128 do
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W( fl) = W( fl)−
k

∑
j=1

di f f ( fl , Ri, Hj)/(m × k)+

∑
C 6=class(Ri)

[ P(C)
1−P(class(Ri))

k

∑
j=1

di f f ( fl , Ri, Mj(C))]/(m × k)
; (3)

9. end;
10. end;

where, the nearby neighbor’s number k is 10, which is safe for most purposes [17] and the prior
probability of class C is P(C) (estimated by the channel-selection sets). Function di f f ( f , R1, R2)

calculates the difference between values of the feature f for two samples R1 and R2, which is defined as:

di f f ( f , R1, R2) =
|value( f , R1)− value( f , R2)|

max( f )− min( f )
(4)

where, value(f,R) is the value of feature f in sample R, max(f ) and min(f ) are respectively the maximum
and minimum of the feature f over all samples.

Through the above described process, it can be easily understood that a large weight means the
feature is important to discriminate between samples and a small one means that it is less important.
Therefore, all features can be ranked in terms of their weights. While selecting channels, the top-N
features were chosen according to the rank of every feature, and then the channels containing these
features were selected. Although the reduction of features usually led to a reduction of channels
involved, the actual effect was not obvious [12].

However, the ultimate goal of sensor channel selection is to achieve the best accuracy for
classification by using the least number of sensors. From this perspective, a natural strategy is
evaluating the importance of channels directly for classification, treating a channel rather than a feature
as a unit. If we accept that the weight of a feature obtained from ReliefF reflects its capability to
discriminate different classes, we can use the weights of all features belonging to a channel to estimate
the channel’s contribution to class discriminability.

We defined the mean of the weights of all features belonging to a channel as this channel’s weight.
In our work, 32 channels were used and each channel contained four features. The weight of channel
T is computed as

W(T) =
1
N

N

∑
i=1

W( fi), (5)

where, W(fi) is the weight of the i-th feature (fi) belonging to channel T, and N is the number
of features of channel T. Then, channels can be ranked according to their weights, and the
best channels for the classification task can be easily selected. This method was denoted as
mean-ReliefF-channel-selection (MRCS).

Now, we can select channels, independent of a classifier, for a further classification task. It is
perhaps effective for different kinds of classifiers, but it cannot be guaranteed to be optimal for a specific
classifier. As mentioned in Section 1, a search algorithm can find the optimal channel set for a specific
classifier, but it is computationally expensive. We propose a strategy to iteratively adjust the weights
of channels according to their contribution to classification accuracy for a specific classifier, as in
Figure 1. At the beginning, the weight of every channel is initialized to the mean of the ReliefF weights
of all features belonging to this channel as W0(T). Then, on each subject’s channel-selection dataset,
the average accuracy over a varying number of channels is obtained using a specific classifier by
adding the channels one by one according to their weights, labeled as S0(n) (the average classification
accuracy, when top-n channels are used, n = 1 to 32). Then the contribution of the top n-th channel in
the i-th iteration can be computed as

Ci(n) =
Si(n)− Si(n − 1)

Si(n − 1)
, (6)
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this contribution value of a channel could be positive or negative. Then, the weight of channel T is
updated as

Wi(T) = Wi−1(T)× (1 + Ci−1(nT)), (7)

where, nT are the rank of channel T in all 32 channels. It means that the weight of a channel increases
when its contribution is positive and decreases in the reverse case. The above process is repeated
until the absolute value of the max negative contribution of all channels is less than ε or iterates
50 times. In this paper, ε equals 0.01. Then, the importance of channels will be evaluated and selected
according to the final weights W. The purpose of this method is to further optimize the channel
selection performance against a specific classifier based on MRCS, denoted as X-MRCS (X can be
replaced with classifier name, such as SVM-MRCS).

 
  

ε
ε

 

γ

Figure 1. The update process of channels’ weights considering their contribution to classification accuracy.

2.4. Classifiers to Evaluate the Performance

To validate and compare the effectiveness of the channel selection results of our methods,
SVM was employed as classifiers to recognize four emotional states using the selected sensors on a
performance-validation dataset. The central idea of SVM is to separate data from two classes by finding
a hyperplane with the largest possible margin. The SVM classifier used in our work was implemented
by LIBSVM (a library for support vector machine developed by Chang and Lin [26]) with the radial
basis function (RBF) kernel. The one-versus-one strategy for multi classification problems was applied.
To reduce the computational cost, we just let the penalty parameter be C and the kernel parameter
be γ as default. For each subject, the average classification accuracy was computed using a scheme
of five 10-fold cross-validations to increase the reliability of our results. In a 10-fold cross validation,
all the validation samples are divided into 10 subsets. Nine subsets are used for training, and the
remaining one is used for testing. This process was repeated five times with different subset splits.
The classification accuracy was evaluated by the ratio of a correctly classified number of samples and
the total number of samples. Then, the average classification accuracy curve, over a varying number
of selected channels across all 16 subjects, was given to illustrate and compare the performance of the
channel selection methods. Furthermore, the related results were statistically evaluated by a paired
t-test method to further support and validate our conclusion.
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3. Results

In this section, we evaluated our ReliefF-based sensor selection algorithms in the task of classifying
four emotional states on a DEAP dataset, with SVM as the classifier. Just as mentioned in Section 2,
16 subjects (1, 2, 5, 7–11, 14–19, 22, 25) among 32 were chosen in our experiment. In addition, all the
trials for each subject were divided into two subsets according to the aforementioned rules. About half
of the trials were used as the first subset for channel selection, and the rest were used to validate the
performance of the channel selection results. Three ReliefF-based sensor selection strategies were
employed. In the first strategy, after obtaining the weights of all features, sensor channels containing
the top-N features were selected. For the second method MRCS, the mean of the weights of all features
belonging to a channel, was used as this channel’s weight and all channels were ranked according
to their weights for selection. In SVM-MRCS, channels were selected considering their weights and
their contribution to classification accuracy against the classifier SVM. After obtaining every channel’s
weight for each subject on the channel-selection dataset, the classification accuracy of selected top-N
channels, with five 10-fold cross-validations, on the performance-validation dataset was achieved.
Then, the average classification accuracy across 16 subjects over a varying number of channels was
given to show the effectiveness of our methods. For comparison, similar strategies were also applied
to the F-score algorithm. Finally, the subject-independent channel selection problem was investigated.

3.1. Subject-Dependent Channel Selection

Firstly, the subject-dependent ReliefF weights of 128 features were computed on the
channel-selection dataset. Then SVM was used to validate the feature selection results on the
performance-validation dataset. Figure 2 shows the average classification accuracy using SVM over
a varying number of features across 16 subjects. The classification accuracy curve was obtained
by adding the features one by one, according to their ReliefF weight. Features with larger weight
will be added first. From Figure 2, it shows that the best classification performance was achieved
at a certain point of the feature number (point A, 62.59% ± 12.81% accuracy using 60 features and
30 channels involved), and then degraded with the increase of the feature number, just as we had
expected. The results show the effectiveness of ReliefF as a feature selection algorithm in emotion
recognition. However, though the number of features was reduced dramatically, the reduction of the
number of channels involved was not obvious (at point C, 20 features still need 15 channels). Table 1
demonstrates the average number of channels involved and the average classification accuracy when
using top-N features across 16 subjects. In addition, Table 2 presents the average proportion of each
class of features among the top-N features. It can be found that the high frequency bands (beta, gamma)
play a more important role in emotion processing. Similar results have also been reported in other
literatures [10,16,27], which prove the significance of ReliefF weight to some extent.
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Figure 2. Average classification accuracy over varying number of features across 16 subjects with SVM.
Point A achieves the best classification accuracy.



Sensors 2016, 16, 1558 8 of 15

Table 1. Average results (standard deviation) using top-N features and classifier SVM across 16 subjects.

Top-N Features Average Number of Channels Involved Average Accuracy (%)

4 3.25 (0.77) 51.04 (8.32)
8 6.56 (1.36) 53.47 (11.21)

12 9.44 (2.06) 55.13 (10.77)
16 12.13 (2.58) 55.49 (11.31)
20 14.88 (2.99) 56.99 (11.71)
24 17.50 (3.39) 57.58 (12.14)
28 19.50 (3.65) 58.93 (12.83)
32 21.44 (4.21) 59.70 (12.38)
36 23.25 (4.09) 60.69 (12.74)
40 24.50 (3.72) 61.09 (12.54)
50 27.25 (2.96) 61.86 (12.80)
60 29.63 (2.60) 62.59 (12.81)
80 31.13 (1.15) 60.76 (11.54)

Table 2. The average proportion of each class of features among the top-N features across 16 subjects.

Top-N Features
The Average Proportion of Each Class of Features

Theta Alpha Beta Gamma

4 0.03 0.02 0.27 0.68
8 0.04 0.09 0.18 0.69

16 0.07 0.11 0.25 0.57
32 0.10 0.12 0.29 0.49
64 0.13 0.13 0.35 0.39
96 0.20 0.21 0.29 0.30

128 0.25 0.25 0.25 0.25

With all the features’ weights computed above, we could evaluate the importance of channels in
the emotion classification task directly by means of the weights of all features belonging to a channel,
according to the MRCS method. Figure 3 shows the average classification accuracy using SVM over a
varying number of channels across 16 subjects. Channels were added one by one according to their
weights (Equation (5)). Different to the first feature-selection-based channel selection method, all the
features of the selected channels would be fed to a classifier.
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Figure 3. Average classification accuracy over varying number of channels using SVM based on the
MRCS method. Point A achieves the best classification accuracy.
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In Figure 3, employing the MRCS method, the best classification performance was achieved by
using the top 29 channels. It is worth noting that, when the number of channels was reduced from 29
(point A) to 16 (point B), the average accuracy only slightly reduced. It shows good performance in
channel reduction. Comparing point C in Figures 2 and 3, there was a similar average classification
accuracy (56.99% ± 11.71% vs. 56.56% ± 8.75%), but the number of channels involved reduced from
15 to 10.

The above two channel selection methods were independent of the classifier. Can we improve the
performance by considering channels’ contribution to classification accuracy, when using a specific
classifier, following the process of Figure 1? Figure 4 takes subject 7 as an example to illustrate the
result of the adjustment with SVM as the classifier (SVM-MRCS method). All the adjustment was done
on the channel-selection dataset (Figure 4a) according to the procedure in Figure 1, and the adjustment
result was evaluated on the performance-validation dataset with the same classifier (Figure 4b). All the
average classification accuracy was computed using a scheme of five 10-fold cross-validations. It can
be seen from Figure 4b that the performance was improved by adjusting channels’ weights according
to their contribution to classification accuracy (paired t-test, significant difference p < 0.05 when the
number of selected top-N channels is less than 20).
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Figure 4. SVM average classification accuracy over a varying number of channels for subject 7
based on MRCS (blue solid line) and SVM-MRCS methods (red hashed line). (a) adjustment on
the channel-selection dataset; (b) evaluation on the performance-validation dataset.

The average classification accuracy over a varying number of channels based on the SVM-MRCS
method across 16 subjects was shown in Figure 5. It shows that the best classification accuracy can be
achieved by using the top 19 channels (point A). More importantly, the accuracy curve becomes almost
stable when the top eight channels (point B) were used (with a slight reduction of 1% compared to
point A using 19 channels). Figure 6 and Table 3 show the comparison of the average performance
across 16 subjects between MRCS and SVM-MRCS using SVM. From the comparison, SVM-MRCS
demonstrates better performance than MRCS in channel selection (paired t-test, with significant
difference p < 0.05 when the number of selected channels is between 6 and 14). Comparing these three
channel selection methods, although the best classification performance of the latter two methods is
slightly reduced (about 3%), the number of channels was more dramatically reduced than the first
one. Especially, while a lower number of channels (less than 10 for example) is needed, MRCS and
SVM-MRCS have an obvious advantage. However, because a specific classifier was employed in the
SVM-MRCS method, computational complexity increased and the selection result perhaps was not the
optimum for other classifiers.
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Figure 5. Average classification accuracy over a varying number of channels using SVM based on the
SVM-MRCS method. Point A achieves the best classification accuracy.
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Figure 6. Average performance comparison across 16 subjects between MRCS and SVM-MRCS
using SVM.

Table 3. The comparison of MRCS and SVM-MRCS methods using top-N channels.

Average Accuracy (Standard Deviation) Using Top-N Channels

Top-N MRCS SVM-MRCS Top-N MRCS SVM-MRCS

3 51.95 (8.23) 52.86 (8.41) 12 56.93 (8.95) 58.40 (10.20) *
4 52.94 (7.49) 55.08 (8.98) 13 57.06 (9.01) 58.54 (10.08) *
5 54.51 (8.30) 56.39 (8.95) 14 57.38 (9.38) 58.78 (10.27) *
6 54.66 (8.89) 57.39 (9.52) ** 15 57.79 (9.34) 58.73 (10.40)
7 55.34 (8.90) 57.71 (9.53) ** 16 58.05 (9.83) 58.97 (10.75)
8 56.55 (8.92) 58.16 (9.47) * 17 58.34 (9.63) 59.08 (10.92)
9 56.62 (8.98) 58.51 (10.05) * 18 58.21 (9.61) 59.10 (11.05)

10 56.56 (8.75) 58.43 (9.90) * 19 58.22 (9.80) 59.13 (11.00)
11 56.53 (8.72) 58.31 (10.05) * 20 58.09 (9.79) 58.93 (10.95)

The significant difference was tested under the same number of selected channels (paired t-test, * p < 0.05,
** p < 0.01).

3.2. Comparison with F-Score as Feature Selection Method

F-Score is another widely used simple and effective feature selection method, which also can
measure the ability of features in discriminating different classes. For a set Xk ∈ Rm, k = 1, 2, ...,
n, l (l ≥ 2) is the number of classes, nj is the number of samples belonging to class j (j = 1, 2, ..., l).
The F-score value of the i-th feature is defined as
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Fi =

l

∑
j=1

nj×(X
j
i − Xi)

2

l

∑
j=1

nj

∑
k=1

(X
j
ki − X

j
i)

2
, (8)

where, X
j
i and Xi are the average value of the i-th feature on the class j dataset and the whole dataset,

X
j
ki is the i-th feature of the k-th sample of the class j.

We replaced ReliefF with the F-score to compute the features’ weights, and implemented the
above three channel selection strategies with the new F-score weights. The results and the comparison
are shown in Figure 7. It can be seen from the comparison that our RelifF-based channel selection
methods gave better performance (paired t-test, p < 0.05 when the number of selected features is
less than 77 in the first method (Figure 7a), and p < 0.05 for all 32 cases in the other two methods
(Figure 7b,c).
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Figure 7. Comparison between ReliefF and F-score as a feature selection method with SVM.
(a) a feature-selection-based channel selection method; (b) a channel selection method based on
the channel’s weight obtained from the mean of the ReliefF or F-score weights of all features belonging
to this channel; (c) a channel selection method based on the channel’s weight adjusted according to the
channel’s contribution to classification accuracy.

3.3. Subject-Independent Channel Selection

The above results demonstrate the effectiveness of our methods, but all the experiments were
performed subject-dependently. Channels were selected individually, and different among subjects.
How to find common characteristics among different individuals is a natural problem. The study of
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selecting subject-independent channels related to emotion processing is crucial in the design of an
on-line practical emotion recognition system. Furthermore, the results can help us to understand the
relationship between brain regions and emotional processing.

In this study, to evaluate the importance of channels in emotion recognition subject-independently,
every channel was weighted by accumulating the weight of the corresponding channels’ 16 subjects,
and then ranked. For the purpose of generality, the channel’s weight for a specific subject was
obtained from the mean of the ReliefF weights of all the features belonging to this channel.
The subject-independent weight of the kth channel was computed as

W(Tk) =
SN

∑
s=1

W(Tsk), (9)

where, SN is the number of subjects (16 subjects), W(Tsk) is the weight of the kth channel of the subject s.
Then, the average accuracy, over a varying number of the weighted common channels in

classifying four emotional states across 16 subjects, was given with classifier SVM, which is also
obtained on the performance-validation dataset by five 10-fold cross-validations. The result is shown
in Figure 8. Table 4 lists the top 15 common channels and Figure 9 shows the top 5, 10, 15 common
channels’ locations in a 10–20 system.
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Figure 8. The subject-independent channel selection result.

Table 4. The top 15 common channels across 16 subjects.

Channel Rank Electrode Brain Lobe

1 Fp1 Frontal
2 T7 Temporal
3 PO4 Parietal
4 Pz Parietal
5 Fp2 Frontal
6 F8 Frontal
7 Oz Occipital
8 T8 Temporal
9 P4 Parietal

10 O1 Occipital
11 AF4 Frontal
12 FC5 Frontal
13 C3 Central
14 FC2 Frontal
15 P3 Parietal
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Figure 9. Top 5 (a); 10 (b); 15 (c) subject-independent channels according to a 10–20 system.

Figure 8 shows that the average accuracy curve tends to be stable when the top-12 channels were
selected, and the average accuracy of 57.67% ± 10.02% was obtained, compared with the accuracy of
58.75% ± 10.78% by using the top-32 channels. This result shows the possibility to design a practical
subject-independent emotion recognition system using less EEG sensors. In addition, from Table 4,
most top channels were located at frontal and parietal lobes and distributed symmetrically. This result
was consistent with the previous report [12,18].

4. Discussion

Now, we will explain and discuss several important issues using the results presented above.
The necessity of channel selection in EEG-based emotion recognition has been vividly verified by
the results. Using any method proposed in this paper, similar trends were derived which showed
that the best classification performance was achieved at a certain point, and then degraded with the
increase of the channel number involved, just as we had expected. However, it should be noted
that the decrease after achieving the best performance was slight, if any, so the significance of EEG
channel reduction mainly lies in reducing computational complexity and facilitating user convenience,
rather than improving the classification performance. Furthermore, most of the accuracy curves
become almost stable before arriving at the best point. For the perspective of practical usage, the point
achieving the best classification accuracy may not be the reasonable choice. We hope to find a point as
a tradeoff between the classification accuracy and the number of features (channels) involved. In this
respect, the MRCS and SVM-MRCS methods can give better performance in channel reduction with an
acceptable loss of accuracy. It is easy to understand the better performance of the latter two methods
in channel selection, because they directly evaluate a channel as a unity and use all information
contained in this channel while implementing a classification task. The last method achieved the
best performance among these three methods, but it should be noted that a classifier was used to
adjust channels’ weights in channel selection. Although the result derived from the third method is
classifier-dependent, it is still useful in practical applications where a classifier is usually determined.

From the results of subject-independent channel selection (Table 4 and Figure 9), it is shown
that, with the exception of the electrodes from the frontal and parietal lobe, electrodes located in the
temporal and occipital lobe also play an important role. This phenomenon is probably related with
the stimuli type. In a DEAP dataset, emotional states were elicited by using music videos, including
acoustic and visual stimuli which are mainly processed in temporal and occipital regions respectively.
It is an interesting problem for further research.

5. Conclusions

We have systematically investigated ReliefF-based channel selection algorithms for EEG-based
emotion recognition. Three methods were employed to quantify channels’ importance in classifying
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four emotional states (joy, fear, sadness and relaxation). The experiment results showed that channels
involved in the classification task could be reduced dramatically with an acceptable loss of accuracy
using our methods. The strategy of evaluating a channel as a unity gave better performance in channel
reduction. In addition, the subject-independent channel selection problem was also investigated and
achieved a good performance. The channels selected subject-independently were mostly located at the
frontal and parietal lobes; they have been identified to provide discriminative information associated
with emotion processing, and these channels are distributed almost symmetrically over the scalp.
The results are important for the practical EEG-based emotion recognition system.
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