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Relocating Underwater Features Autonomously

Using Sonar-Based SLAM
Maurice F. Fallon, John Folkesson, Hunter McClelland, and John J. Leonard

Abstract—This paper describes a system for reacquiring fea-

tures of interest in a shallow-water ocean environment, using
autonomous underwater vehicles (AUVs) equipped with low-cost

sonar and navigation sensors. In performing mine countermea-

sures, it is critical to enable AUVs to navigate accurately to
previously mapped objects of interest in the water column or on

the seabed, for further assessment or remediation. An important

aspect of the overall system design is to keep the size and cost of
the reacquisition vehicle as low as possible, as it may potentially be

destroyed in the reacquisition mission. This low-cost requirement

prevents the use of sophisticated AUV navigation sensors, such as a
Doppler velocity log (DVL) or an inertial navigation system (INS).

Our system instead uses the Proviewer 900-kHz imaging sonar

from Blueview Technologies, which produces forward-looking
sonar (FLS) images at ranges up to 40 m at approximately 4 Hz. In

large volumes, it is hoped that this sensor can be manufactured at

low cost. Our approach uses a novel simultaneous localization and
mapping (SLAM) algorithm that detects and tracks features in

the FLS images to renavigate to a previously mapped target. This

feature-based navigation (FBN) system incorporates a number
of recent advances in pose graph optimization algorithms for

SLAM. The system has undergone extensive field testing over a

period of more than four years, demonstrating the potential for
the use of this new approach for feature reacquisition. In this

report, we review the methodologies and components of the FBN

system, describe the system’s technological features, review the
performance of the system in a series of extensive in-water field

tests, and highlight issues for future research.

Index Terms—Marine navigation, marine vehicles, mobile

robots, sensor fusion, simultaneous localization and mapping
(SLAM), sonar detection, synthetic aperture sonar, underwater

technology.

I. INTRODUCTION

N UMEROUS scientific, military, and commercial ap-

plications of autonomous underwater vehicles (AUVs)

can benefit from the capability to renavigate to objects of

interest that have been mapped during a previous mapping
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session. One such application is the neutralization of mines in

shallow water—a task that has traditionally been carried out by

human divers. The potential for casualties has motivated the

development of unmanned systems to replace human divers.

While a tethered robotic vehicle could be remotely controlled

to perform mine countermeasures (MCMs), a solution using

untethered AUVs offers numerous mobility and independence

advantages. Our goal for this work is to enable small, low-cost

AUVs to robustly reacquire previously mapped features of

interest, whether floating in the water column or lying on the

seabed.

When mission requirements dictate that vehicle cost must be

extremely low, the navigation problem for feature reacquisition

is quite challenging. The primary challenge is to achieve good

navigation performance using only very low-cost sensors. To do

this, we propose to use an a priori map, built by other vehicles

with more capable (and expensive) sensing as input to our fea-

ture-based navigation (FBN) software running on the low-cost

reacquisition vehicle.

The ocean environment places severe challenges on the op-

eration of AUVs. Communication with an untethered AUV via

acoustic modems is typically restricted to low rates (bytes per

second) and with several seconds of latency, such that interac-

tion with the AUV is primary restricted to command and control

of the vehicle [1]. Furthermore, due to the scattering and absorp-

tion effects of water, typical terrestrial sensors such as LIght De-

tection and Ranging (LIDARs) and cameras are not suitable for

use in many environments of interest. Finally, operational con-

ditions in littoral waters are often challenging with high tides,

wind-driven currents, and wave surge, which all heavily af-

fect the robot’s position estimation as well as increasing op-

erator risk during field operations. Access to the Global Posi-

tioning System (GPS) is not possible underwater and acoustic

long-baseline transponders (and related technologies) can drift

or be lost during the time lapse between deployment and use in

a mission.

Nevertheless, unmanned underwater vehicles deployed with

expensive inertial sensors, such as Doppler velocity loggers

(DVLs) and fiber optic gyroscopes (FOGs) can successfully

negotiate complex underwater terrains [2], [3]. Sophisticated

instruments of this type would enable an AUV to navigate to

and relocalize a mine, however the neutralization would be

prohibitively expensive. Less costly (and, therefore, expend-

able) AUVs, guided with only onboard inertial sensors, would

typically encounter performance problems that would render

them inefficacious in carrying out MCM.

Therefore, we have developed an approach based on the use

of low-cost forward-looking sonar (FLS) technology to estimate
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vehicle motion as well as the location of features of interest so as

to reach the a priori designated feature of interest (FOI). In this

paper, we describe the components of the system including FLS

feature detection and tracking, local map estimation, global map

matching, and terminal homing. The structure of the remainder

of this document is as follows. Section II provides an overview

of the FBN system for target reacquisition. Section III describes

the Proviewer FLS and provides a detailed overview and perfor-

mance analysis of the sonar processing tool chain we have de-

veloped. Section IV discusses the SLAM engine at the heart of

our AUV’s navigation system before explaining how this map

can be matched to an a priori map in Section V. Section VI

presents some examples of the performance of our system in

increasingly difficult operating scenarios. Finally, Section VII

concludes this paper with a summary of our contributions and a

discussion of issues warranting future research.

II. SYSTEM OVERVIEW

Our mission scenario envisages revisiting a FOI located

on (or slightly above) a seabed and surrounded by significant

clutter. To aid in this task the feature field is first uniformly

surveyed by a high-quality AUV [such as the REMUS 100

in Fig. 1(c)] that navigates using acoustic beacons or an iner-

tial navigation system (INS) with a DVL to acquire accurate

sidescan sonar data of the region of interest. Using the sidescan

sonar data, a mosaic can be generated, as illustrated in Fig. 2.

Human operators then analyze this imagery to extract an a

priori map of features as well as identifying the FOI. The accu-

racy of the feature locations in this map is typically 5 m. These

features may be man-made or natural objects on the seafloor as

well as moored objects in the water column and represent the

“local universe” of the FOI. The features varied greatly in size

and shape, and were typically less than 1 m in diameter.

This map and the location of the FOI acts as input to a second

low-cost relocalization vehicle. In the mission scenario, we aim

to release this vehicle at a distance of 100–1500 m from the

center of the prior map and have it swim at the surface close to

the feature field before diving to the seabed. Upon reentering

this feature field, the vehicle will extract features from its sonar

imagery and use these features to build a map, while concur-

rently estimating its position. This process is commonly known

as simultaneous localization and mapping (SLAM) [4].

Having reobserved a sufficient number of features, the AUV

will localize relative to the a priori map and then home to the

FOI. If successful, the AUV will self-detonate or place an ex-

plosive charge. Because of this, the vehicle is not intended to

be recoverable. For these reasons, a low-cost vehicle design re-

quirement has had significant impact on the SLAM algorithms

mentioned here. More detail about the reattachment process can

be found in Section V-C.

Test runs of these reacquisition operations have been con-

ducted over several years on three different vehicles, shown in

Fig. 1: an iRobot Ranger, an iRobot Transphibian; and a Hy-

droid REMUS 100.

A. Overview of Vehicles Used

The primary platform used during development has been the

iRobot Ranger AUV [5]. This vehicle was equippedwith a depth

Fig. 1. The AUVs used in the project: (a) iRobot Ranger—a low-cost
single-man portable AUV; (b) iRobot Transphibian equipped with fin actuators
to allow for six-degree-of-freedom maneuverability; and (c) Hydroid REMUS
100 used primarily as the survey vehicle.

Fig. 2. A typical prior map generated using a REMUS 100 equipped with a
MarineSonics sidescan sonar. A series of features were extracted by trained
human operators from the sidescan sonar imagery to produce this map for the
target reacquisition mission. The distance between the features is approximately
20 m. Figure courtesy of SeeByte Ltd.

sensor, an altimeter, a GPS receiver, a 3-D compass, an acoustic

pinger, and a Blueview Proviewer 900-kHz FLS. The vehicle’s

design was intended to be low cost and lightweight. As indicated

by Fig. 1(a), it is single-man portable and deployable.

The design of the vehicle incorporates a servoed propeller,

which allows the vehicle to be highly maneuverable with a tight

turning radius of 0.5 m. This compares to 10 m for the REMUS

100. This is of particular importance for the target homing at

the end of the mission (see Section V-C) as a vehicle with a
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lower turning radius can more reliably seek to its intended target

without needing to come about (and potentially loose track of

the target).

Since dead reckoning is the prime source of error growth,

minimizing the distance to turn-and-capture increased the

chance of a successful mission. The cruising speed of the AUV

is quite low at about 0.6 m/s, comparable with typical ocean

surface currents. Thus, the dead-reckoning error due to the

current can be quite significant. For that reason, we developed

a method to estimate the ocean current online. Our approach is

discussed in Section II-B.

The vehicle specifically did not have a DVL, used for precise

velocity estimation, due to cost limitations. Currently available

DVLs cost approximately $20 000. It would be remiss of us not

to mention that the current range of FLS devices are comparably

expensive, however the manufacturer expects that mass produc-

tion can reduce cost by an order of magnitude, as the current

price is related to the initial cost of research and development.

Nonetheless, the utility of the capabilities outlined herein go far

beyond this particular application.

Additionally, underwater vehicles typically use industrial

processor designs that have more limited processing capability

than typical desktop computers. This places severe computing

restrictions on the operating vehicle, which we will discuss in

Section III.

Other Vehicles: While most of our testing focused on the

Ranger AUV, some experiments were also carried out with a

biologically inspired AUV—the Transphibian [6]—which is

equipped with fin actuators to allow for six-degree-of-freedom

maneuverability and a variable buoyancy engine allowing for

complete servoing around the FOI. Finally, while the Hydroid

REMUS 100 was primarily used as a survey vehicle (as dis-

cussed in Section IV), it has also been used in the experiments

to evaluate some sonar detector benchmarks in Section III-B.

Doing this also demonstrates the generality of the algorithmic

solution we have proposed.

B. Vehicle Dead Reckoning and Current Estimation

At the core of our SLAM system is a dead-reckoning al-

gorithm similar to others presented in the literature. High-fre-

quency depth estimates, altimeter altitudes, GPS fixes, and com-

pass estimates of roll, pitch, and heading are fused with actu-

ation values (orientation of the servoed propeller and the es-

timated propeller rotation speed) by propagating a typical ex-

tendedKalman filter (EKF) to produce an estimate of the vehicle

position and uncertainty. Consider [7] for a full overview of the

state of the art. In benign current-free conditions, with careful

tuning and excellent compass calibration, this procedure pro-

duced a dead-reckoning estimate with about 1%–2% error per

distance traveled. However, as we transitioned to more realistic

test locations, a more typical error was of the order of 3%. By

comparison, FOG-based navigation systems can achieve drift

rates below 0.1% in the open ocean. See [8] for a list of such

systems.

In current-prone conditions in later stages of the project (as

discussed in Section VI) a current estimation model was devel-

oped so as to reject the vehicle’s drift in this situation. (Because

of the nature of this project, it was not possible to use the afore-

mentioned DVL-enabled vehicle’s estimate of the current pro-

file.) Immediately prior to a mission, as the AUV approaches the

feature field, it was programmed to carry out a series of dives of

increasing depth (between three and five in total). Between each

dive, it surfaced and used GPS fixes to compare its actual posi-

tion to the position estimated without factoring in current mod-

eling, and then used those comparisons to compute the ocean

current estimate. No acoustic Doppler current profiler (ADCP)

was present on the vehicle.

Estimating the current profile in this manner is problematic

for a number of reasons—primarily because the parameters at

greater depths are estimated using those at shallower depths.

Additionally, the following issues are not and cannot be mod-

eled using our sensor suite:

1) momentary surge currents;

2) currents rising and falling in the horizontal water column;

3) current profiles with numerous layers moving in different

directions at unknown depths;

4) foreign objects altering the vehicle dynamics (such as sea-

weed entangling the propeller).

Aware of these limitations, we assumed a two-current model:

a surface current ( , primarily due to wind) and a deeper laminar

current ( , due to the tide). These currents are estimated as 2-D

vectors in the horizontal plane.

At depths less than 0.5 m, the surface current is assumed to

be dominant. Below this there is a transition between the two

currents. Finally, at the seabed, the laminar current decays to

zero—fitted as a square root to the vehicle altitude. Numerically,

the combined current vector at a specific depth is

(1)

where is the AUV altitude, is the AUV depth, and is

the depth weighting of the surface current and was calculated as

follows:

for

and

otherwise
(2)

where 0.5 m, representing the boundary between the sur-

face region and the rest of the water column, and was

empirically fixed to degrade this effect with increased depth.

This simplistic model performed reasonably well in smaller

currents (below 0.3 m/s) and allowed the AUV to locate the fea-

ture field after ingressing using solely dead reckoning. After en-

tering, the field success was primarily due to the sonar-based

SLAM algorithm (outlined in Section IV). At 0.3 m/s, we were

able to enter the field approximately 85% of the time using this

model, and we estimate the error as about 5% per distance trav-

eled.

However, when operating in high currents (close to or greater

than the velocity of the vehicle), this model was not sophisti-

cated enough to produce a sufficiently accurate position esti-

mate for the AUV to find the feature field. While the vehicle

could surface to reacquire GPS and then try again, the ocean-

current-to-maximum-AUV-speed ratio of 50%–70% represents
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Fig. 3. This 45 blazed array sonar consists of two perpendicular heads, each made up of a pair of 22 sonar transducers (left). Each head produces a raw image,
the upper pair (right), which we then automatically process to detect the features marked in the lower pair (right). In each case, the vertical image is above the
horizontal image. Both images are presented in polar coordinates with increasing ranges to the right, and right-to-left angle going vertically up. Note that the
distinctive line in the vertical image is the observation of the seabed (which appears curved due to the use of polar coordinates here).

a limitation to this or any other AUV perception system. This

limitation is further discussed in Section VII.

As this system was developed in the absence of independent

measurements of the currents at different altitudes, we refer the

interested reader to a more fundamental treatment of ocean dy-

namics such as that presented in [9]. Given the limitations of

our approach, a more accurately guided AUV is likely to have

greater success in these challenging current regimes.

III. PROVIEWER FLS PROCESSING

The sonar is our most important sensor: enabling the AUV

to observe the features in its environment and to act based on

these observations. During the project, a series of Blueview

Proviewer FLS sonars were used. In this section, we give an

overview of the sensor technology before presenting our sonar

processing algorithms in Section III-A.

The Proviewer FLS operates using blazed array technology

[10]. Typically, the sonar consisted of two heads (horizontal and

vertical) each with a field of view (FOV) of 45 . Units with 90

and 135 FOV were later used and the statistics presented in

Section III-B were calculated using the 90 version. Each head

is made up of individual 22.5 sonar transducers, as illustrated

in Fig. 3. Additionally, the horizontal transducers were tilted

down 5 to best image the seabed as the vehicle typically flew

horizontally and about 2 m above the sea bottom.

The sensor works by transmitting an ensonifying signal (col-

loquially known as a “ping”), which reflects off of objects of

incidence (in particular, metal and rock) and is received by the

transducer. The phase, amplitude, and delay of the returned sig-

nals are processed to produce the pattern indicated in Fig. 4. This

return is evaluated for each array element with 1 resolution in

the plane of the head, and the output is then fused together by

Blueview’s onboard software to produce the image in Fig. 5.

Fig. 4. This figure illustrates the sonar image generation process for a single
sonar beam. Each beam return is a vector of intensities of the returned sonar
signal with objects of high density resulting in high returns and shadows formed
by lower intensities.

Sonar image formation is dramatically different from regular

optical image formation [11]. Due to the reflected ensonifica-

tion, the primary visual cue of the location of a feature is often

not at its location, but rather beyond it, as indicated by a shadow

of intensity values below the noise floor, in Fig. 4. This, coupled

with some increased amplitude and a gradient at the feature lo-

cation, are the primary cues used in Section III-A to extract fea-

tures. The length of the shadow can be indicative of the height

of the feature, although moored features result in features de-

tached from their shadows.

The outgoing sonar signal also has a significant lobe width,

20 , which means that there is significant ambiguity as

to the location of the object in the axis normal to the sensed

plane. In Section IV-B and Fig. 9, we explain how we fused

these observations so as to estimate the elevation of detections

using only the horizontal image.
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Fig. 5. Typical underwater camera and sonar images (approximately synchronized). The clear water and well-lit scenario represents some of the best possible
optical conditions, nonetheless visibility is only a few meters. The 90 blazed array sonar horizontal image indicates three features (one at 5 m in front; one at 20
m and 5 to the left; and one at 35 m and 40 to the left), which is more than typical.

A. Sonar Feature Detection

In this section, we outline our algorithms that extract point

features from regions of high contrast. Williams et al. [12] im-

plemented a similar processing pipeline to ours: beginning with

raw data and progressively processing it to extract point fea-

tures which are then tracked to carry out SLAM. Related pre-

vious work in our laboratory [13] also implemented a similar

tool chain, but was focused on dense registration rather than ex-

plicit point feature detection and extraction.

In related work, Ruiz et al. [14] performed online sidescan-

based SLAM, but, as they suggest, this approach is not suit-

able for single pass operations such as the proposed mission.

Fairfield et al. [15] utilized pencil-beam sonars to map flooded

tunnels and sink holes. Using a particle filter, this approach can

avoid explicit data association but the environment considered

is quite different from the open ocean. Meanwhile, FLS has also

been used for obstacle detection and path planning [16]. In this

application, the feature extraction is focused on conservative es-

timation of all detected objects given the noisy output of the

FLS systems. Finally, Clark and Bell [17] describe multitarget

tracking of multiple features from an FLS using a probability

hypothesis density (PHD) filter.

The processing tool chain is carried out on the polar coordi-

nate image produced by the Blueview SDK (Fig. 3) rather than

the Cartesian image (Fig. 5). The maximum range of the Blue-

view FLS is 40 m, and images are typically processed at 3–4 Hz.

Objects were typically visible up to 20 m away, while brightly

reflective objects are detectable at 40 m.

Given the performance requirements of the platform, the al-

gorithm is required to be adaptive to bottom-reflective bright-

ness. This is achieved by the online estimation of an average

background image immediately after the vehicle levels out at its

cruising depth. Estimating this background noise image, which

is highly dependent on pitch and altitude as well the seabed

material, is essential to achieve excellent performance in both

sandy and muddy bottomed environments.

The steps used to process the images are as follows:

1) form a 50 157 image of the vertical head sonar data (as

in Fig. 3);

2) find sea bottom, altitude, and relative slope using line ex-

traction;

3) if slope (i.e., vehicle pitch) is too far from level flight, stop

processing;

4) form a 50 157 image of the horizontal head sonar data;

5) using the altitude (from step 2), select an altitude-specific

averaged background image;

6) lowpass filter the current horizontal image into the back-

ground image;

7) subtract the background image from the horizontal image

to form the shadow image;

8) segment vertical image into bottom and open water re-

gions;

9) segment horizontal image into three regions: a) near-field

open water, b) ranges where the bottom is sufficiently

bright to see shadows, and c) the remaining range out to

40 m;

10) lowpass filter along each bearing to eliminate very small

features and noise;

11) search for edges as gradients in each segment with thresh-

olds based on the average background image level (this

gives some adaption to different bottom types);

12) search for a feature indicated by a bright area close to the

sensor followed by a shadow (below the noise floor);

13) select for output any features found in both heads as well

as the strongest remaining detections in each segment.

This relatively simple detection algorithm is implemented using

integer arithmetic and optimized for speed. This tool chain is

similar to that presented previously in [13], including the figures

presented therein.

In terms of computing load, the feature detector uses little

processing power. The formation of the input image (using the

Blueview SDK), the input to this process, requires a substantial

180 ms per image. The feature detector requires about 18 ms,
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Fig. 6. (a) Typical feature detection performance. The AUV is on the left-hand side, and its 90 sonar footprint is indicated by the red wedge. Each purple dot
indicates a sonar point feature extraction. Two features at the center of the footprint have been detected several times. The third feature located at the side of the
sonar footprint would not have been recognized using a 45 FOV sonar. The scale of the grid is 5 m and the maximum range 40 m. (b) Analysis of the average
number of features detected at any instance during our missions, while varying the sonar FOV.

while the remaining central processing unit (CPU) power is used

to fuse the measurements, to make high level mission decisions,

and to control the AUV.

Ongoing work by the manufacturer to reduce this time (by

forming the sonar image on the device) would allow a great in-

crease in the processing frequency, which, in turn, will improve

the tracking and mapping performance.

B. Sonar Processing Performance Evaluation

To benchmark the performance of the feature detector, we

present a series of experiments, in which a 90 FLSwas attached

to the FOG-enabled REMUS 100 in Fig. 1(c). Patterns similar

to the missions outlined in Section VI were carried out. Because

of the shortness of the missions (10–15min) and quality of navi-

gation, the AUV accumulated negligible positioning error when

compared to the Ranger platform, and, in what follows, we as-

sume its position estimate to be the “ground truth” position.

The vehicle navigated a field of features arranged as in Fig. 2

whose prior locations were accurate to about 5 m. Four different

missions on the same feature field were carried out from dif-

ferent directions and along different approaches. A total of 17

features were in the field: a mixture of natural and man-made,

both moored and lying on the seabed. Time spent within the

feature field was typically 180 s, during which about 300 sonar

pings were detected. The vehicle traveled at approximately 1.3

m/s. Typical feature detection performance is shown in Fig. 6.

1) Precision: The first metric we will consider, precision, is

the ratio of correctly detected features to the total number of

extracted features. We define a correctly detected feature as one

which lies within a certain distance of a point feature

from the a priori map

if

otherwise
(3)

where represents the Euclidean distance between

the two entities—evaluated in 2-D for simplicity. The detection

ratio is then simply

(4)

where is the total number of features detected. lies in the

range .

Results are presented in Fig. 7. In summary, approximately

70% of detections fall within 3m of a prior map feature location.

The remaining 30%, falsely detected noise were uniformly dis-

tributed in the rest of the sonar sensor footprint.Mission 2 exhib-

ited significantly more turning motion; we believe that timing

latency is to blame for the performance reduction in this case.

2) Recall: A second metric is that of recall—how frequently

is a particular feature detected when the sonar senses the area

in which it is located. To measure this parameter, we count the

number of times that a feature is detected within 5 m of a prior

map feature and express it as a fraction of the total number of

times that the sonar sensed the location of the prior map feature

, which is simply

(5)

If , then each time it was possible to sense feature , it

was detected. Meanwhile, means the feature could not

be detected at all (probably because it was indistinct, obscured,

or perhaps a mistake in the prior mapping process). This metric

is presented in Fig. 7 for the same four missions.

For each mission, a dot represents the recall rate of a partic-

ular prior map feature, while the bar indicates the median recall

rate across all features. In the case of Mission 1, on average, we

detected each feature in two of every three scans that sensed the

area in which it was located.
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Fig. 7. Sonar detection statistics for four typical missions. (a) The percentage of detections lying within a certain distance of the actual feature locations (in
meters). (b) The frequency with which a feature is detected, given that the sonar sensor actually sensed that location. Each dot refers to a specific feature while the
bar represents the median. See Section III-B for more detail.

3) Field of View: Using the detections from the above ex-

periments, we also considered the effect of artificially varying

the FOV of the sonar. We evaluated which feature extractions

would have occurred for FOVs smaller than the 90 actually

used.

In the case of a 45 sonar, the results show that, on average,

1.5 features would have been visible at any one time during

these missions. This figure rose to 2.5 features for the 90 sonar.

This gives an indication of the sparsity of information available

to the navigation algorithm. In particular, for perfect data asso-

ciation, it was typically not possible to uniquely determine the

AUV’s position using only a 45 sensor.

Due to the mechanical design of the sonar transducers and

the small diameter of the Ranger AUV, all experiments in

Section VI were run with a 45 sonar. Given this low aperture

size, the sampling frequency, and the vehicle velocity, the AUV

typically had to pass within 5 m of a bottom feature so as to

observe it frequently enough to reliably detect it.

While these results illustrate encouraging performance of the

sonar detector, inaccurate dead reckoning and a sparse feature

field (often with one or no features visible at any particular time)

mean that using feature detections alone to infer the vehicle’s lo-

cation in not possible. In Section IV, we discuss how the output

of the detector is fused with the AUV navigation to jointly esti-

mate its location and the relative position of the features.

IV. MARINE MAPPING AND LOCALIZATION

SLAM is a core skill of any intelligent autonomous robot:

jointly estimating its position and the world around it as it ac-

tively explores. The SLAM field has developed a rich literature,

including EKF-based approaches such as [18] and [19], and

particle filter approaches, including FastSLAM and GMapping

[20], [21]. The former approaches suffer from a loss of informa-

tion due to the linearization decision inherent in the EKF cor-

rection step [22]. Although the particle filter approaches solve

this problem through Monte Carlo sampling, the loss of diver-

sity during a loop closure means that, for any large-sized explo-

ration, a prohibitively large number of particles is required.

The state of the art has emerged to be nonlinear optimization

of the graph of the vehicle trajectory and feature observations.

In this approach, the linearization points are regularly reevalu-

ated allowing us to maintain a consistent solution, which can be

efficiently solved online. Our implementation uses an approach

similar to the square root smoother [23], [24].

The joint probability distribution of the vehicle trajec-

tory , the sonar feature detections

, and the dead-reckoning measurements

between successive poses are given by

(6)

where represents the vehicle pose while observing the sonar

feature at a relative position . is a prior on the

initial pose.

Themaximum a posteriori (MAP) estimate of the vehicle tra-

jectory can then be formed given the measurements. Denoting

this estimate , the resultant MAP estimator is given by

(7)

Our solution, originally described in [25], incrementally

solves this nonlinear least square (NLS) optimization with

some considerations for the marine environment and our lim-

ited processing capability. We start by initializing the graph

with the GPS position of the AUV at dive and then add a new

node to the graph representing each incremental change in

AUV pose (which is synchronized to a sonar ping).
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The dead-reckoning and sonar measurements are added to

the measurement matrix (at time ), which corresponds to

the square root of the information matrix . The information

matrix is in turn the inverse of the covariance matrix for the

measurement

(8)

Solving (7) is equivalent to minimizing the cost of the NLS

optimization

(9)

With each additional measurement , this cost grows as

(10)

where is the change in state from the current estimated state

(where and are evaluated). is the measurement mean

and the matrix characterizes the measurement covariance.

This is added to all the previous terms and the resulting

sum minimized by adjusting the state

(11)

Matrix is incrementally formed by stacking while is

the state vector formed by stacking . As a result, has rows

for each measurement component and columns for each state

component.

The measurement matrix can then be decomposed as

with upper-triangular Cholesky triangle and an or-

thonormal matrix. Theminimum cost state is then found by back

substitution

(12)

where . Upon adding a new , we can append it to

the matrix, and the subsequent decomposition step involves

only the last few states.

The complexity of this system of equations is tied to the

sparseness of the matrix, which is itself dependent on the

fill-in caused by loops in the graph structure.We explicitly avoid

carrying out loop closures in this filter so as to maintain spar-

sity. All of this ensures that the matrices remain sparse and com-

putation complexity predictable. Decomposition will not grow

in complexity at each iteration while the computational cost of

back substitution will grow, but it is linear.

A. Composite Measurements

So as to avoid computational growth due to an ever increasing

graph size and to produce an input to themapmatching stage, we

periodically rationalize the oldest measurements from this graph

to form a composite measurement. To do this, we marginalize

out all the poses that have occurred during the previous (ap-

proximately) 10 s period to produce a single node for the rela-

tive motion for that period as well as nodes for fully detected

features and the associated covariances. This approach is sim-

Fig. 8. The estimation problem can be viewed as a graph. As the robot explores,
a pose (black) is added to the graph at each iteration while feature detections
(red) are also added to produce a dense trajectory. This dense trajectory is very
large so we periodically marginalize portions of the trajectory and the feature
observations into composite measurements (green) at a much lower rate. The
composite measurements are the input to the matching algorithm in Section V.

ilar in concept to key frames in Vision SLAM and is illustrated

in Fig. 8.

The specific choice of 10 s is related to the speed of the AUV

and the separation of the features. Also doing so at this rate

(corresponding to one node every approximately 100 velocity

measurements) keeps the optimization problem relatively small.

We time this marginalization step to occur after a feature has

left the sonar FOV as this allows us to optimally estimate its

relative location given all available information. This composite

measurement is then added to a lower frequency higher level

graph. This low-frequency graph is used as input to the prior

map-matching algorithm in Section V. Meanwhile, the high-

frequency graph begins to grow again by the insertion of newer

constraints into .

An alternative approach would be to maintain the dense tra-

jectory of the robot pose at all times. This is the approach taken

by iSAM [26], however, given the size of the resultant graph,

we are not certain that such an approach would have been able

to yield a computationally constant solution required for our

low-powered embedded CPU onboard the AUV.

Additionally and unlike most land-based systems, the under-

water domain is characterized by extended periods where the

seabed is featureless for long distances. In that case, the resul-

tant composite measurement is simply the relative trajectory of

the distance traveled.

B. Feature Tracking

While Section IV-A explains how the graph of the trajectory

and sonar observations is optimized and efficiently solved, we

have not discussed the way in which sonar features are pro-

posed.

The sonar detector passes point extractions to a feature

nursery which maintains a vector of all recent detections. The

nursery feature projects the detections into a local coordinate

frame using the recent vehicle dead reckoning and uses a prob-

abilistic distance threshold to associate them with one another.
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Fig. 9. A side-view pictorial illustrating convergence of feature height esti-
mates for moored and bottom features—left and right columns respectively. On
the left of each pictorial, an AUV (blue triangle), at 2.5-m altitude, approaches
a feature (located at 35 m) and senses it (as indicated by the magenta line) with
a horizontal sonar facing 5 down. The intensity of the feature detection infers
a set of plausible off-beam heights (the red line indicates beam width). Mul-
tiple observations allow the altitude probability density function (pdf) to
converge to within a couple of meters. In the case of the bottom feature, no de-
tections for the final two frames infer that the feature is below the main beam
width. In real experiments, a feature could be detected as many as 30 times.

Should a sufficiently large number of detections be clustered

together (approximately 7–8, dependent on the spread and

intensity of detections), it is inferred that a consistent physical

feature is present.

At this stage, the nursery feature is added to the square root

smoother. All of the relative AUV-to-point constraints for that

feature are then optimized, which results in improved estima-

tion of the feature and the AUV trajectory. Subsequent point

detections, inserted directly into the pose graph, result in an im-

proved estimate via further square root smoothing.

This approach also estimates the height/altitude of the sonar

feature, using the 2-D sonar intensities measured at each itera-

tion. This amplitude distribution is non-Gaussian, and wemodel

it instead as a cubic-normal distribution

(13)

where is the actual measured intensity. This distribu-

tion is characterized as being relatively flat within the nominal

lobe width before dropping off quickly a few degrees be-

yond the lobe edge. This allows us to differentiate bottom from

moored features. See Fig. 9 for a pictorial showing the height

estimate of a feature position converging.

Finally, it should be noted that the input to this feature tracker

are point features characterized only by their location and co-

variance, due to the low resolution of the sonar sensor. This

makes it difficult to robustly associate nonconsecutive obser-

vations and, hence, to infer SLAM loop closures on the graph

structure.

Additionally, clusters of nearby targets were prone to being

mistakenly clustered into a single combined target. More careful

estimation of target clusters is an interesting avenue of future

work as well as being a possible avenue for successful loop clo-

sures.

V. GLOBAL ESTIMATION AND MAP MATCHING

Given the high level graph of the robot trajectory and ob-

served feature locations, it still remains for the autonomous

system to make a critical judgment of where it is relative to

the a priori map and to decide if this relative match is certain

enough to be declared convincingly. To do this, we maintain a

set of match hypotheses in parallel. We compare them proba-

bilistically so as to quantify the quality of the map match.

This comparison is implemented using a bank of estimators

working in parallel, each tracking a different match hypothesis.

The relative likelihood of one match hypothesis over another

is computed using positive information (of prior features de-

tected by the sonar) as well as negative information (of prior

features that were expected but undetected by the sonar), and,

in this way, matching can be done in a probabilistically rigorous

manner. Negative information can be summarized as follows: if

one expects to detect features along a proposed robot trajectory

and these features were not seen, then the proposed trajectory is

less likely.

The inclusion of this extra information is motivated by the

regular structure of the feature field and the inability of positive

information metrics to estimate the relative position of the AUV

along these lines. The incorporation of negative information in

this way is, to our knowledge, a novel contribution and was

motivated by information not captured by algorithms such as

joint compatibility branch and bound (JCBB) [27].

A. Negative and Positive Scoring

In SLAM, multihypothesis comparison can typically be re-

duced to a scoring algorithm of the relative probabilities of can-

didate solutions. Here we propose an algorithm for multihypoth-

esis scoring which uses both positive as well as negative infor-

mation: we name it the negative and positive scoring (NAPS)

metric. An early version of this concept was introduced in [28].

We define NAPS as the ratio of the probability of a map

matching hypothesis when compared to a null hypothesis

, both conditioned (at each time step ) on the measure-

ments

NAPS NAPS (14)

NAPS (15)

We define a hypothesis as the combination of an estimate of

the graph structure of the SLAM problem (the vehicle tra-

jectory and all detected features) as well as all data association

matches of these features to map features in the prior map.

The null hypothesis is a special version of this hypothesis

in which no data associations exist and in which it is proposed

that each detected feature is a new feature independent of the

map. We use it as normalization for maps of growing size.
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Using Bayes’ rule gives

NAPS (16)

We split into two terms representing both negative and

positive information

(17)

Positive information is then defined, in the same way as for

JCBB, as the likelihood of the measurements given the hypoth-

esis

where represents the covariance, is a normalization

constant, and is the Mahalanobis distance.

The term represents a prior probability of a particular

map hypothesis being created by the robot which we propose

is directly related to the number of features matched to the

prior map and is given by

(18)

where is a normalization constant and is a free parameter.

is an integer between zero and the total number of features

in the prior map. While this formulation does not take into ac-

count aspects such as a feature’s measured visibility or other

such specific terms, it does give us a measure of the confidence

of a map match.

Combining these terms and canceling where possible gives

the following expressions for NAPS as well as more common

positive-only scoring (POS) metrics:

NAPS (19)

POS (20)

This specifically indicates the contribution of negative infor-

mation that we believe has been neglected in typical

multihypothesis scoring algorithms. POS algorithms (such as

JCBB) implicitly assume and do not account for it

in scoring the hypotheses. Most approaches assume very-high

: essentially selecting the hypotheses that match the most total

features and then ordering those by the Mahalanobis distance,

as in the case of JCBB. A good overview of such algorithms is

presented in [29] and [30].

B. Evaluating Negative Information

We define negative information as:

(21)

As each hypothesis NAPS score will eventually be compared to

one another, the second term does not need to be calculated.

Fig. 10. Illustration of the effect of NAPS. Consider the AUV trajectory from
A to B with the sonar sensor footprint enclosed in green. If the AUV observes
the red feature, how do wematch its trajectory to the prior map (purple squares)?
Using JCBB, the observed feature will be matched equally well to either prior
feature. However, using negative information, NAPS indicates that the match in
the lower figure is more likely. The upper figure is less likely because we would
have expected to have observed both features, but only observed one.

For a particular hypothesis, consider an entire vehicle trajec-

tory and the sonar footprint that it traced out (such as in Fig. 10).

Also consider a prior map feature which is located within this

footprint but was not detected. We wish to measure the number

of times that this feature ought to have been detected, given that

trajectory. Negative information is formed as the product of the

probability of each undetected feature given the hypothesized

vehicle trajectory

(22)

where is the whole area sensed during measurement , thus

(23)

where is the visibility of feature and is the prior prob-

ability of that feature.

In words, the probability of not detecting each conditionally

independent feature is the product of one minus the probability

of detecting each feature, integrated across the intersection of

the pdf of each feature and the pdf of the scanned sensor area.

This formulation is subject to the following assumptions: 1) the

sensor occlusion model is well defined and accurate; 2) all fea-

tures are static; 3) feature detections are independent; and 4)

feature visibility can be accurately modeled. This calculation,

often intractable due to complicated integration limits, theoret-

ically defines the probability of a set of negative measurements

given sensed area .

We approximate this measure using a grid-based approach

in discrete cells around each composite measurement. The

approach used an estimate of the total number of scans taken

within a particular cell . It is specified that to prevent spurious

measurements from becoming incorrect features, there exists
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some number of positive detections associated to the same

particular position (as discussed in Section IV-B). This allows

computation of the term for each feature via the

following binomial distribution:

(24)

These contributions are combined across all features pre-

dicted to lie in a mapped region via (23) to give .

As the location of a feature is not exactly known, we assume

a Gaussian distribution and use a Gaussian weighting of

feature in cell within a 95% confidence ellipse (for compu-

tational reasons), which is summed to give an estimate of the

number of scans of feature using

(25)

This estimate is then used to calculate both the negative infor-

mation contribution and the online estimate of feature visibility,

via

(26)

where is simply the number of times feature is detected (on

that specific pass), according to data association in the current

hypothesis.

In terms of implementation, this approach requires the simple

summation across each sonar scan. For the small number of fea-

tures detected in this type of mission and the small number of

hypotheses, this extensive summation is tractable for our system

in real time. The result of the metric is a positive value which

scores a particular hypothesis more likely when its observations

do not contradict the prior map.

In particular, combining negative information with the other

(positive-only) metrics in (19) allowed us to disambiguate sim-

ilar locations along a row of otherwise indistinguishable fea-

tures, as indicated in Fig. 10.

While the AUV operated in the field, this metric is evalu-

ated for each hypothesis. The vehicle controls itself off of the

most likely hypothesis, giving heading, speed, and depth com-

mands to the low level vehicle controller so as to travel to a set

of preprogrammed way points in the field. When the map match

metric for a particular hypothesis exceeds a threshold, it is de-

cided that the AUV is matched to the prior map and switches to

a final target capture mode.

C. Servoing to the FOI

Having decided upon a confident matching to the prior map,

the vehicle then homes to the estimated location of the FOI.

When it approaches this location, the FOI should be observed

in the sonar imagery. The mission controller then transitions

to direct control using the local sonar detections and a propor-

tional–integral–derivative (PID) controller on heading, which

we call sonar servoing. It opens a pair of tines with a tip separa-

tion of approximately 1 m and drives onto the mooring line of

Fig. 11. Feature layout and vehicle path for an initial experiment (November
2006), demonstrating the basic capabilities of feature detection, local map con-
struction, and global map matching running in real time onboard the Ranger
unmanned underwater vehicle (UUV). Terminal homing to the feature of in-
terest was added in subsequent experiments. Units are in meters.

the FOI. Detecting the abrupt change in velocity due to the line,

the tine controller will clasp around the FOI ending the mission.

VI. FIELD EXPERIMENTS

The system has undergone extensive testing and evolution

over a five-year period. Starting in November 2006, we have

conducted approximately 14 sea trials, each lasting two to

three weeks. Our experiments began in fairly benign environ-

ments, using highly reflective moored objected as features,

and progressed to more challenging conditions such as natural

sea bottom features and strong currents. After each trial, we

have refined and improved the system. In the following, we

summarize the progress of the development of the algorithms

and the vehicle platform.

Typically, the ingress point and direction to the field were

varied for each mission while the choice of FOI was taken at

random just before placing the AUV in the water. After reaching

the field, the vehicle typically traveled along the rows of features

indicated in Fig. 2. A typical mission visualization is presented

in Fig. 12. This was so as to keep the number of map match

hypotheses low (to about 4–5). The typical mission duration was

15–25 min, although the mission planner could be programmed

to repeat the mission if the AUV failed to find the feature field.

During a successful mission, the AUV spent in the region of

4–5 min actually in the feature field. In all these missions, a 45

sonar sensor was used. The typical water depth was 15 m.

Detailed comparison of mission parameters is difficult be-

cause the effect of the vehicle’s control decisions is that different

paths (and observations) follow. For this reason, this section de-

scribes the progression of our core map matching algorithm.

1) Charles River and Boston Harbor, MA, USA (2006 and

2007): A series of initial experiments were carried out to estab-

lish the basic operation of the system in easier conditions. An

overview of those missions is shown in Fig. 11.

2) St. Andrews Bay, FL, USA (June 2007): The NAPS and

JCBB criteria were alternately used over 18 trials on a field of
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TABLE I
SELECTED RESULTS FOR HOMING EXPERIMENTS IN DIFFERENT CONDITIONS, WITH ANDWITHOUT USE OF NAPS

Fig. 12. Screenshot of the data viewer for an experiment performed in Mon-
terey, CA, USA. Cyan dots are raw sonar detections, which are clustered as
nursery features green squares. When justified, clustered nursery features are
promoted to become FBN features, shown as red squares, and matched against
the prior map.

strongly reflective moored features. The JCBB implementation

uses a threshold on the Mahalanobis distance for multiple pair

matching and chooses the most compatible pairs. The results of

this live test and selected other tests are summarized in Table I.

In addition to the frequency of success, we have also pre-

sented the unbiased significance of these trials, which we calcu-

lated as

(27)

where is the number of trials and is the number of suc-

cessful trials. A lower value indicates a more confident result.

We believe that the results from this trial demonstrate that the

NAPS outperforms the simpler JCBB matching criteria for our

application.

3) Narragansett Bay, RI, USA (June 2008): Using the

data from June 2007, significant improvements to our sonar

processing algorithms allowed for improved detection of

Fig. 13. A top-down overview of a successful mission using the REMUS 100
vehicle. The vehicle approached from the northwest and extracted feature points
(purple dots). Using these points and the prior map (blue squares), the SLAM
map (black squares) and the vehicle trajectory estimate (magenta line) were
formed. Having matched against the map the vehicle homed to the FOI. The
abrupt position changes are the result of new updates from the smoothing algo-
rithm. The scale of the grid is 10 m. It is important to note that the DVL–INS-en-
abled AUV would have failed to reacquire the FOI without using sonar as the
map itself was only accurate to 5 m (blue line).

man-made and natural bottom features. This included the addi-

tion of an adaptive noise floor model discussed in Section III-A

and a reimplementation in integer logic for increased efficiency.

In addition, we began to test the control and attachment to the

feature. The field for these tests consisted of various man-made

and naturally occurring objects on the sea bottom as well

as moored features. The bay had a significant tidal current

comparable to the 0.5-m/s velocity of the vehicle, which gave

us substantial dead-reckoning errors.

In the nine runs, we attached to the feature once and had two

mechanical failures. In both cases, the tine mechanism broke

upon hitting the target mooring line. Thus, the overall success

rate of the sonar navigation system was 33%. After these tests,

the current model mentioned in Section II-B was developed.
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4) Stillwater Test Pond (March 2009): In this man-made test

pond, we performed tests specifically on final control to the FOI

and on the tine attachment mechanism. Only one feature was

used and there were no currents, thus this experiment is not

comparable to the others in terms of perceptive complexity. The

pond was approximately 100 m wide at the location of the tests.

The vehicle successfully latched onto the line in each of the 17

trials.

5) Gulf of Mexico, near Panama City, FL, USA (June 2009):

The entire system was tested on a field of 12 bottom objects

and three moored objects over a two-week period. These exper-

iments tested an improved model for current estimation along

with minor adjustments to the feature modeling. The current

during this period was estimated as being 0.2 m/s (using GPS

surfaces). We had 17 successful feature attachments in 26 runs.

6) Gulf of Mexico (July 2010): The final set of experiments

with the Ranger AUV were carried out. In this test, we observed

much higher currents. These currents varied significantly from

day to day but were estimated to be greater than the vehicle

velocity (greater than 0.5 m/s) on certain days. In these condi-

tions, the vehicle could not make any headway against the cur-

rent when it found itself down-current from the feature field.

Presented in Table I are two different results for this exper-

iment. One result gives the overall percent success when in-

cluding all of the 42 runs carried out: 31%. Filtering the runs

to the 18 runs in which the AUV was able to enter the field (as

defined by at least a single feature detection in the sonar) pro-

duced a success percentage of 72%. We believe that this value

is more in fitting with the performance of the SLAM algorithm

and comparable to the previous year’s results. Nonetheless, this

demonstrates the limitation of this particular vehicle platform as

well as ocean current estimation without a direct sensor.

7) Gulf of Mexico (May 2011): An additional series of tests

was performed with the system running in real time onboard

a REMUS AUV (without using its DVL). The motivation for

porting the software to the REMUS was to be able to perform

tests in a wider range of currents, and to compare trajectories

estimated by the vehicle against the trajectory estimated by the

REMUS’s integrated Doppler INS. While further field tests are

required to fully evaluate the system’s performance, we were

able to achieve a number of successful target reacquisitions,

thereby demonstrating that the FBN approach is applicable to

multiple types of AUVs. The results for a typical successful

reacquisition mission with this vehicle are shown in Fig. 13.

VII. CONCLUSION AND DISCUSSION

This paper has developed a feature reacquisition system for

small low-cost AUVs, based on FLS-based SLAM and demon-

strated its performance in challenging and realistic field condi-

tions. Our results indicate that when the AUV correctly matches

to the prior feature map, it is regularly able to revisit a desig-

nated FOI. This was demonstrated by reattachment, using a pair

of mechanical tines.

The main failure mode of the algorithm is failing to enter the

feature field, due to disturbances that exceed the vehicle’s con-

trol authority. For small-to-moderate ocean currents we devel-

oped an online current estimation procedure which allows the

vehicle to avoid being driven off course during the initial ve-

hicle dive. However, it should be noted that failure to success-

fully enter the field is not in itself a system failure as the ve-

hicle could surface for a GPS fix before trying again. Nonethe-

less, room exists to improve the current estimation procedure

described in Section II-B.

Unsurprisingly, in currents of more than 50%–70% of the ve-

hicle’s velocity, successful performance was limited. This pre-

sented an engineering limitation for this technology. As men-

tioned in Section II, our most recent work has been focused on

transferring this project to an AUV with a greater velocity.

Given the generic appearance of individual sonar features,

robust loop closure is difficult in this domain. However, with

larger FOV sonars and denser feature fields, it may be possible

to implement dense feature matching where more than a single

feature are observed. This approach could well provide a single

distinct loop closure constraint.

While more research is necessary to understand the many

variables that can affect the system performance, such as the

density and complexity of environmental features, the project

has shown the viability of the FBN concept for feature reacqui-

sition with low-cost vehicles.
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