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Abstract: Actively mode-locked fiber ring lasers (AMLLs) with loss modulators are used to gen-
erate approximately 100 ps pulses with 100 MHz repetition. RF detuning around the fundamental
frequency, f0, causes a loss in phase lock (unlocking) of cavity modes and partial mode locking.
Multiple RF inputs are shown, theoretically, to relock and extend the locking range of cavity modes
in a detuned partially mode-locked AMLL. A custom-built Yb3+-doped AMLL with f0 = 26 MHz,
and operating wavelength of 1064 nm, was used to experimentally verify the theoretical predictions.
Two RF sinusoidal signals with constant phase and equal amplitude resulted in an extension of the
range by Xn = 6.4 kHz in addition to the range Rn = 14.34 kHz with single input for the mode
n = 10. An increase in locking range was also observed for higher modes. Pulsewidth reduction to
approximately 205 ps from about 2 ns was also observed in the AMLL.

Keywords: fiber lasers; mode locking; active mode locking; partial mode locking; laser cavity
resonators; laser mode locking; laser tuning; ring lasers; laser theory; radio frequency; detuned mode
locking; mode relocking

1. Introduction

Actively mode-locked fiber ring lasers (AMLLs) produce ultrashort pulses with high
peak powers and can be synchronized with other light sources for both advanced mi-
croscopy and spectroscopic techniques [1–5]. AMLLs have been used to generate both
radio frequency (RF) and optical pulsetrains from a laser cavity [6–8]. The versatility of
AMLLs for both electrical and ultrashort optical pulses with low maintenance and few sta-
bility issues makes them a good candidate for adoption into large systems as synchronized,
pulsed multiple laser sources.

Traditionally, pulse formation in an AMLL occurs through the process of mode locking,
where all cavity modes, around the central carrier wavelength, are phase-locked with the
RF driving signal, typically a single sinusoid. Upon detuning of the driving signal, either
due to drift in RF signal or environmental fluctuations, partial locking of the AMLL occurs.
This leads to a broadening of pulses due to lock loss of higher modes in both fundamentally
and harmonically mode-locked lasers [9–15]. When subject to a large detuning, the laser
operates in either Q-switched or amplitude-modulated regimes with pulsewidths in the
order of a few ns. This regime also has a wide range of applications, including pulse
generation in Raman lasers [12,16–19]. The current methods used to counter detuning are
by either modifying the AMLL cavity or using additional optical components. Both of these
approaches lead to undesirable changes in the quality of pulses from the laser in terms of
synchronization with the source, the pulse’s optical wavelength and repetition rate [20–24].
For a successful adoption of AMLLs as optical pulsed sources in synchronized systems, we
must develop novel methods to counter the effects of detuning.

Multiple optical injection signals have been used in semiconductor lasers, where the
system dynamics have been studied through numerical techniques [25–28]. In such systems,
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there is an improvement in the time bandwidth product, optical linewidth and timing jitter
in the laser [27]. Further, multiple injection signals have shown the occurrence of typical
Adler-type and atypical Arnold-type locking regimes [28,29]. In this article, we extend our
previous work [15,30,31], both theoretically and experimentally, to include multiple RF
signals. The use of two RF input signals is a novel method of driving a detuned fiber AMLL.
We thus demonstrate an improvement in the number of locked modes by the process
of relocking using this method for the first time in the literature. Further, we provide a
novel demonstration of improvement in the pulsewidths of the partially mode-locked laser
with two RF input signals without any additional optical components. We demonstrate
a new regime of operation for AMLLs, where, temporally, pulse bunches are produced
periodically with varying numbers of locked modes in each of the pulses.

2. Theory

Consider the AMLL with multiple loss-modulating RF inputs as shown in Figure 1a.
The experimental implementation of the AMLL with two inputs is shown in Figure 1b.
The pulse, P( f ), interacts with the modulation signal, M( f ), to give I( f ) at the modulator.
The optical construction includes a pump (980 nm) coupled to the gain fiber (Yb) using a
wavelength division multiplexer (WDM), a circulator and a fiber Bragg grating at 1064 nm,
and a 50/50 optical coupler leading to the optical output. The two inputs considered for the
experiments are shown in Figure 1b. In this model, we consider the optical energy in the
cavity circulating with a fundamental round-trip frequency of fr. Periodic loss modulation
causes injection of energy into the nth cavity mode at a frequency n fr, in phase lock with
the input signal [30,32–34]. In an ideal mode-locked cavity with fundamental resonant
frequency, f0, the cavity modes occur at frequencies n f0 and we have fr = fk = f0, where
fk is the detuned input frequency.

(a) (b)

Figure 1. (a) AMLL with multiple sinusoids input at the modulator (kth signal shown). (b) AMLL is
fed with two sinusoids from the RF generator for testing the theory. The optical pulses are detected
by photodetector and analyzed using the ESA.

In our previous work, for fk = f0 + ∆0k, where the detuning ∆0k 6= 0, we have shown
that modes n ≤ nmax are locked as they meet the cavity mode’s phase locking conditions,
with mode n = nmax forming the edge of the locking range. On the other hand, modes with
n > nmax are unlocked, leading to a partially mode-locked and detuned AMLL [30]. In this
paper, we show that one can successfully recover the phase lock, i.e., relock, an unlocked
mode by using multiple sinusoidal inputs at the loss modulator. For this, we extend the
single sinusoidal input and single circulating pulse detuned AMLL model to one with
multiple sinusoidal inputs and multiple circulating pulses in the cavity.

Consider the total pulse, P( f ),

P( f ) = ∑
r

Pr( f ) (1)
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where r ∈ N, and the circulating pulses Pr( f ) have a repetition frequency fr, given by,

Pr( f ) = γr ∑
n

Anδ( f − n fr). (2)

γr is the relative strength such that ∑r γr = 1, An is the amplitude of the mode n and δ() is
the Dirac delta function. The detuning of this pulsetrain is ∆r0 = fr − f0.

The AMLL has gain g, quality factor Q, central optical frequency νs, laser linewidth
νL and cold cavity resonance fC. Each Pr( f ) individually satisfies the mode locking condi-
tions [35]. Following the treatment from our previous work [30], we describe the perturbed
AMLL with multiple inputs and multiple pulsetrains as

∑
r

γr

{
j
2Q fC
νs f0

n∆r0 − g

[
−2

n2 f0

ν2
L

∆r0

]}
An = Ĩn, (3)

where Ĩn is the modulated amplitude at mode n and consists of interactions between the
pulses and the modulating signal. In this work, we neglect the changes in amplitude An
and gain g in the detuned AMLL. Further, it is assumed that the detuning in the RF signal
does not deviate from the central optical frequency νs. In the next section, we shall look at
the perturbed AMLL described in (3) closely.

2.1. Interaction of Pulses in the Modulator

As shown in Figure 1a, the total input signal is

M( f ) = −M ∑
k

αk[δ( f + fk)− 2δ( f ) + δ( f − fk)], (4)

where the kth sinusoid has frequency fk and the normalized relative amplitude αk, such that
∑k αk = 1, and the modulation depth is M. The total modulating signal, I( f ), is obtained
by convolving (4) with (1):

I( f ) = −M ∑
k

∑
r

αk[Pr( f + fk)− 2Pr( f ) + Pr( f − fk)]. (5)

Note the injection between adjacent modes due to the action of the sinusoidal modula-
tion. Any pairs of fr and fk are detuned from each other such that

fk = fr + ∆kr. (6)

When k or r = 0, we refer to the resonant frequency f0. We introduce the slow-varying
envelope [30,36] to give

Ãn±1 = An±1 exp (j2πt(∓∆kr)). (7)

Using (7) in (5) with (2) and (1), we have

I( f ) = ∑
n

Ĩn,Totalδ( f − n f0), (8)

where, as shown in Appendix A in (A7),

Ĩn,Total = −∑
k

∑
r

Mαkγr

(
Ãn+1 − 2 An + Ãn−1

)
exp(j2πtn∆r0). (9)

For each mode n, we extract the perturbed amplitude as

Ĩn = Ĩn,Total − In, (10)
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with unperturbed amplitude as

In = −M(An−1 − 2An + An+1). (11)

2.2. Effect on Pulsetrains

To bring out the effect of coupling with multiple inputs, we separate Ĩn as

Ĩn = Ĩn,R + Ĩn,X , (12)

where Ĩn,X is generated by coupling between the inputs and Ĩn,R consists of terms generated
by the same input as previously noted [30]

Ĩn,R = In ∑
r

γr[exp(j2πtn∆r0)− 1]. (13)

Algebraic simplification for Ĩn,X (see (A8)–(A12) in Appendix B) gives

Ĩn,X = −j4M ∑
r

∑
k>r

ΓnrkDnrkSnrk. (14)

where, for any (r, k), we have generalized the definitions of β, Γn and Φn as

βrk = γrαk = γkαr, (15)

Φnrk = tan−1
[

An+1 − An−1

An+1 + An−1
tan
(

2πtn
∆rk
2

)]
, (16)

Γnrk =βrk

√
A2

n+1 + A2
n−1 + 2An−1 An+1 cos(2πtn∆rk), (17)

Dnrk = sin
(

2πt
∆rk
2

)
cos
(

2πt
∆rk
2

+ Φnrk

)
(18)

and Snrk = exp
(

j2πtn
∆r0 + ∆k0

2

)
(19)

From (7), we note that, when r = k, Ĩn,X = 0.

2.3. Phase Locking Condition and Locking Limits

Now, we look at the limits to injection locking for the phase condition found from the
imaginary parts of Equations (3) and (12)

∑
r

γr
2Q fC
νs f0

n∆r0 An = In ∑
r

γr sin(2πtn∆r0)− 4M ∑
r

∑
k>r

ΓnrkDnrkRe(Snrk). (20)

Let us understand qualitatively some of the effects in the phase relationship being

captured by the terms in (20). The frequencies n∆r0, n∆k0 and n
∆r0 + ∆k0

2
, which appear in

the terms Γnrk and
∆rk
2

, have similar magnitudes. These frequencies are n times the beat

frequency,
∆rk
2

. When either the sin () or cos () terms go to zero in (20), the coupling has
no influence on the injection range, leading to a time-varying phase locking relationship
repeating with the beat frequency in time domain.

For injection locking between all frequencies r, the maximum frequencies ∆r0,max such
that all the modes are still locked are possible when all the sinusoidal terms in (20) have
unity magnitude to maximize the LHS; i.e.,

∑
r

γr
2Q fC
νs f0

n∆r0,max An = In + 4M ∑
r

∑
k>r

Γnrk. (21)
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Retaining only the frequency terms in the LHS of (21), we obtain the combined
maximum locking frequency for all the inputs as

∑
r

γr∆r0,max =
νs f0

2Q fC

(
In

An

1
n
+

4M ∑r ∑k>r Γnrk
An

1
n

)
. (22)

Next, we look at the special case for two inputs where r = {1, 2}with Γn = Γn12 in (22)

∑
r={1,2}

γr∆r0,max =

(
νs f0

2Q fC

In

An

)
1
n︸ ︷︷ ︸

Rn

2

+

(
νs f0

2Q fC

4MΓn

An

)
1
n︸ ︷︷ ︸

Xn

2

. (23)

For two inputs, we have only one cross term evident. The first term in the RHS
of (23) is the same as for perturbed AMLL applicable for single input given by Rn =
νs f0

Q fC

(
In

nAn

)
[30]. The increase in the total injection range is due to the second term in the

RHS, which arises due to coupling between the modes given by

Xn =
νs f0

Q fC

(
4MΓn

nAn

)
. (24)

For the two RF input cases, we obtain the total range by combining Rn with (24),
Rn + Xn. We can therefore see that we can recover lock loss beyond the range Rn by using
additional signals. To the author’s knowledge, we are the first to demonstrate an increase
in the effective locking range of laser modes without altering the physical parameters of
the cavity. This extension of the effective locking range is as shown in (23).

3. Experiments and Results

An experiment with two sinusoidal inputs was set up to recover lock loss in higher
modes as shown in Figure 1b. A function generator (AFG3252,Tektronix) was used to
generate two RF inputs with constant phase relationship at frequencies f1 = f0 + ∆10 and
f2 = f0 + ∆20. The inputs had detuning ∆10 and ∆20 from f0 = 26.69 MHz, which were
varied between 0± 13 kHz with 90 steps of size 289 Hz each. The two signals were added
before feeding to the electro-optic modulator (EOM) of the AMLL. The AMLL construction
is already described in our previous work and shown in Figure 1a [30,31]. The optical
output of the laser was detected using a fast photodetector with 10 GHz bandwidth (DSC-
R402AC, Discovery Semiconductors) and fed to an electrical spectrum analyzer (ESA).
The spectrum was collected for each mode n around n f0, with a resolution bandwidth of
500 Hz and span of 2 MHz. The peak amplitude (An) and frequency of the peak ( f̃n) were
recorded for each mode. The complete operation was automated using VISA standards in
Python 2.7.

Figure 2 shows the spectra for modes n = 19 to 55, with and without a second
input. In Figure 2a-left, only one input is present with ∆10 = −0.87 kHz, A = 4 V-pp and
α1 = 1. We can see a broad bell-shaped noise spectrum for the modes n > 25 without a
distinguishable peak, indicating that they are unlocked. In Figure 2a-right, a second input
signal with ∆20 = 1.16 kHz, α1 = 0.5, α2 = 0.5 and A = 4 V-pp is added. Here, we see
distinct peaks in the spectrum for modes n > 25, indicating relocking in the presence of
the second input. To quantify the relocking effect of the second input, we measure the
deviation

∣∣∣∆̃n

∣∣∣ as the difference between the expected peak frequency and the measured
peak frequency, given by

∆̃n = f̃n − n(α1 f1 + α2 f2). (25)

The deviation shown in Figure 2b indicates a lock loss in mode n when
∣∣∣∆̃n

∣∣∣ > 0.

For a single input, the modes n > 25 show unlocking. For n = {25− 55},
∣∣∣∆̃n

∣∣∣ ≈ 0 when
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the second signal is introduced, indicating a relocking of these modes. As a consequence
of relocking, a gain of 14 dB is observed in the amplitude of the modes. We have thus
demonstrated relocking of the cavity modes of an AMLL by use of two sinusoidal signals
at the input and without altering the cavity’s physical properties.
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Figure 2. Comparison of two cases: single input with ∆10 = −0.87 kHz (orange) and two inputs
with ∆10 = −0.87, ∆20 = 1.16 kHz (blue). (a) Spectra for modes n = 19, 31 and 43. (b) Mode-wise
deviation for modes n = 19 to 55.

Next, to find the limits on relocking frequencies detunings, (∆10 and ∆20) were varied
by up to ±13 kHz with step size d f = 289 Hz, and deviation ∆̃n was recorded for modes
n = {10, 30, 70}. Figure 3a shows the values of

∣∣∣∆̃n

∣∣∣ for mode n = 10. The white dots mark

the edges of the locked regions such that ∆̃n < 10 kHz, evaluated using a Laplacian filter
with a threshold T set heuristically for a given mode [37]. For ∆10, the maximum possible
range is R10 + X10 of 20.74 kHz within which relocking was successful, with the two inputs
marked with dashed lines. The single input case where a range of R10 = 14.34 kHz was
obtained for the same AMLL is also shown for comparison [30]. There is an increase
of 6.4 kHz in the locking range for the 10th mode when two inputs are used. Similarly,
an increase in range Rn + Xn was observed when compared to Rn for n = 30 and 70, as
shown in Figure 3b. To our knowledge, such an expansion of the locking range has been
demonstrated in the work presented here for the first time.

(a)
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Mode number n

2.5

5.0

7.5
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12.5

15.0

17.5

20.0

R
an
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 (k
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z)
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(b)

Figure 3. (a) Deviation for mode n = 10 with two injection signals (∆10 = −0.87, ∆20 = 1.16 kHz).
(b) Injection ranges for modes n = 10, 30, 70 for single- (Rn in orange) and two-input injection
(Rn + Xn in blue).

To look at the effect of relocking with a second input in the time domain, the time
traces (using Textronix MDO3104 oscilloscope) and pulsewidth (using sampling oscillo-
scope (Lecroy SDA 100G)) after the fast photodetector were recorded. Figure 4 shows the
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pulsewidth (full-width half-maximum) for an average of 16 pulses triggered above the
noise level. Figure 4a shows the pulsewidths for varying ∆10 and with and without the
second input. For single input, the pulsewidth increases as |∆10| increases. Upon addition
of a second input, one can observe a decrease in pulsewidth from approximately ∼2 ns to
∼205 ps, where the reduced pulsewidth matches the mode-locked AMLL pulsewidth for
a single input with ∆10 = 0 kHz. Figure 4b shows the averaged pulse traces correspond-
ing to points (i)–(iv) in Figure 4a, where ∆10 = −7,−2,−0.8 and approximately 0 kHz,
respectively. With two inputs, one can observe the reduced pulsewidth with a second RF
input with ∆20 = 279, 359, 277 and 211 kHz corresponding to ∆10 = −7,−2,−0.8 and about
0 kHz, respectively. A reduction in pulsewidth is clearly visible. Note that pedestals in the
traces could arise due to the averaging of pulse traces with a distribution of pulse shapes
and widths between them, as predicted regarding the time-varying nature of the phase
locking condition between the pulses in the pulse bunches (20). We believe that this is the
first demonstration of a reduction in pulsewidth to mode-locked widths via relocking of
higher modes with the use of two signals at the RF input in a fiber AMLL.
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Figure 4. (a) Pulsewidth for different f1 in the presence (blue) and absence (orange) of a second input.
The points (i)–(iv) are taken as examples to demonstrate the effect a second input has on the pulses.
(b) Pulses at points (i)–(iv) in (a) for single (orange) and two (blue) inputs. (c) ≈25 pulses in the
pulsetrain for two inputs for cases (i)–(iv). (d) Pulsetrains for 11µs for two inputs for cases (i)–(iv).

Figure 4c,d shows pulsetrains corresponding to the points (i)–(iv) with two inputs.
Varying quality in pulses for about 25 pulses in each case is shown in Figure 4c. In Figure 4d,
we have the pulsetrain for 11 µs for two inputs. We observe the occurrence of pulse bunches,
consisting of many pulses separated by time periods of 3.77, 2.8 and 4.73µs corresponding
to points (i), (ii) and (iv) with the corresponding ∆10 + ∆20 = 265, 355 and 211 kHz. This
is in agreement with the theory presented in the previous section, where the slower time-
varying nature in the phase condition is contained in the term Dnrk in (20). However,
for point (iii), with ∆10 + ∆20 = 275.2 kHz, the bunches themselves have a larger time
period between them, which could be due to different operating regimes of operations and
other non-linearities in the cavity.
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4. Conclusions

In this paper, multiple RF input signals in an AMLL are shown as a novel method to
extend the locking range of the cavity modes. We observe an increase in the number of
locked modes and reduction in pulsewidths. A time-varying frequency model developed
in this paper predicts locking of unlocked modes in a partially mode-locked laser when a
second RF signal is used. The non-stationary model developed here also predicts the time-
varying nature of the locking dynamics in the laser output with two inputs. Experimentally,
it is demonstrated here that two sinusoidal RF inputs extend the locking range for 10th
mode from R10 = 14.34 kHz by X10 = 6 kHz. The increased number of locked modes
causes a narrowing of pulses in a partially locked laser from 2 ns to 205 ps.
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Appendix A. Derivation of Ĩn

To observe the impact of this interaction on individual cavity mode, we recognize
that each pulsetrain, Pr( f ), is composed of the contribution from each cavity mode n with
amplitude An at frequency n fr, such that one can write

Pr( f ) = γr ∑
n

Anδ( f − n fr) (A1)

where γr is the relative strength of the pulsetrain having repetition rate fr such that
∑r γr = 1. The total pulse in (1) can be expressed as

P( f ) = ∑
r∈N

γr ∑
n

Anδ( f − n fr) (A2)

Using (5) and (A2), we have

I( f ) = − ∑
k∈N

Mαk ∑
r∈N

γr

[
∑
n

Anδ( f − n fr + fk)− 2 ∑
n

Anδ( f − n fr) +∑
n

Anδ( f − n fr − fk)

]
. (A3)

To evaluate the effect of perturbation in the system described above, we note with
indices k, r ∈ N, the frequencies fr and fk are both detuned from f0 such that f(k or r) =
f0 + ∆(k or r)0 and fk = fr + ∆kr.
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Using (A3) and regrouping the terms under a common summation in n, we have

I( f ) = −M ∑
k∈N

αk ∑
r∈N

γr ∑
n

(
Ãn+1 − 2An + Ãn−1

)
δ( f − n fr). (A4)

Note that the effects of amplitude and phase change from the coupling are absorbed
in the terms Ãn+1 and Ãn−1. Now, we can represent the total modulated amplitude, I( f )
in (A4), as a sum of Ĩn,Total for each mode n as

I( f ) = ∑
n

Ĩn,Totalδ( f − n f0), (A5)

where we have the perturbed amplitude

Ĩn = Ĩn,Total − In, (A6)

with In given by (11) and

Ĩn,Total = − ∑
k∈N

∑
r∈N

Mαkγr exp(j2πtn∆r0)
(

Ãn+1 − 2 An + Ãn−1

)
. (A7)

Appendix B. Two Input Ĩn,X

To simplify the expression for the cross terms, we first look at a case with only two
inputs. For two inputs, we expand Ĩn,X for r = {1, 2} and k = {1, 2} as

Ĩn,X , −M2j sin
(

2πt
∆12

2

)
exp

(
j2πtn

(∆10 + ∆20)

2

)
[

exp
(

j2πt
∆12

2

)
Γn exp (jΦn) + exp

(
−j2πt

∆12

2

)
Γn exp (−jΦn)

]
. (A8)

where we have noted that ∆12 = −∆21 and,

Γn exp (jΦn) = γ1α2 exp
(

j2πtn
∆12

2

)
An+1 + γ2α1 exp

(
−j2πtn

∆12

2

)
An−1. (A9)

Further, we note that the magnitude term Γn is real and positive, 0 ≤ α1, α2 ≤ 1 and
0 ≤ γ1, γ1 ≤ 1, which leads to the condition for cross terms as

β = γ1α2 = γ2α1. (A10)

Using (A10) with (A9), we have

Γn = β

√(
A2

n+1 + A2
n−1 + 2An−1 An+1 cos

(
2πtn∆12

))
. (A11)

Next, from (A9) and (A10), we obtain the value for Φn as

Φn = tan−1
[

An+1 − An−1

An+1 + An−1
tan
(

2πtn
∆12

2

)]
(A12)

References
1. Cicerone, M.T.; Camp, C.H. Histological coherent Raman imaging: A prognostic review. Analyst 2018, 143, 33–59. [CrossRef]
2. Yang, B.; Fang, C.-Y.; Chang, H.-C.; Treussart, F.; Trebbia, J.-B.; Lounis, B. Polarization effects in lattice–STED microscopy.

Faraday Discuss. 2015, 184, 37–49. [CrossRef] [PubMed]
3. Klar, T.A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by

stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210. [CrossRef] [PubMed]

http://doi.org/10.1039/C7AN01266G
http://dx.doi.org/10.1039/C5FD00092K
http://www.ncbi.nlm.nih.gov/pubmed/26407019
http://dx.doi.org/10.1073/pnas.97.15.8206
http://www.ncbi.nlm.nih.gov/pubmed/10899992


Photonics 2023, 10, 735 10 of 11

4. Takasaki, K.T.; Ding, J.B.; Sabatini, B.L. Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy.
Biophys. J. 2013, 104, 770–777. [CrossRef] [PubMed]

5. Sidenstein, S.C.; D’Este, E.; Böhm, M.J.; Danzl, J.G.; Belov, V.N.; Hell, S.W. Multicolour multilevel STED nanoscopy of
actin/spectrin organization at synapses. Sci. Rep. 2016, 6, 26725. [CrossRef]

6. Yao, X.S.; Davis, L.; Maleki, L. Coupled optoelectronic oscillators for generating both RF signal and optical pulses. J. Light. Technol.
2000, 18, 73–78. [CrossRef]

7. Yin, K.; Zhang, B.; Yang, W.; Chen, H.; Chen, S.; Hou, J. Flexible picosecond thulium-doped fiber laser using the active
mode-locking technique. Opt. Lett. 2014, 39, 4259–4262. [CrossRef]

8. Xiao, K.; Jin, X.; Jin, X.; Yu, X.; Zhang, X.; Zheng, S.; Chi, H.; Feng, L.; Xu, M. Channelized amplification of RF signal based on
actively mode locked fiber laser. Opt. Commun. 2018, 421, 46–49. [CrossRef]

9. Hjelme, D.R.; Mickelson, A.R. Theory of timing jitter in actively mode-locked lasers. IEEE J. Quantum Electron. 1992, 28, 1594–1606.
[CrossRef]

10. Eichler, H.J.; Koltchanov, I.G.; Liu, B. Numerical study of the spiking instability caused by modulation frequency detuning in an
actively mode-locked solid-state laser. Appl. Phys. B 1995, 61, 81–88. [CrossRef]

11. Wu, S.-Y.; Hsiang, W.-W.; Lai, Y. Synchronous-asynchronous laser mode-locking transition. Phys. Rev. A 2015, 92, 013848.
[CrossRef]

12. Lee, J.; Lee, J.H. Experimental investigation of the cavity modulation frequency detuning effect in an active harmonically
mode-locked fiber laser. J. Opt. Soc. B Am. Opt. Phys. 2013, 30, 1479–1485. [CrossRef]

13. Krishnamoorthy, S.; Mayor, S.; Prabhakar, A. Synchronization between two fixed cavity mode locked lasers. In Proceedings of the
5th International Conference on Photonics, Optics and Laser Technology, Porto, Portugal, 27 February–1 March 2017; Volume 1,
pp. 273–282.

14. Krishnamoorthy, S.; Thiruthakkathevan, S.; Prabhakar, A. Active fibre mode-locked lasers in synchronization for STED microscopy.
In Optics, Photonics and Laser Technology 2017; Springer: Berlin/Heidelberg, Germany, 2019; pp. 233–253.

15. Krishnamoorthy, S. Mode Unlocking and Relocking in a Detuned Actively Mode Locked Fiber Ring Laser. Ph.D. Thesis, Indian
Institute of Technology Madras, Chennai, India, 2020.

16. Kuznetsov, A.; Kharenko, D.; Podivilov, E.; Babin, S. Fifty-ps raman fiber laser with hybrid active-passive mode locking.
Opt. Express 2016, 24, 16280–16285. [CrossRef] [PubMed]

17. Kuznetsov, A.G.; Kablukov, S.I.; Timirtdinov, Y.A.; Babin, S.A. Actively mode locked raman fiber laser with multimode ld
pumping. Photonics 2022, 9, 539. [CrossRef]

18. Yang, X.; Zhang, L.; Jiang, H.; Fan, T.; Feng, Y. Actively mode-locked raman fiber laser. Opt. Express 2015, 23, 19831–19836.
[CrossRef]

19. Koliada, N.A.; Nyushkov, B.N.; Ivanenko, A.V.; Kobtsev, S.M.; Harper, P.; Turitsyn, S.K.; Denisov, V.I.; Pivtsov, V.S. Generation of
dissipative solitons in an actively mode-locked ultralong fibre laser. Quantum Electron. 2013, 43, 5. [CrossRef]

20. Yao, J.; Yao, J.; Wang, Y.; Tjin, S.C.; Zhou, Y.; Lam, Y.L.; Liu, J.; Lu, C. Active mode locking of tunable multi-wavelength fiber ring
laser. Opt. Commun. 2001, 191, 341–345. [CrossRef]

21. Lee, C.G.; Kim, Y.J.; Park, C.-S. Optical pulse shaping by cross-phase modulation in a harmonic mode-locked semiconductor fiber
ring laser under large cavity detuning. J. Light. Technol. 2006, 24, 1237.

22. Nakazawa, M.; Yoshida, E. A 40 GHz 850 fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser.
IEEE Photonics Technol. Lett. 2000, 12, 1613–1615. [CrossRef]

23. Wise, F.; Lefrancois, S. Fiber Source of Synchronized Picosecond Pulses for Coherent Raman Microscopy and Other Applications.
U.S. Patent 10,608,400, 31 March 2020.

24. Sato, K.; Ishii, H.; Kotaka, I.; Kondo, Y.; Yamamoto, M. Frequency range extension of actively mode-locked lasers integrated with
electroabsorption modulators using chirped gratings. IEEE J. Sel. Top. Quantum Electron. 1997, 3, 250–255. [CrossRef]

25. York, R.A. Nonlinear analysis of phase relationships in quasi-optical oscillator arrays. IEEE Trans. Microw. Theory Techn. 1993, 41,
1799–1809. [CrossRef]

26. Yeung, M.S.; Strogatz, S.H. Time delay in the Kuramoto model of coupled oscillators. Phys. Rev. Lett. 1999, 82, 648. [CrossRef]
27. Habruseva, T.; Huyet, G.; Hegarty, S.P. Dynamics of quantum-dot mode-locked lasers with optical injection. IEEE J. Sel. Top.

Quantum Electron. 2011, 17, 1272–1279. [CrossRef]
28. Shortiss, K.; Lingnau, B.; Dubois, F.; Kelleher, B.; Peters, F.H. Harmonic frequency locking and tuning of comb frequency spacing

through optical injection, Opt. Express 2019, 27, 36976–36989. [CrossRef] [PubMed]
29. Lingnau, B.; Shortiss, K.; Dubois, F.; Peters, F.H.; Kelleher, B. Universal generation of devil’s staircases near hopf bifurcations via

modulated forcing of nonlinear systems. Phys. Rev. E 2020, 102, 030201. [CrossRef]
30. Krishnamoorthy, S.; Prabhakar, A. Mode unlocking characteristics of an RF detuned actively mode-locked fiber ring laser.

Opt. Commun. 2019, 431, 39–44. [CrossRef]
31. Krishnamoorthy, S.; Mayor, S.; Prabhakar, A.Mode re-locking in an RF detuned actively mode-locked fiber ring laser. In

Proceedings of the The European Conference on Lasers and Electro-Optics, Munich, Germany, 23–27 June 2019.
32. Adler, R. A study of locking phenomena in oscillators. Proc. IRE 1946, 34, 351–357. [CrossRef]
33. Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering; Westview Press:

Boulder, CO, USA, 2014.

http://dx.doi.org/10.1016/j.bpj.2012.12.053
http://www.ncbi.nlm.nih.gov/pubmed/23442955
http://dx.doi.org/10.1038/srep26725
http://dx.doi.org/10.1109/50.818909
http://dx.doi.org/10.1364/OL.39.004259
http://dx.doi.org/10.1016/j.optcom.2018.03.059
http://dx.doi.org/10.1109/3.135313
http://dx.doi.org/10.1007/BF01090976
http://dx.doi.org/10.1103/PhysRevA.92.013848
http://dx.doi.org/10.1364/JOSAB.30.001479
http://dx.doi.org/10.1364/OE.24.016280
http://www.ncbi.nlm.nih.gov/pubmed/27464081
http://dx.doi.org/10.3390/photonics9080539
http://dx.doi.org/10.1364/OE.23.019831
http://dx.doi.org/10.1070/QE2013v043n02ABEH015041
http://dx.doi.org/10.1016/S0030-4018(01)01154-3
http://dx.doi.org/10.1109/68.896324
http://dx.doi.org/10.1109/2944.605665
http://dx.doi.org/10.1109/22.247926
http://dx.doi.org/10.1103/PhysRevLett.82.648
http://dx.doi.org/10.1109/JSTQE.2011.2123875
http://dx.doi.org/10.1364/OE.27.036976
http://www.ncbi.nlm.nih.gov/pubmed/31873468
http://dx.doi.org/10.1103/PhysRevE.102.030201
http://dx.doi.org/10.1016/j.optcom.2018.08.072
http://dx.doi.org/10.1109/JRPROC.1946.229930


Photonics 2023, 10, 735 11 of 11

34. Razavi, B. A study of injection pulling and locking in oscillators. In Proceedings of the IEEE 2003 Custom Integrated Circuits
Conference, San Jose, CA, USA, 24 September 2003; pp. 305–312.

35. Haus, H.A. A theory of forced mode locking. IEEE J. Quant. Electron. 1975, 11, 323–330. [CrossRef]
36. Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005.
37. Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Pearson-Prentice-Hall Upper Saddle River: Saddle River, NJ, USA, 2002.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JQE.1975.1068636

	Introduction
	Theory
	Interaction of Pulses in the Modulator
	Effect on Pulsetrains
	Phase Locking Condition and Locking Limits

	Experiments and Results
	Conclusions
	Appendix A
	Appendix B
	References

