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Rapid eye movement (REM) sleep is generated and maintained by the interaction of
a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus.
Within these circuits lies a core region that is active during REM sleep, known as
the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that
glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle
paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC
cells activate neurons in the ventral medial medulla, which causes release of GABA
and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of
GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellu-
lar reticular nucleus as well as melanin-concentrating hormone neurons in the hypotha-
lamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the
brainstem. Determining how these circuits interact with the SubC is important because
breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy
and REM sleep behavior disorder (RBD). This review synthesizes our current under-
standing of mechanisms generating healthy REM sleep and how dysfunction of these
circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy
and RBD.

Keywords: REM sleep, brainstem, narcolepsy, cataplexy, hypothalamus, amygdala, dopamine, REM sleep behavior
disorder

Introduction

Rapid eyemovement (REM) sleep is characterized by rapid eyemovements, cortical activation, vivid
dreaming, skeletal muscle paralysis (atonia), and muscle twitches (1–3). A distributed network of
micro-circuits within the brainstem, forebrain, and hypothalamus is required for generating and
sculpting REM sleep. This review will describe our current understanding of the cells and circuits
that mediate REM sleep in both health and disease.

Disturbances in the normal control of REM sleep underlie cataplexy/narcolepsy and RBD, which
are two common and serious sleep disorders. Narcoleptics not only experience pronounced sleep
disturbances, but they also experience cataplexy – the sudden unwanted loss of muscle tone during
otherwise normal wakefulness. Cataplexy is hypothesized to result from intrusion of REM sleep
paralysis into wakefulness (4). By contrast, those with RBD suffer from the loss of normal muscle
paralysis during REM sleep, which results in pathological levels of movement during REM sleep
episodes. REM movements are often violent and forceful, and can result in bodily injury. Under-
standing the neural circuits that generate REM sleep and REM sleep paralysis is needed in order to
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clarify the pathophysiology of narcolepsy/cataplexy and RBD (4,
5). In this review, we discuss how REM sleep-control mechanisms
underlie the intrusion of REM sleep paralysis during wakefulness
in narcolepsy with cataplexy, and how degeneration of this same
circuitry could underlie RBD. Finally, we discuss how newly
identified hypothalamic circuits control REM sleep and how they
potentially contribute to the pathophysiology of narcolepsy with
cataplexy.

The REM Sleep Core is Located in the
Brainstem

The core of the REM-generating circuit is localized at the meso-
pontine junction, medial to the trigeminal motor nucleus and
ventral to the locus coeruleus (LC) (Figures 1 and 2) (6–8).
The subcoeruleus nucleus (SubC), which is also called the sub-
laterodorsal nucleus, is composed of REM-active neurons – cells
that are predominantly active during episodes of REM sleep
(7–11). The majority of REM-active SubC cells are glutamatergic
(12), suggesting that REM sleep is generated by a glutamatergic
mechanism. However, GABA SubC cells have also been impli-
cated in REM sleep control (8). Pharmacological activation of
SubC cells can induce REM sleep motor atonia (6–13); whereas,
SubC lesions can prevent REM sleep atonia and/or reduce REM
sleep amounts (7, 8). SubC cells are thought to induce REM
sleep muscle paralysis by recruiting GABA/glycine neurons in the
ventromedial medulla (VMM) and spinal cord (Figures 1 and 2).
These cells produce motor atonia during REM sleep by inhibiting
skeletal motoneurons (8, 13–16).

Both GABA and glycine inhibition of motoneurons are
required for producing REM sleep muscle paralysis (19–21). Pio-
neering intracellular recordings during REM sleep have shown
that skeletal motoneurons are tonically hyperpolarized by large
intracellular post-synaptic potentials. Local iontophoretic applica-
tion of a glycine receptor antagonist (strychnine) diminishes this
hyperpolarization, indicating that motoneurons are inhibited by a
glycinergic mechanism during REM sleep (22, 23). Simultaneous
antagonism of GABAA/GABAB/glycine receptors on motoneu-
rons prevents REM sleep atonia, indicating that both GABA and
glycine-mediated inhibition of motoneurons underlies REM sleep
atonia (20, 21). However, acetylcholine also appears to suppress
respiratory motoneuron activity during natural REM sleep (24–
26). Loss or decrease in glutamatergic, noradrenergic, serotoner-
gic, dopaminergic, and hypocretinergic activity during REM sleep
may also function to reducemuscle activity and thereby contribute
to the atonia of REM sleep (27–30).

Cholinergic REM-active neurons have been postulated to play
a role in REM sleep initiation and control over motor atonia
(31). Recently, it has been shown that acetylcholine activates
spinally projecting SubC neurons (32). These cholinergic inputs
into the SubC neurons mediate muscle atonia by both enhancing
glutamate-driven post-synaptic excitation and facilitating pre-
synaptic glutamate release. These results demonstrate that acetyl-
choline not only acts to directly entrain the core of the REM
sleep circuitry, but also modulates the glutamatergic mechanisms
that underlie REM sleep muscle control (7). Importantly, Grace
and colleagues demonstrate that acetylcholine is not necessary

FIGURE 1 | Schematic representation of circuits and pathways
regulating muscle activity during “normal” wakefulness and cataplexy
in the rodent brain. Inappropriate activation of rapid eye movement (REM)
sleep muscle paralysis circuitry during wakefulness is thought to produce
cataplexy. Glutamatergic REM-active SubC neurons trigger the paralysis of
REM sleep via stimulation of the GABAergic/glycinergic cells in the VMM.
These VMM neurons send inhibitory projections to skeletal motor neurons.
Under normal condition, strong positive emotions are processed via
GABAergic neurons of the CeA, which then inhibit cells in the LC and vlPAG.
However, in the absence of the LH hypocretinergic neurons in cataplexy, this
inhibition is left unbalanced and the REM sleep core circuit (i.e., SubC) is
released from inhibition and triggers untimely muscle paralysis while the
individual remains conscious. The inhibition of LC neurons during cataplexy
removes noradrenergic inputs to motorneurons, thereby enhancing the
muscle paralysis of cataplexy. Lower inset represents the brain (EEG) and
muscle (EMG) activity in a narcoleptic mouse (i.e., orexin knockout mouse) at
the transition into cataplexy [adapted from Burgess and Peever (17)].
Abbreviations: CeA, central nucleus of the amygdala; GABA, γ-aminobutyric
acid; LC, locus coeruleus; LH, lateral hypothalamus; VMM, ventral medial
medulla; SubC, subcoeruleus; vlPAG, ventrolateral periaqueductal gray; MNs,
motoneurons; EEG, electroencephalogram; EMG, electromyogram; a.u.,
arbitrary unit.

to initiate the entrance into REM sleep; however, the choliner-
gic inputs to SubC neurons rather strengthen transitions once
initiated (33). In this study, inactivation of cholinergic receptors
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FIGURE 2 | Schematic representation of circuits and pathways
regulating muscle activity during “normal” rapid eye movement
(REM) sleep and REM sleep behavior disorder (RBD) in the rodent
brain. During REM sleep, REM-active glutamatergic SubC neurons trigger
REM sleep paralysis through activation of GABAergic/glycinergic cells in the
VMM, which carry inhibitory projections to skeletal motor neurons. Under
normal REM sleep conditions, the SubC→VMM circuit inhibits
motoneurons, which produces paralysis and limits the intrusion of muscle
twitches and movement generated by the red nucleus (RN). However, in

patients with RBD, degeneration of the SubC→VMM circuit releases
motoneurons from their normal source of inhibition, which allows excitatory
inputs to produce motor behaviors during REM sleep. Lower inset
represents the brain (EEG) and muscle (EMG) activity during REM sleep in a
healthy mouse (left) vs. a transgenic mouse model of RBD (right) [adapted
from Brooks and Peever (18)]. Abbreviations: GABA, γ-aminobutyric acid;
VMM, ventral medial medulla; SubC, subcoeruleus; vlPAG, ventrolateral
periaqueductal gray; MNs, motoneurons; RN, red nucleus; EEG,
electroencephalogram; EMG, electromyogram.

increased the latency of NREM-to-REM sleep transitions and
caused a greater proportion of these transitions to fail into entering
REM sleep. Reciprocally, the activation of the cholinergic REM-
active neurons is gated by SubC activity, supporting a mutually
excitatory interaction resulting in the generation andmaintenance
of REM sleep. This mechanism of mutual reinforcement increases
the reliability of neural systems to alternate between states of con-
sciousness in a rapid and stable manner (34). In support of these
findings, specific optogenetic activation of cholinergic neurons of
the laterodorsal (LDT) and pedunculo-pontine tegmentum (PPT)
increased the probability of entrance into REM sleep when these
neurons were activated during NREM sleep (35).

Another component of the REM-generating circuit is located
in the medulla. The dorsal paragigantocellular reticular nucleus
(DPGi), a group of GABA-containing neurons, is also REM-
active and may inhibit wake-promoting areas; hence, allowing
the entrance into REM sleep (36). These medullary neurons are
hypothesized to inhibit the LC, dorsal raphe (DR), and part of the
ventrolateral periaqueductal gray (vlPAG) (37). Electrical stimu-
lation and pharmacological activation of the DPGi promote REM
sleep (38–40).

GABAergic neurons of the vlPAG region are divided into two
subpopulations – REM-active and REM-inhibiting. REM-active
neurons of this region are thought to silence wake-promoting
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neurons of the LC and DR. Luppi and colleagues have demon-
strated that the vlPAG GABAergic REM-active neurons send
projections to these wake-active regions (36, 37, 41). The vlPAG
REM-inhibiting neurons send inhibitory inputs to the SubC
region and may prevent the activation of the REM-generating
circuit (8, 11, 42) (Figures 1 and 2). Drug-induced inhibition
and lesions of REM-inhibiting vlPAG neurons lead to lengthening
of REM sleep episodes (11, 43). The mutual interaction between
brainstem structures (i.e., the SubC, PPT/LDT, vlPAG and DPGi)
is responsible for the generation, expression, and maintenance of
REM sleep and some of its characteristics.

In addition to the REM-generating network of the brainstem,
hypothalamic and forebrain structures project to and influence
the core of the REM sleep circuit (44, 45). Melanin-concentrating
hormone (MCH) neurons of the lateral hypothalamus (LH) are
REM-active, send dense projections to the wake-active serotoner-
gic neurons of the DR, and pharmacological application of MCH
in the DR induces a greater number of transitions into REM
sleep (46). Optogenetic activation of MCH neurons reduces sleep
onset and prolongs the duration of REM sleep (47, 48). MCH
neurons also project to wake-promoting histaminergic neurons
of the tuberomammilary nucleus (TMN) and noradrenergic cells
of the LC, and promote REM sleep through the release of GABA
(47–50). Similarly, REM-active neurons of the extended ventro-
lateral preoptic area (eVLPO) (8) send GABAergic projections
to the REM-inhibiting neurons of the vlPAG, thereby freeing
the SubC region from its silenced state (51). Finally, REM-active
GABAergic neurons of the basal forebrain (BFB) project to the
brainstem REM-generating network and may play a role in the
regulation of REM sleep (52). Together these observations suggest
that REM sleep is controlled by a dispersed network of different
transmitter systems; however, we hypothesize that the SubC is the
core that coordinates the entrance, maintenance, and exit from
REM sleep.

Cataplexy – Intrusion of REM Sleep Atonia
into Wakefulness

Three million people worldwide suffer from narcolepsy (53). A
particularly debilitating symptom of this disorder is known as
cataplexy, which is the sudden and involuntary reduction or loss
of skeletal muscle tone (i.e., motor atonia) during wakefulness.
For this reason, cataplexy represents the major impairment of
narcoleptic patients and negatively influences their ability to par-
ticipate in normal day-to-day activities. The severity of cataplexy
attacks ranges from transient muscle weakness of the face and/or
extremities to complete body paralysis lasting up to several min-
utes (4). Although cataplexy affects all skeletal muscles aside from
the diaphragm and extraocular muscles, its effects are most pro-
nounced on muscles of the neck and face. While the underlying
cause of human narcolepsy appears to be either the autoimmune-
induced loss of hypocretin neurons or mutation of the hypocretin
gene ifself (Figure 1) (54–60), the precise neural mechanisms that
trigger cataplexy are unclear.

Cataplexy is thought to result from inappropriate intrusion of
REM sleep paralysis into wakefulness (Figure 1) (53, 61, 62). This
hypothesis is supported by neuroimaging studies in narcoleptic

humans and electrophysiological recordings in narcoleptic dogs,
which suggest that the brainstem regions implicated in the control
of REM sleep exhibit similar activity during both REM sleep
and cataplexy (63, 64). Moreover, the similarity between REM
sleep atonia and cataplexy are underscored by the fact that some
patients with narcolepsy report hypnagogic hallucinations during
cataplectic attacks, which are similar to the vivid dreaming often
experienced in REM sleep, and some narcoleptic individuals tran-
sition directly into REM sleep from cataplexy (65). Recent but
preliminary data shows that activation of the SubC can induce
behavioral arrests that resemble cataplexy in orexin knockout
mice (66). This observation suggests that cataplexy may result
from the pathological recruitment of the SubC circuit that causes
REM sleep paralysis. More broadly, this new data suggests that
muscle paralysis in REM sleep and cataplexy stem from a common
neural mechanism.

Though cataplexy may occur spontaneously, most attacks are
precipitated by strong positive emotions such as excited laughter,
elation, or surprise (67). Even in healthy individuals, laughter
can produce brief muscle weakness, especially in the lower limbs,
which is linked to suppression of the Hoffmann reflex – an obser-
vation that has given rise to the expression “weak with laugh-
ter” (68, 69). Since hypocretin neurons are activated by strong
emotions, the loss of this neural population in narcolepsy may
destabilize the natural brainstem network that regulates muscle
tone and, hence, enable positive emotions to trigger inappropriate
motor paralysis in the form of cataplexy (70, 71).

Because the amygdala is intimately involved in processing emo-
tion, it may play a role in themechanism triggering cataplexy (72).
Single-photon emission CT has demonstrated hyperperfusion in
the right amygdala during cataplexy (64), and in narcoleptic dogs,
amygdala neurons increase activity during cataplectic attacks (63).
Furthermore, when the amygdala of hypocretin/orexin knockout
mice is lesioned bilaterally, the frequency of cataplectic attacks is
significantly reduced (71). Finally, the amygdala is anatomically
well-positioned to trigger cataplexy, as it sends extensive GABAer-
gic projections to midbrain and brainstem regions that promote
waking muscle tone (i.e., LC, lateral pontine tegmentum (LPT),
and the vlPAG) (Figure 1) (71).

The cessation of activity of LC noradrenergic neurons results
in the disfacilitation of motor neurons, which in turn contributes
to reduce muscle tone (Figure 1) (17). Drugs that increase nora-
drenaline levels are effective in alleviating cataplexy in humans,
dogs and mice (17, 73, 74). Restoration of hypocretin receptors
onto DR serotonergic neurons of mice lacking hypocretin recep-
tors decreases the frequency of cataplectic attacks, suggesting that
the serotonin signaling system could also be involved in cataplexy
(75). However, the firing of DR neurons does not seem to cease
during cataplexy, which is in contrast to neurons of the LC (76).

REM Sleep Behavior Disorder – Breakdown
of REM Sleep Circuitry

In contrast to cataplexy, wherein muscle paralysis occurs inappro-
priately during wakefulness, REM sleep behavior disorder (RBD)
is characterized by the absence of normal muscle paralysis during
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REM sleep (77). Loss of muscle paralysis leaves afflicted individ-
uals able to move while they dream, which frequently results in
injury of themselves or their bed partners (78). RBD is thought
to arise from damage to the brainstem circuits that mediate REM
sleep atonia (Figure 2) (5). Indeed, a phenotype reminiscent of
RBD can be generated by physical or genetic lesions of the REM
sleep core (i.e., SubC or VMM) in animal models (18, 79). Addi-
tionally, brain-imaging studies and postmortem tissue analysis of
patients afflicted by RBDhave identified lesions encompassing the
REM sleep circuitry in the brainstem (80–82).

During normal REM sleep, muscle paralysis is intermittently
punctuated by muscle twitches. Since RBD may include an exag-
geration of these natural motor events, identifying the func-
tional and neurochemical mechanisms that control this phasic
motor activity may help elucidate the pathological process that
contributes to the RBD phenotype. Intracellular recording studies
show that intermittent release of glutamate excites motoneurons
and causes REM sleep muscle twitches (23), through activation
of non-NMDA receptors (30). Evidence indicates that the red
nucleus (RN), LDT, and PPT nucleus are involved in triggering
these twitches (Figure 2) (83–86). Cells located in these nuclei
discharge in sync with muscle twitches and other phasic REM
sleep phenomena and may be the source of these events. Aside
from generating the tonic inhibition of muscle tone during REM
sleep, GABA and glycine may help suppress phasic REM sleep
activity (18, 20, 21). Indeed, both pharmacological and genetic
blockade of GABA and glycine receptors increase muscle twitches
during REM sleep (18, 20, 21).

The cholinergic system, which normally functions to promote
REM sleep atonia, is altered in RBD patients. Neuroimaging stud-
ies reveal that individuals with RBD have significant degradation
of cholinergic centers within the brain (24, 87). Taken together,
these findings suggest that the amplified motor activity typical of
RBD is a consequence of either the over-excitation of the circuit
generating twitches or the breakdown of components of the REM
sleep muscle atonia circuit (Figure 2).

The excess motor activity that occurs in patients with RBD
is often highly coordinated and reflects stereotypical movements
seen during wakefulness, an observation that implicates themotor
cortex in potentially driving movements associated with RBD.
Pyramidal tract neurons control voluntary limb movement and
are highly active during both wakefulness and REM sleep (88).
However, the destruction of descending corticospinal projection
fibers does not abolish REM sleep muscle twitches (89), nor
does transection of the brain above the pons in so-called pontine
animals or decorticate humans (90). Recently, we have shown
that chemogenetic activation of glutamatergic neurons of the RN
produces excessive muscle twitching during REM sleep similar
to what is observed in RBD (91). Finally, a study in neonatal
rats established that muscle twitches during REM sleep are not
necessarily the result of cortical activation, but instead drive the
activity and development of the motor cortex (92, 93).

A major concern in RBD is that it precedes, in 80% of cases,
development of synucleinopathies such as Parkinson’s disease
(PD) by several decades (77, 82). This link suggests that neurode-
generative processes initially target the circuits controlling REM
sleep and specifically SubC neurons. Subtle motor manifestations,

usually bradykinesia, are frequent in idiopathic RBD (94) and
quantitative motor tests allow detection of Parkinsonism more
than 4 years before the clinical diagnosis of PD (95).

Future Directions – Characterization of
REM Sleep Circuits, and Involvement of the
Dopaminergic and Limbic Systems

Although initial studies suggest that SubC neurons generate
REM sleep (12), their neurotransmitter and genetic characteristics
remain poorly defined. Future studies need to focus on improving
characterization of REM-generating circuits and should define
how the different neuronal populations of the circuits interact
to produce REM sleep. Similarly to how cholinergic cells of the
PPT/LDT and glutamatergic cells of the SubC region mutually
interact (26, 32, 35), it would be valuable to elucidate the syner-
gistic interaction between other parts of the network (e.g., DPGi,
SubC, and MCH). Moreover, we should investigate why such
circuits are vulnerable to degeneration in RBD or pathological
recruitment in narcolepsy.

The interaction between various neurotransmitter systems reg-
ulates REM sleep and its characteristics; however, one system
has been understudied in relation to REM sleep and associated
disorders – the dopaminergic system. While dopamine levels in
the cerebrospinal fluid are highest during wake and lowest in sleep
(96), several pieces of evidence indicate a role for the dopamine
system in REM sleep control. Most dopamine neurons fire simi-
larly throughout the sleep–wake cycle; however, ventral tegmental
area (VTA) neurons fire in burst mode during REM sleep (97).
In addition, application of dopamine onto REM-active neurons
of the SubC region leads to inhibition of REM sleep or REM
sleep without atonia – implying the existence of a REM-inhibiting
dopamine cell group (98, 99).

There is strong evidence that dysregulation of the dopamine
system contributes to narcolepsy. Dopamine receptor expression
is affected in human narcoleptics and is correlated with the
severity of cataplexy (100). Drugs used to treat narcolepsy (e.g.,
modafinil, amphetamine, and clomipramine) affect dopamine
system function (101–103).Moreover, drugs that target dopamine
receptor activity influence cataplexy in narcoleptic mice (104).
Specifically, activation of dopamine D2-like receptors increases
the frequency of cataplectic attacks in these mice, whereas recep-
tor blockade reduces their occurrence (104). Despite the clear
involvement of the dopamine system in mediating cataplexy, the
specific part of the dopamine system which contributes to the
motor paralysis of cataplexy remains unknown.

Dopamine neurons of the caudal hypothalamus – the A11
cell group – send descending projections to the brainstem and
spinal cord; and hence, have been hypothesized to play a role in
motor control (98, 99, 105–108). Inhibition of this neuronal region
leads to a worsening of cataplectic symptoms in narcoleptic dogs
(109). More recent but preliminary work shows that optogentic
activation of these dopamine neurons in narcoleptic mice rescues
cataplexy within a few seconds of stimulation (110).

The strong link between RBD and PD, a neurodegenerative dis-
order affecting the dopamine system, suggests that the dopamine
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system may also be involved in the pathophysiology of RBD.
For example, lesions of the dopamine system, using 1-methyl-4-
phenyl-1,2,3,6-tet-rahydropyridine hydrochloride (MPTP), have
also been shown to produce RBD symptoms in monkeys (111).
Immediately after MPTP treatment, monkeys experienced loss of
REM sleep motor atonia, despite having normal motor function
during wakefulness (i.e., no PD symptoms). Supporting these
findings, imaging studies show dopamine cell loss in patients with
RBD (112).

Finally, the link between the limbic system and REM sleep
circuits has been poorly studied. As mentioned earlier, strong
positive emotions trigger cataplexy, which suggests, if cataplexy
represents an intrusion of REM sleep into wakefulness, that there
is a link between the amygdala (a part of the limbic system)
and the REM sleep core. Indeed, anatomical tracing studies have
established that the amygdala has both direct and indirect connec-
tions with the SubC region (71, 113). Imaging studies demonstrate
increased activity in the amygdala during REM sleep (114, 115),
and TTX-mediated inhibition of the amygdala decreases both
the number and duration of REM sleep episodes (116, 117).
Finally, pharmacological studies have shown that neurotransmit-
ters implicated in REM sleep control also affect the amygdala
to alter REM sleep expression. For example, GABAA receptor
agonism and antagonism of the amygdala produce decreases and
increases (respectively) in REM sleep amounts (118), the applica-
tion of serotonin during NREM sleep produces rapid transitions

into REM sleep (119), and cholinergic excitation increases the
frequency of REM episodes (120).

Conclusion

Interaction between the core of the REM-generating circuit and
other forebrain, hypothalamic and brainstem structures gen-
erate REM sleep and its characteristics (e.g., muscle paraly-
sis). Both direct cholinergic activation (7, 32) and GABAer-
gic inhibition (11, 43) induce the transition into REM sleep
by activating SubC glutamatergic neurons. Descending SubC
projections activate GABA and glycine release onto motoneu-
rons, producing the paralysis of skeletal muscles in REM
sleep (45, 79). Over-expression of REM sleep characteristics
or untimely activation of REM sleep circuitry are the patho-
logical causes of several sleep disorders. Abnormal activation
of the REM-generating circuit while awake leads to cataplec-
tic attacks in narcoleptic patients (4). Failure to shut down
muscles and/or over-expression of motor activity during REM
sleep are the primary signs of RBD (5). Finally, further inves-
tigation of the genetic and phenotypic characteristics of the
REM sleep core system, as well as the interaction between REM
sleep circuitry and other parts of the diffuse neural network,
which contributes to generating REM sleep, will help shape
new specific approaches to treat these REM sleep-associated
disorders.
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