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REM sleep is associated with distinct global
cortical dynamics and controlledbyoccipital
cortex

Ziyue Wang1,2,6, Xiang Fei1,3,6, Xiaotong Liu1,3,6, Yanjie Wang1,2,6, Yue Hu1,4,
Wanling Peng1, Ying-wei Wang4, Siyu Zhang 2 & Min Xu 1,5

The cerebral cortex is spontaneously active during sleep, yet it is unclear how
this global cortical activity is spatiotemporally organized, and whether such
activity not only reflects sleep states but also contributes to sleep state
switching. Here we report that cortex-wide calcium imaging in mice revealed
distinct sleep stage-dependent spatiotemporal patterns of global cortical
activity, andmodulation of such patterns could regulate sleep state switching.
In particular, elevated activation in the occipital cortical regions (including the
retrosplenial cortex and visual areas) became dominant during rapid-eye-
movement (REM) sleep. Furthermore, such pontogeniculooccipital (PGO)
wave-like activity was associated with transitions to REM sleep, and optoge-
netic inhibition of occipital activity strongly promoted deep sleep by sup-
pressing the NREM-to-REM transition. Thus, whereas subcortical networks are
critical for initiating and maintaining sleep and wakefulness states, distinct
global cortical activity also plays an active role in controlling sleep states.

The brain comprises a highly interconnected, complex neural network.
The overall dynamic changes of neural activity within this network are
collectively referred to as “brain states”. Wakefulness and sleep are
distinct brain states that, in mammals, are mainly defined by activity
patterns of the thalamocortical system, as reflected by electro-
encephalogram (EEG) and motor activity1,2. The different sleep stages
are also observed in non-mammalian species3–5. Distinct cortical
activity associated with various sleep-wake stages is generally con-
sidered a reflection of each sleep state and plays a limited role in sleep
state switching6–9, although emerging evidence supports an active role
for the cortex in controlling sleep as well10,11. However, from the per-
spective of network theory, the activity of key nodes within a complex
network may have a broad impact on various properties of the
network12. Therefore, by providing many critical nodes of the brain
network, the cerebral cortex may play an active role in regulating the

dynamic change of brain states, including the transition between dif-
ferent sleep stages.

On the other hand, it is increasingly recognized that even
simple behaviors may require coordinating neural activity in
multiple brain regions13–15. Consistent with this notion, sleep
control has also been shown to involve a large number of brain
regions that are distributed primarily in subcortical areas6–9. It is
thus important to obtain a global view of how ongoing activity in
various brain regions contributes to the regulation and function
of sleep. Recent developments in large-scale, high-speed record-
ing, and manipulation of global neural dynamics at the mesoscale
allow us to dissect the role of various cortical regions. In this
study, we used “global neural activity” to denote the large-scale
neural activity across large areas in the brain, for example, the
entire dorsal part of the cortex or the whole brain.
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It is now generally appreciated that the brain is highly active
during sleep16. There are characteristic differences between global
neural activity patterns during sleep and wakefulness, as revealed by
EEG recording or functional magnetic resonance imaging
(fMRI) recording in mammals, although with relatively low
resolution2,17,18, or by cellular resolution imaging in non-mammalian
species4,19. However, due to the considerable differences in the brain
networks of different evolved animals, it is necessary to measure the
global network dynamics of the mammalian brain during different
sleep states with a high spatiotemporal resolution, and determine how
these activity control sleep.

In the current study, we used mesoscale Ca2+ imaging to examine
the global neural activity feature in sleep with a high spatiotemporal
resolution from the entire dorsal cortex of mice, and uncovered an
occipital activity pattern that is essential for promoting the transition
from NREM to REM sleep. Our results demonstrate that dynamic cor-
tical activity could play an active role in regulating sleep states.

Results
Mesoscale Ca2+ imaging of cortical activity during sleep
To determine whether there are specific global activity patterns that
associate with different sleep states, we recorded the macroscopic

neuronal activity dynamics with a high spatiotemporal resolution
using widefield-of-view optical imaging in the mice. Wemeasured Ca2+

activity from the entire dorsal part of the cortex from Thy1-GCaMP6s
mice20 using a transparent skull preparation (mice with intact but
optically transparent skulls)21,22, when the mice were trained to sleep
under the microscope (Fig. 1a and Supplementary Movie 1). The Thy1-
GCaMP6s mice express a genetically encoded Ca2+ indicator,
GCaMP6s23, driven by the Thy1 promoter, providing stable access to
pyramidal neurons’ activity in cortical layers 2/3 and layer 520,24. The
current method allows the recording of Ca2+ activity from the motor,
somatosensory and visual cortices, and some association areas21,22,24

(Fig. 1b, c). On the other hand, activity measured with mesoscale Ca2+

imaging reflects the summation of Ca2+ signals from a large number of
neurons, so it may not be equivalent to electrophysiologically recor-
ded population spiking activity. In this study, we used “cortical activ-
ity” to specifically refer to the Ca2+ signals obtained with widefield
imaging.

During imaging, mice were head-fixed under themicroscope with
body andpawsmoving freely, andnoexternal stimuluswas applied. All
imaging experiments were performed during the day with the lights
on. EEG (from the left auditory cortex) and EMG (from the neck mus-
cle) were recorded to determine the sleep-wake states of the mice. To

Fig. 1 |Mesoscale Ca2+ imagingof the dorsal cortexduring the sleep-wake cycle.
a Schematic diagram depicting the mesoscale Ca2+ imaging from head-fixed mice.
b Example field-of-view (time-averaged) of the dorsal cortex imaged through the
transparent skull of a Thy1-GCaMP6s mouse. Scale, 1mm. c Cortex atlas for align-
ment. MOs secondary motor cortex, MOp primary motor cortex, SSb somatosen-
sory cortex, barrel field, SSu somatosensory cortex, upper limb, SSl somatosensory
cortex, lower limb, VISp primary visual cortex, VISs association visual cortex, RSPd

dorsal retrosplenial cortex, RSPl lateral retrosplenial cortex. d Representative Ca2+

activity during different brain states. Scale (ΔF/F0, z-score):Wake, −1.2 to 1.2; NREM,
−1.2 to 1.2; REM, −2 to 2. Black bar, 1mm. e Normalized activation across the
recorded brain regions in different brain states. The averaged activity in each brain
state was z-score normalized across the nine brain regions; thus, positive values
mean more activation. n = 15 sessions from 5 mice. Data are mean ± SEM. Raw data
for e are provided in a Source Data file.
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score the brain states, we performed fast Fourier transforms (FFTs) on
EEG to extract the δ (0.5−4Hz) and θ (6−10Hz) activity. Brain states
were classified according to established criteria:25,26 Wakefulness,
desynchronized EEG and high EMG activity; NREM, synchronized EEG
with high δ activity and low EMG activity; REM, high EEG θ power and
low EMG activity. The habituated mice spent the majority of time in
sleep (NREM: 65%, Wake: 27%, REM: 8%; Supplementary Fig. 1), with
diverse facial movements and occasionally gross body movements
during wakefulness.

Variousmovements profoundly shape cortical activity, producing
distinctpatterns (Fig. 1d and SupplementaryMovie 2). For example, we
found that the facial movements (extracted from the face camera)
were significantly associated with elevated Ca2+ activity in the soma-
tosensory cortex and motor cortex during wakefulness (Supplemen-
tary Fig. 2). On the other hand, we also observed highly structured
activity patterns during sleep (Fig. 1d and Supplementary Movie 2),
suggesting region-specific dynamic neuronal activations in sleep27. To
be noted, consistent with previous reports28, the head-fixed mice in
our recording typically slept with their eyes open, and the pupil size
varied in different sleep states (Supplementary Fig. 3). The change in

pupil size can have significant effects on cortical activity, especially in
the visual cortex. However, multiple lines of our evidence suggest that
changes in pupil size did not significantly contribute to the cortical
activity observed in our recording: First, although both the pupil size
and activity in the primary visual cortex (V1) showed oscillatory
dynamics during NREM sleep, there was no positive correlation
between these two signals; instead, they tended to be negatively cor-
related (Pearson’s r = −0.41 ± 0.041, mean ± SEM; Supplementary
Fig. 3a, b), with a phase difference close to zero (0.50± 0.85 s,
mean± SEM; Supplementary Fig. 3c). This negative correlation sug-
gests that both cortical activity and pupil reflect different aspects of
brain state oscillations during NREM sleep. Second, during REM sleep,
the pupil remains mostly constricted;28 however, V1 activity often
showed large transient increases (Supplementary Fig. 3d). The two
signals during REM were also negatively correlated (Pearson’s
r = −0.41 ± 0.044,mean ± SEM; Supplementary Fig. 3d, e). These results
support that cortical activity during sleep is mainly spontaneous,
unlike during wakefulness.

We began by analyzing the activity of each brain region during
different sleep-wake states, and found three types of modulation that
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Fig. 2 | Anterior-posterior organization of cortical activity during sleep.
a Regional activity correlation matrix during Wake (left), NREM (middle), and REM
(right) in one example recording (~70min). The pairwise correlationwas computed
using neural activity during Wake, NREM, or REM in each small patch (~10 ×10
pixels) of the brain region. Brain regions with similar activity profiles were grouped

together by applying a hierarchical clustering analysis. Scale (cc), −1 to 1. b Cortical
networks revealed by the hierarchical clustering analysis. The dendrogram shows
each grouped brain region (highlighted in yellow)with similar activity. c Regions of
the somatic sensorimotor network and the medial network. Shown are regions of
the two networks averaged from 15 recordings. Scale, 1mm.
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were strongly associated with functions and anatomical proximity of
different brain regions (Supplementary Fig. 4): The motor cortex was
more active during wakefulness and suppressed during REM sleep, in
contrast to the visual cortex and the retrosplenial cortex (RSP) in the
medial cortical network29, which showed an opposing modulation
pattern that was more active during REM sleep; The somatosensory
cortex exhibited more activation during NREM sleep. Additionally,
active wakefulness (with more facial movements) and quiet wakeful-
ness were also associated with different cortical patterns (Supple-
mentary Fig. 5).

Besides the region-specific modulation in discrete cortical
regions, macroscopic imaging allows for identifying global activity
patterns. We thus normalized activity in each brain state across the
entire dorsal cortex and determined the relative activation of each
cortical area. Consistent with the above result, the most active region
duringwakefulness was themotor cortex, while themost active region
during REM sleep was the RSP; The NREM activity had a relatively
uniform distribution across the dorsal cortex, except that the RSP
showed the least activity (Fig. 1e and Supplementary Movie 2). This
brain region-specific modulation suggests that different cortical
regions may be specifically involved in regulating different sleep-wake
states or implementing state-specific functions in the sleep-wake cycle.

Highly structured cortical activation patterns during sleep
The above analysis used time-averaged activity, which reflected the
relative activation probability of each brain region during different
brain states. Also, brain atlas-based quantification can be affected by
the accuracy of atlas-matching procedures. We therefore examined
cortical activity patterns in different sleep-wake states on a fine time
scale and without prior compartmentation of the cortex.

We first performed a functional connectivity analysis30,31, in which
we computed the similarity of neural activity dynamics between small
grids of cortical areas and used hierarchical clustering to group
regionswith similar activity.We found that the cortex couldbe divided
into different subnetworks using activity either from NREM or REM
sleep (Fig. 2a, b and Supplementary Fig. 6), and the clustering analysis
revealed two distinct subnetworks: The first network consisted of a
large part of the somatic sensorimotor network, and the second net-
work mainly covered the medial cortical network (Fig. 2c). This result
suggested that activity in the dorsal cortex during sleepwas organized
primarily according to the anterior-posterior axis, further supporting
the functional divergence of these brain regions during different sleep
states.

We next performed the principal component analysis (PCA) to
detect the structured spatial patterns during the sleep-wake cycle. PCA
reliably extracted highly similar activity patterns from different mice
(Supplementary Fig. 7), similar to the previous analysis using seeds-
based correlation32. Figure 3a shows the five most reliably detected
principal components (PCs, PC1 – PC5), which together accounted for
17.7% ± 3.0% (mean ± SEM) of the total variance (n = 15 recordings from
5 mice; Supplementary Fig. 8a). The major PCs were generally sym-
metric across the twohemispheres (Supplementary Fig. 8b) and highly
correlated with anatomical modules of the cortex (Supplementary
Fig. 8c). For example, PC1 mainly reflected activation of the visual
cortex and RSP, and PC2 was primarily in the somatosensory cortex
(Fig. 3a and Supplementary Fig. 8c). These results showed that the
ongoing spontaneous activity was primarily organized according to
intrinsic anatomical connectivity of the cortex33, reflecting synchro-
nized activation across the dorsal cortex during the sleep-wake cycle.

These PCs had distinct dynamics during the sleep-wake cycle
(Fig. 3b), which were reflected in changes in PCA coefficients, quanti-
tative measures of the correlation between each PC and cortical
activity patterns during each imaging frame—higher coefficients mean
higher similarity. PC1, PC4, andPC5weremoreactive duringREMsleep
and less active during wakefulness and NREM sleep (P <0.001,

Wilcoxon sign-rank test; Fig. 3b, c); PC2 wasmore active during NREM
sleep than during both wakefulness and REM sleep, in contrast to the
opposing activity pattern of PC3 (P <0.001, Wilcoxon sign-rank test).
These modulations mirrored our previous analysis using atlas-based
activity segmentation methods, further supporting the region-specific
activity changesduringdifferent sleep-wake states. In addition, the PCs
showed fast temporal dynamics, showing as transient activity events
(Fig. 3d, e) (e.g., event duration: PC1, 0.92 ±0.02 s; PC2, 0.90 ±0.03 s;
n = 4 mice; mean± SEM).

The PCs exhibited prominent oscillations, similar to previous
reports30–32. Spectral analysis revealed strong power in the δ band
(0.5–4Hz) and slow oscillations (<1 Hz; Fig. 3f, g). However, although
these oscillations showed a brain state-dependent manner, with the
highest oscillation power during REM sleep (Supplementary Fig. 9a),
they did not correlate with EEG δ or slowwaves (Pearson’s r < 0.01, for
all PCs) (Supplementary Fig. 9b, c).

Distinct occipital activity pattern during REM sleep
We next focused our analysis on cortical activity patterns during REM
sleep. PCA (using only data in REMsleep) showed that REMactivitywas
dominated by the first PC of REM sleep (PC1REM), which accounted for
27.5% ± 2.6% (mean± SEM) of the total variance, much larger than
other PCs (explained variance by PC2–4: 1.1–3.3; n = 15 recordings from
5mice; Supplementary Fig. 10a).We thus only analyzed the PC1REM in all
following sections.

The PC1REM primarily reflected activation of the occipital cortical
network, especially the RSP (Fig. 4a, Supplementary Fig. 10b), con-
sistent with previous reports34–36. The PC1REM showed a large dynamic
change in its coefficient (Fig. 4b and Supplementary Fig. 11) and often
appeared as transient events. Further analysis showed that this inter-
mittent activation is associated with different sub-stages of REM sleep
(tonic vs. phasic REM, or quiet vs. activeREM)37—Wedefinedphasic and
tonic REM according to the presence of phasic facial movements
(extracted from the face camera) and found that the PC1REM was sig-
nificantly higher (P <0.001, Wilcoxon signed rank test; Supplementary
Fig. 12) during phasic REM, suggesting different REM stages exhibit
distinct cortical activation patterns. In addition, the increased activa-
tion of the PC1REM also correlated with more general activation of the
cortex, and it often occurred as a spreading activation pattern starting
from the RSP (Fig. 4c, Supplementary Fig. 13, and Supplementary
Movie 4 and 5).

We next further examined the dynamic change of cortical acti-
vation during REM sleep, particularly its relationship with other fea-
tures associated with REM, such as EEG θ power and eye movements.
The fluctuation of PC1REM moderately correlated with the EEG power
ratio between the θ and δ band (Fig. 4d, e and SupplementaryMovie 3;
Pearson’s r =0.41 ± 0.03, n = 4 mice), consistent with the fact that they
both reflected activation of the cortex38. The occurrence of burst eye
movements, which were extracted from a video of the mouse pupil,
was also associated with the increase of PC1REM (Fig. 4d, f and Supple-
mentaryMovie 3); however, such correlation was not observed during
wakefulness (Supplementary Fig. 14).

Another feature of brain activity during REM sleep is the PGO
waves, which originate in the pons and propagate through the lateral
geniculate nucleus to the occipital cortex39. The unique occipital
activity we observedmay represent the cortical activity of mouse PGO
waves. We therefore examined this by recording local field potentials
(LFP) from the pons during the mesoscale imaging (Fig. 4g). We
identified the pontine waves (P-wave, the pontine part of the PGO
waves) as large negative potential in the LFP40,41, and we found that
occipital activity significantly increased immediately after the P-wave
(Fig. 4h, i; peak latency, 0.89 ± 0.07 s,mean ± SEM). This result support
that mice also have PGO waves, and the structured occipital activity
during REM sleep may represent the cortical activation of the
PGO waves.
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Occipital activity dynamic during NREM sleep
Although the occipital cortex was highly active during REM sleep, we
noticed that the PC1REM -like activity pattern (REM-like pattern) also
appeared in other brain states. We thus next analyzed the REM-like
pattern during wakefulness and NREM by computing the similarity
between the activity pattern of each imaging frame and the PC1REM

(Fig. 5a). At the population level, there was no correlation between

PC1REM and the activity pattern in both wakefulness and NREM (Pear-
son’s r = −0.11 ± 0.01 and −0.046 ± 0.007 for Wake and NREM,
respectively; mean± SEM; P <0.0001, Paired t-test, all the t-test used
the current study is two-tailed; n = 15 recording from 5 mice; Fig. 5b).
However, while cortical patterns during wakefulness were generally
not similar with the PC1REM (except during the drowsy states when the
pupil was constricted and lack of facial movements. Supplementary
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Fig. 3 | Highly structured cortical activation patterns during the sleep-wake
cycle. a Activation patterns in an example recording extracted using PCA, showing
the most frequently detected five major PCs during the sleep-wake cycle. Scale
(ΔF/F0, z-score): PC1, −2 to 2; PCs 2–5, −1.2 to 1.2. Black bar, 1mm. b Time course of
EEG spectrum and the coefficient of PCs showing in panel a. Top to bottom, EEG
power spectrogram, EMG (scale, 0.5mV), coefficient of PCs (scale, 0.02 and 100 s).
The brain states are color-coded; the same color code is used in all following
figures. c Coefficient of the five major PCs in different brain states. The same color
codewas used for each PC, as shown in panelb. Each line represents data from one
recording. *P <0.05, ***P <0.001; Two-tailed Student’s paired t test or Wilcoxon

signed-rank test. Data of PC1 - PC5 were from 15, 15, 15, 13, and 14 sessions from 5
mice, respectively. In this and all subsequent figures, summary data are expressed
as the mean± SEM. d An example trace showing the time course of the PC1 coef-
ficient. The two blue boxes indicate two activity events. Scale: 2 s and 0.02.
e Duration of the cortical activity events. n = 235 and 264 events for PC1 and PC2,
respectively. f Time course of the PC1 spectrum and the normalized mean power
(0–5Hz) in a log scale. Time scale, 100 s. gNormalized power spectrum of the PCs.
Shading is SEM. n = 15 recording from 5mice. Raw data for c and exact P values are
provided in a Source Data file.
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Fig. 4 | Cortical activation patterns during REM sleep. a The first PC of REM
activity. Scale (ΔF/F0, z-score): −2 to 2. b Time course of PC1REM, showing a large
dynamic change of the PC. Scale: EMG, 0.5mV; coefficient of PC, scale, 0.01 and
10 s. c An example showing the dynamic change of the spreading activity during
REM sleep. Scale (ΔF/F0, z-score): −1.5 to 1.5. d An example showing the PC1REM

coefficient, EEG power ratio between θ and δ band, and eye movements in the
horizontal direction. Scale: PC1, 0.02 and 10 s; EEG ratio, 1; eye movements, 10
pixels. The two blue boxes indicate two bouts of eye movements. e Correlation
between PC1REM coefficient and EEG power ratio between θ and δ band.
f Correlation between eye movements and PC1REM. PC1REM coefficient was aligned

using the onset of eye movement. Each black trace represents averaged change of
PC1REM coefficient from one recording (n = 9−29 events). The red trace is the group
average (n = 4 mice). g Left, schematic diagram depicting LFP recording from the
pons. Right, Examples of P-waves (Scale, 0.1mV and 1 s) and associated cortical
activity (Scale, ΔF/F0, z-score: −1.5 to 1.5). h–i Occipital activity increased immedi-
ately after the P-waves. PC1REM coefficient aligned to the negative peak of p-waves
detected from one recording (h, n = 33) or from all 5 mice (i, n = 199). Scale in
h, ΔF/F0 (z-score): −1.5 to 1.5. All black bars in the figure represent 1mm. Raw data
for e are provided in a Source Data file.
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Fig. 15), the NREM activity frequently exhibited a high positive or
negative correlation with the PC1REM in a transient manner (Fig. 5c),
suggesting that cortical activity patterns during NREM oscillate
between a REM-like state and an opposing state (REM-opponent state).
Further analysis indicated that the occurrence of REM-like and REM-
opponent cortical activity patterns showed a strong brain state-
dependent manner—REM sleep was dominated by REM-like patterns,
and wakefulness hadmore REM-opponent patterns (REM-like vs. REM-
opponent: REM, 23:1; Wake, 1:3.2; NREM, 1:1.1) (Fig. 5d).

TheREM-like state showedhigh activity in themedial network and
low activity in the somatic sensorimotor network, while the REM-
opponent state had opposing patterns with more activation in the
somatic sensorimotor network (Fig. 5c and Supplementary Fig. 16).
Indeed, these two cortical patterns were highly similar to the occipital

network and anterolateral network revealed by our regional correla-
tion analysis (Fig. 5e). Additionally, we found that the REM-like state
and REM-opponent state were associated with different EEG wave-
forms that were measured from the temporal part of the cor-
tex (Fig. 5f).

It has been recently found that EEG during NREM sleep exhibits
infra-slow oscillations in the sigma band42,43. We next examined the
relation between the sigma oscillations and the REM-like activity. We
chose long NREM bouts with few micro-arousals and calculated EEG
sigma power (Fig. 5g). Cross-correlation analysis revealed a significant
positive correlation (Pearson’s r =0.47 ±0.02; mean± SEM) between
the two signals (Fig. 5h, i), with no apparent difference in the peak time
at the group level although the sigma oscillations may lead or lag the
REM-like activity for a few seconds (Fig. 5h, j).
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P <0.0001 for both Wake vs. REM and NREM vs. REM; Two-tailed paired t-test.
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Pearson correlation coefficient between each comparison. Data are mean ± SEM.
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n = 15 recordings from 5mice. Rawdata forb,d, i, j and exact P values are provided
in a Source Data file.
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The infra-slow sigma oscillation is thought to represent a periodic
increase of arousal level during NREM42,43, which may lead to micro-
arousal events.We thus next analyze the relation between the REM-like
activity andmicroarousal events.We found that thereweremore REM-
like states beforemicroarousal events andmore REM-opponent events
during microarousal events (P <0.001 for both comparisons, one-way
repeated measures ANOVA with posthoc Tukey’s test; Supplemen-
tary Fig. 17).

Occipital Activity Signifies NREM to REM Transition
We have shown that cortical activity during REM sleep was dominated
by occipital activation, and the NREM activity pattern oscillated
between REM-like and REM-opponent states, raising a possibility that
the occipital activation may signify the occurrence of REM sleep. To
test this idea, we analyzed global cortical activity duringNREM-to-REM
transitions. We found that there were significantly more REM-like
states immediately before the NREM-to-REM transition (preREM,

defined as the 20-sec before the transition; P <0.05; Paired t-test;
Fig. 6a, b), and the occurrence of REM-like pattern increased linearly
during preREM (Pearson’s r = 0.81, P <0.0001; Fig. 6a). Additionally,
the probability of REM-like states was significantly lower during the
NREM period following prolonged REM bouts (P = 0.011; Paired t-test,
n = 11 recordings from 7mice) (Fig. 6c–e), suggesting that the REM-like
activity pattern during NREM sleep may represent the propensity of
brain state transition into REM sleep. Indeed, the occurrence of the
REM-like statewas associatedwithwhether the brainwould transit into
wakefulness or REM sleep. There were significantly more REM-like
states before the NREM-to-REM transitions (P <0.05, one-way ANOVA
with Tukey’s posthoc tests; Fig. 6f, g).

The association of REM-like activity patterns with the propensity
of REM sleep was further supported by our additional analysis, in
which we measured the probability of the REM-like state during dif-
ferent NREM periods that were associated with the different pro-
pensity of transitioning into REM sleep. We found that the cortical
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are provided in a Source Data file.
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pattern showed significantly more REM-like states during the later
stages of NREM bouts when there was a high propensity of transi-
tioning into REM sleep, compared with the early stages (P <0.0001,
one-wayANOVAwith Tukey’s posthoc tests; Fig. 6h, i). Together, these
results indicated that the occurrence of the REM-like activity pattern
could signify the propensity of brain state transition from NREM to
REM sleep.

Modulation of NREM to REM switching by occipital activity
We have shown that the occipital cortex was highly active during REM
sleep, and such an activity pattern was also associated with the pro-
pensity of REM sleep. We thus hypothesized that neural activity in the
occipital cortex might play a role in regulating REM sleep. To test this
idea, we suppressed activity in the occipital cortex via optogenetic
exciting the GABAergic neurons in these regions using GAD2-Cremice44

with AAV-mediated expression of red-shifted channelrhodopsin,
ChrimsonR45 (Fig. 7a). To achieve a large area of optogenetic manip-
ulation and minimize damage to the cortex by inserting optical fibers
(Supplementary Fig. 18a, b), we applied light through the transparent
skull using a head-mounted high-power LED (567nm; 10mW, 20Hz,
2min/trial, randomly applied every 5–7min; Fig. 7a and Supplementary
Fig. 18a, c). We found that light application significantly reduced the
probability of REM sleep (mean, −59.6% of baseline; 95% Cis, [−45.8%,
−73.4%]; P<0.001, bootstrapping), increased NREM sleep (mean, 12.6%
of baseline; 95%Cis, [8.4%, 16.8%]; P<0.001, bootstrapping), and had no
apparent effect onwakefulness (P=0.38, bootstrapping; Fig. 7b). (n= 25
testing sessions from 5 mice expressing ChrimsonR, 5 sessions/mouse).
The stimulation-induced REM suppression was observed in all five mice
tested in our experiment (Supplementary Fig. 19), indicating the
robustness of this effect. This result was unlikely to be a non-specific
effect of the light sincewedetected no light-induced changes in all three
brain states in mice expressing a control virus (Fig. 7b, c and Supple-
mentary Fig. 19;P>0.62 for all three states, bootstrapping;n= 24 testing
sessions from 5 mice expressing mCherry, 4 or 5 sessions/mouse). The
laser stimulation-induced modulation in the ChrimsonR- and mCherry-
expressing mice were also compared using two-way repeated measures
ANOVA, which revealed significant main effects of laser stimulation on
thepercentageofbothREMandNREMsleepbutnotwakefulness (Wake,
F(1, 8) = 0.097, P=0.76; NREM, F(1, 8) = 13.0, P=0.007; REM, F(1,
8) = 25.5, P<0.001; two-way repeated measures ANOVA).

The reduction inREMsleepwas not becausewe couldnot identify
REM sleep during the stimulation period—EEG signals for both REM
andNREM sleep during the stimulation period showed characteristicθ
and δ oscillations, respectively (Supplementary Fig. 20). Furthermore,
optogenetic stimulation did not produce unnatural brain states, as the
EEG spectrum (0.5–18Hz) for both REM and NREM sleep during the
stimulation period had no significant difference from that
during the no-stimulation period (REM, P = 0.96; NREM, P =0.68;
Kolmogorov–Smirnov test; Fig. 7d).

In the optogenetic silencing experiments, we observed stimulus-
induced reductions in REM sleep, which may be the result of reduced
REMentry or reducedREMmaintenance. Brain state transition analysis
can distinguish these possibilities. For a given time point (5-s bin),
brain state transition analysis determines the probability of the current
brain state transitioning to other brain states. In this analysis, we
compared the transition probability during the baseline and stimula-
tion periods (Fig. 7e, f and Supplementary Fig. 21). Each bar in the
figure represents the transitionprobability averaged inoneminute.We
found that the primary effect of the light stimulation was to decrease
the transition from NREM to REM while stabilizing NREM sleep
(increased NREM→NREM transition) (NREM→REM, P < 0.001;
NREM→NREM P <0.001; Paired t-test or Wilcoxon signed-rank test,
see Methods section; Fig. 7e). This result was consistent with our
observation that the REM bout number was markedly decreased dur-
ing the stimulation period (ChrimsonR: baseline, 26.2 ± 1.8;

stimulation: 8.8 ± 1.4; P <0.0001, Paired t-test; mCherry, baseline,
23.8 ± 3.1; stimulation: 18.4 ± 1.3; mean± SEM; P = 0.16, Paired t-test;
Supplementary Fig. 22). There was also a tendency for decreased REM
consolidation and increased transition from REM to wakefulness
(REM→REM, P =0.069; REM→Wakefulness, P =0.062; Paired t-test;
Fig. 7e). Together, these results indicate that neural activity in the
occipital cortex plays a role in controlling theNREM-to-REM transition.

We next tested whether neural activity in the occipital cortex can
bidirectionallymodulate the transition betweenNREM and REM. Since
excessive activation of cortical excitatory neurons can cause seizure,
we only expressed ChrimsonR (driven by CaMKII promotor) in a small
region of the occipital cortex, the RSP (Fig. 7g). Light stimulation
(638 nm, 0.3–2mW at fiber tip, 20Hz, 2min/trial, randomly applied
every 5–7min) caused a significant increase of REM sleep (P =0.0028,
Paired t-test) anddecreaseofNREMsleep (P = 0.007, Paired t-test), and
no detectable change in wakefulness was observed (P =0.33, Paired t-
test) (Fig. 7h). The main effect of the light stimulation was to increase
the transition from NREM to REM and decrease the consolidation of
NREM sleep (P <0.001 for both transitions; Paired t-test; Fig. 7i),
reverse mirroring the effect of inhibiting the occipital cortex.

Taken together, we have demonstrated that occipital activity
signifies REM propensity and plays an active role in controlling REM
sleep. An immediate intriguing question is whether inhibition of
occipital activity leads to an increase in REM pressure since REM sleep
is also homeostatically regulated46,47. In our optogenetic inhibition
experiment, we did observe REM rebound shortly after the laser sti-
mulation (Fig. 7b and Supplementary Fig. 19), suggesting the possibi-
lity of increased REM pressure by suppressing occipital activity. To
further examine this, we performed a new experiment in which we
inhibited occipital activity for a longer time (Laser on, 20min; Laser
off, 8–10min) and with higher laser power (20mW, to achieve more
significant inhibition; Fig. 7j). We found that prolonged inhibition of
occipital activity effectively suppressed REM sleep throughout the
stimulation period—the percentage of REM sleep decreased to 3.5%
compared with 10.5% before stimulation (P =0.032, one-way ANOVA
with posthoc Tukey’s test; Fig. 7j–l). Importantly, mice frequently
entered into REM shortly after stimulation, resulting a substantial
increase in the percentage of REM sleep (25.9%; P <0.001, one-way
ANOVA with posthoc Tukey’s test, compared with baseline; Fig. 7j–l).
These results show that inhibition of occipital activity produces REM
sleep pressure, suggesting that the occipital cortex plays a role in REM
homeostasis.

Discussion
Usingmesoscale Ca2+ imaging from the entire dorsal cerebral cortex in
mice, we revealed highly structured cortical activity and distinct global
activation patterns during the sleep-wake cycle, with more activation
in the somatic sensorimotor network during wakefulness, and more
active medial cortical network, especially the RSP, during REM sleep
(Figs. 1e and 2–4). In particular, we uncovered a shared global cortical
activity pattern forREMandNREMsleep control, as is illustrated by the
diagram shown in Fig. 8. REM sleep is dominated by the cortical
activity pattern with higher activation in the occipital cortex and low
activity in the somatic sensorimotor cortex (the REM-like activity
pattern), and such dominance gradually emerges during the NREM-to-
REM transition. The cortical activity during NREM sleep oscillates
between the REM-like pattern and the REM-opponent pattern. More-
over, the occurrence of theREM-like pattern signifies the propensity of
brain state transition from NREM to REM sleep. Inhibition of the REM-
like pattern by suppressing neural activity in the occipital cortex can
retain the brain state in the REM-opponent state, thus preventing the
transition from NREM to REM sleep and promoting NREM
sleep (Fig. 7).

During sleep, although our body is relatively inactive, our brain is
very active. Our direct imaging of global neural activity in the entire

Article https://doi.org/10.1038/s41467-022-34720-9

Nature Communications |         (2022) 13:6896 9



dorsal cortex with a high spatiotemporal resolution shed light on
understanding the global organization of cortical activity patterns
during sleep. Brain activity during REM sleep was thought to resemble
that during wakefulness, at least at the EEG level48,49. However, our
measurement of global cortical activity suggests a fundamental dif-
ferencebetween the two states, with a largedifference in the activation
patterns of the somatic sensorimotor network and the medial cortical
network, and the cortical activity patterns during NREM sleep were

more similar to the REM activity than that between wakefulness
and REM.

Our results also showed that the cortical network during NREM
sleep oscillates between the REM-like state and the REM-opponent
state on a rapid time scale, demonstrating the heterogeneous cortical
activity patterns during NREM sleep. Conceptually, our finding is
consistent with the concept of “local sleep”50, which refers to the
locally generated neuronal ceasefire during wakefulness, especially
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when sleep pressure is high. While local sleep represents spatially
localized micro-sleep and its occurrence is associated with increased
sleep pressure, our finding indicates that transient REM-like states
embed in NREM sleep, and the occurrence probability of such state is
associated with transition probability from NREM to REM, resembling
the “REM pressure” of the brain51. Therefore, both studies emphasized
that a specific brain state can have characteristic features of other
brain states in the space or the time domain.

Neural activity during sleep has been proposed to associate with
various brain functions, including memory consolidation52–57. Our
mesoscale optical imaging of cortical activation provides new insights
into how these activities are spatiotemporally organized in the dorsal
cortex. The PGO wave-like activation of the RSP during REM sleep
implicates its association with REM functions. In fact, RSP has been
shown to be closely related to the memory process58. Our results offer
a potential explanation of the RSP involvement in memory, which is
also consistent with the memory role of the PGO waves39,40 and REM
sleep59,60. The high activation of the occipital cortex during REM sleep
is also consistent with a human EEG study, which shows that the
‘dreaming’ experience is tightly correlated with activation of the
occipital “hot zone”61.

The RSP is part of the brain defaultmode network (DMN), which is
more active when a subject is not interacting with the outside world62.
With this in mind, it is not difficult to understand that RSP is relatively
inactive during the waking period, because the main purpose during

wakefulness is to interact with the outside world. While interestingly,
the RSP is also less active during NREM sleep but highly active during
REM sleep, indicating that the highly active brain during REM sleep is
more internally orientated.

Theneural control of sleep-wake state switching has been thought
to be a privilege of the subcortical network, especially the brainstem
and hypothalamus6–8,63. The main role of the cortex in sleep-wake
regulation is thought to generate homeostatic sleep pressure in an
activity-dependent manner10,50,64, or to support arousal9 or promote
sleep11 through top-down feedback connections to subcortical regions.
For REMsleep control, it is generally accepted that the brainstemplays
a central role, with significant modulation by the
hypothalamus6–8,38,65–68. Our finding that activity in the medial cortical
network is also required for REM sleep uncovers an unexpected role of
the cortex in REM control. These results provide evidence supporting
the control of the sleep-wake cycle by the fast cortical activity
dynamics, and indicate that REM sleep, as a unique state of the entire
brain network, requires coordinating neural activation within the
whole-brain network. Conceptually, our results showed that the
structured cortical activity during sleep is not just an epiphenomenon
of various sleep-wake states, but also plays an active role in regulating
sleep state switching.

Methods
Experimental model and subject details
All experimental procedures followed the National Institutes of Health
guidelines and were approved by the Animal Care and Use Committee
at the Institute of Neuroscience, Chinese Academy of Sciences. Both
male and female mice (>8 weeks at the time of surgery) were used.
Mice were housed in rooms (temperature: 23 ± 1°C; humidity: 50–70%)
under a 12/12-hr light/dark cycle (light on at 7 a.m.) with ad libitum
access to food and water. Mice with implants for widefiled imaging or
optogenetic manipulation were housed individually. Wild-type mice
(C57BL/6) (six male) were purchased from institute-approved vendors
(Shanghai Silaike or LingChang Experiment Animal Co., China); GAD2-
IRES-Cre (six male and ten female) and Thy1-GCaMP6s (eight male)
mice (stock #: 010802 and 024275, respectively) were obtained from
Jackson Laboratory.

Surgical procedures
For widefield imaging experiments, the Thy1-GCaMP6s mice were
anesthetized with isoflurane (5% for induction; 1.5–2% for main-
tenance) and placed on a stereotaxic frame with a heating pad. A
“transparent skull” was prepared for chronic optical imaging using a
similar procedure described previously21. The scalp was removed, and
the skull was cleaned using hydrogen peroxide solution. The entire
dorsal part of the skull (except that above the olfactory bulb and the
cerebellum) was thinned using a dental drill and covered with a thin

Fig. 7 | Control of REM sleep by the occipital cortex. a Schematic of experiment
and region of virus expression. b Percentage of each brain state during light sti-
mulation (yellow shading). n = 25 sessions from 5 mice (5 sessions/mouse) for
ChrimsonR group and 24 sessions from5mice (4or 5 sessions/mouse) formCherry
group. Shading, SEM c Percentage of each brain state during stimulation and
baseline. Wake, F(1, 8) = 0.097, P =0.76; NREM, F(1, 8) = 13.0, P =0.007; REM,
F(1, 8) = 25.5, P <0.001; ChrimsonR group: P =0.74, 0.0017, and 0.00017 for Wake,
NREM, and REM, respectively; mCherry group: P =0.46, 0.65, and 0.60 for Wake,
NREM, and REM, respectively; Two-way repeated measures ANOVA with Tukey’s
posthoc test. d Normalized EEG power spectrum during light stimulation and
baseline. Shading, SEM. P =0.98 and 0.68 for REM and NREM, respectively;
Kolmogorov-Smirnov test. n = 22 or 25 sessions from 5 mice for REM and NREM,
respectively. e Transition probability for indicated brain states during light stimu-
lation (shading). Red line, baseline transition probability. n = 25 sessions from 5
mice. P <0.001 for both NREM→REM and NREM→NREM transitions; Paired t-test
orWilcoxon signed-rank test. P =0.069 and 0.064 for REM→REMand REM→Wake

transitions, respectively; Paired t-test or Wilcoxon signed-rank test. Data are
mean ± SEM. f Diagram summarizing brain state transitions during light stimula-
tion. g Schematic of experiment and region of virus expression. h Percentage of
each brain state during stimulation and baseline. P =0.33, 0.007, and 0.0028 for
Wake, NREM, and REM, respectively; Paired t-test. n = 42 sessions from 6 mice.
iTransitionprobability of NREM→REMandNREM→NREMduring light stimulation
(shading). n = 42 sessions from 6 mice. P <0.001 for both transitions; Paired t-test.
Data are mean ± SEM. j Schematic of experiment showing prolonged optogenetic
suppression of the occipital cortex and an example recording (scale, 0.5mv and
5min). k Percentage of each brain state during light stimulation. n = 30 sessions
from 6 mice (5 sessions/mouse). Shading, SEM l Percentage of REM sleep before,
during, and after light stimulation. Before vs. Stimuli., P =0.032; After vs. Stimuli.,
P <0.0001; Before vs. After., P <0.0002; One-way repeated measures ANOVA with
Tukey’s posthoc test. n = 30 sessions from 6 mice. Raw data for c–e, h–j, and l are
provided in a Source Data file.

NREM REM
REM-like state

REM-opponent state

Fig. 8 | Diagram illustrating cortical activity during NREM-to-REM transition.
The cortical activity pattern during REM sleep is dominated by elevated activation
in the occipital cortex and low activity in the somatic sensorimotor cortex (the
REM-like pattern), and such dominance gradually emerges during the NREM-to-
REM transition. The cortical activity during NREM sleep oscillates between the
REM-like pattern and a REM-opponent pattern. The occurrence of the REM-like
pattern is associated with the propensity of brain state transition from NREM to
REM sleep. Inhibiting the REM-like pattern by suppressing neuronal activity in the
occipital cortex can retain the brain state in the REM-opponent state, thus pre-
venting the transition from NREM to REM sleep.
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layer of cyanoacrylate glue (ZAP-A-GAP). Two stainless steel screws
(M1.0 × 3mm) were inserted into the skull above the auditory cortex
(AP −3.0mm, ML 4.6mm) of both hemispheres, and another two
screws were inserted into the skull above the olfactory bulb (AP
4.9mm, ML 0.8mm) and the cerebellum (AP −6.0mm, ML 1.0mm),
respectively. A thin wire (stainless steel wire (0.1mm in diameter)
insulated with polyimide tubing (0.2 in diameter)) was attached to one
screw above the auditory cortex to record EEG. Another two wires
were inserted into the neck muscle to record EMG. The ground wire
was attached to the screw above the cerebellum. Finally, a customized
head-plate was cemented to contact the cerebellum. A 3D-printed cap
was cemented to protect the transparent skull, and the cap also served
as a light-shielding cap during imaging. The dental cement used to
secure the implant was mixed with carbon to minimize light leakage
during imaging.

For pontine LFP recording, electrodes (FeNiCr wires, 50 µm in
diameter, California Fine Wire) were implanted in the pons (AP,
−5.4mm, ML, 0.5mm, DV 4.5mm from the brain surface).

For optogenetic inhibition experiments, mice were prepared by
using a similar surgical procedure as described above. To express the
AAV virus, wemade small craniotomies (−0.5mm in diameter) on top of
the retrosplenial cortex (AP −3.4mm, ML 0.7mm, DV 0.5mm from the
cortical surface) and the visual cortex (injection site 1: AP −3.1mm, ML
2.5mm, DV 0.4mm from the cortical surface; injection site 2: AP
−4.0mm,ML2.2mm,DV0.4mmfromthecortical surface), and injected
the virus (0.3 µl/injection site) using Nanoject II (Drummond Scientific)
via a glass pipette (23 nl/injection; inter-injection interval, 15−30 s).

For the RSP activation experiments, AAV-CaMKII-Cre and AAV-
FLEX-ChrimsonR were 1:1 mixed and injected (0.3 µl/injection site)
using the following coordinate: AP −3.3mm, ML 0.5mm, DV 0.5mm
from the cortical surface.

The following AAV viruses were used in current study: In opto-
genetic inhibition experiments, AAV2/9-hSyn-FLEX-ChrimsonR-tdTo-
mato (Titer: 3.33 × 1012 v.g./ml; Shanghai Taitool Bioscience Co.,
China); AAV2/9-EF1α-DIO-mCherry-WPRE-pA (Titer: 2.6 × 1012 v.g./ml;
BrainVTA., China). In optogenetic activation experiments, AAV2/9-
hSyn-FLEX-ChrimsonR-tdTomato (Titer: 5.0 × 1012 v.g./ml; Shanghai
Taitool Bioscience Co., China); AAV2/9-CaMKII-Cre (Titer:
2.23 × 1012 v.g./ml; BrainVTA., China).

Widefield imaging
Imaging experiments were performed on head-fixed mice. Mice were
habituated to the head-fixed apparatus starting one week after sur-
gery. The head-fixed device consists of a head plate holder, a low-
profile lightweight disc (made of carbon fiber), and an optical bread-
board covered with bearing balls. During experiments, mice were
placed into the disc and attached to the head plate holder, and they
could easily move the disc around, thus exhibiting less stress. Each
mousewasfirst handled for three days and then restrained to the head-
fixed device daily. The duration of the restrain started from 10min and
gradually increased to 3–4 h until they could reach stable sleep. A
camera was used to capture a facial video of the mouse during the
habituation, and the procedure was stopped if there were signs of
excessive stress.

During the imaging experiments, an infrared camera (Hikvision)
with the illumination of 840nm or 920nm was used to capture a
movie of the facial movements and pupils of the mice. The frame rate
of the video was 25Hz. The camera could also capture part of the
excitation light from themacroscope, and we used this information to
synchronize the behavior video with the Ca2+ imaging data.

Imaging was performed with a custom-built fluorescence
macroscope using parts from Olympus and Thorlabs. The mac-
roscope consisted of a zoom body of the Olympus MVX10
microscope with a 2x objective lens (MVPLAPO 2XC), a GFP filter

set (Thorlabs), excitation LEDs (470 nm and 405 nm, Thorlabs),
and a CCD camera (Qimaging, Retiga R1). All other optomecha-
nical components used to build the macroscope were purchased
from Thorlabs. For imaging experiments with both 470 nm and
405 nm excitations, alternating 470 nm and 405 nm illumination
was controlled using an Arduino board triggered by the exposure-
out of the camera. Images were acquired using Micro-manager
software (NIH, ver: 1.4) with a frame rate of 10 Hz.

The light level in the recording boxwas ~80 lux, and the light level
at the mouse eye was <10 lux (light is blocked by the imaging lens).

For imaging experiments with pontine LFP recording, LFP (high-
pass filtered at 0.5Hz and digitized at 1 kHz) was acquired using an
RHD acquisition board from Intan Technologies.

Polysomnography recordings
For polysomnography recordings during widefield imaging, the EEG
and EMG signals (high-pass filtered at 0.5 Hz and digitized at 1 kHz)
were acquired using an RHD acquisition board and RHX software (Ver:
3.03) from Intan Technologies. The acquisition board was also used to
record the exposure-out signal from the camera to synchronize the
EEG/EMG signals with the imaging data.

For polysomnography recordings in optogenetic manipulation
experiments, mice were transferred into recording cages, placed in a
sound-attenuation box (80 × 100 × 120 cm), and connected to the
amplifier (TDT system-3 amplifier RZ2 + PZ5) with a flexible recording
cable via a commutator. EEG/EMG was high-pass filtered at 0.5 Hz and
digitized at 1526Hz. Mice were habituated for two days before
recording. During recording, a large power LED (for optogenetic
silencing experiments) or optical fibers (for optogenetic activation
experiments) were attached to the head implant. The recording ses-
sion started after 30min and lasted for three hours.

Optogenetic inhibition
To achieve a large area of light illumination, we attached a high-power
LED (567 nm, with a SinkPAD-II 20mm base) (QUADICA) on the top of
the 3Dprinted cap, and covered itwith light-proof copper foil. The LED
was powered using a T-Cube LED driver from Thorlabs, which was
controlled by the TTL output of an RZ5 system (Tucker-Davis Tech-
nologies). The RZ5 system and OpenEx (Tucker-Davis Technologies,
Ver: 2.31) were also used to record the EEG/EMG signals during the
optogenetic manipulation experiments.

All experiments were performed during the daytime between 10
a.m. and 6 p.m., and each test session lasted for 3 h. For the 2-minute
occipital cortex inhibition experiments, in each session, we applied
2-min of light stimulation (pulse duration: 5ms; pulse interval: 45ms;
21 trials/session) with a time interval of 5–7min. For the occipital
cortex inhibition experiments, the light powermeasured at the surface
of the skull is 10mW,which is equivalent to0.004mWwhendelivering
light through an optical fiber with a diameter of 200 µm. Each mouse
was tested for five sessions (1 session/day). For the 20-min occipital
cortex inhibition experiments, we applied 20-min of light stimulation
(pulse duration: 5ms; pulse interval: 45ms; 5 trials/session) with a time
interval of 8–10min in each session. The light power measured at the
surface of the skull is 20mW, equivalent to 0.008mWwhen delivering
light through an optical fiber with a diameter of 200 µm. Each mouse
was tested for five sessions (1 session/day).

For the RSP activation experiments, optical fiber (diameter:
200 µm; N.A.: 0.37) was placed bilaterally on the top of the thinned
skull above virus injection sites. The light power was measured at the
tip of the optical fiber. Each mouse was tested for 5 or 8 sessions
(1 session/day). In each session, we applied 2-minutes of light stimu-
lation (pulse duration: 5ms; pulse interval: 45ms; 20 trials/session)
with a time interval of 5 – 7min. The light power measured at the
surface of the skull is 0.3–2mW.
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Histology and immunohistochemistry
To verify the virus expression, mice were deeply anesthetized and
immediately perfused using 0.1M PBS, followed by 4% PFA. The brain
tissues were removed and post-fixed overnight in 4% PFA before
dehydration in a 30% sucrose solution. Brain samples were embedded
with OCT compound (NEG-50, Thermo Scientific) and cut into 50-μm
sections using a cryostat (HM525 NX, Thermo Scientific). Brain sec-
tions were washed in PBS and coverslipped with mounting media.

The fluorescence images were captured using an epifluorescence
microscope (VS120, Olympus).

Analysis of widefield imaging data
Preprocessing. The imagingwasperformedusing a camera binning of
4 × 4 or 2 × 2, and saved to a Tiff stack. The image stack was down-
sampled by a factor of 2 if 2 × 2 binning was used, thus, the final image
used in all following analyses had a resolution close to 260 × 256. The
image stack was converted to an unformatted binary file to facilitate
file I/O in later processing. Previous reports showed that a registration
step is required to correct motion-induced movements of the
images69,70. However, in our data, we found that the motion-induced
movements were negligible as no obvious blurring was found in the
time-averaged images (typically from 40,000 images recorded in
about 1 h; see an example in Fig. 1b).

The imaging data were transformed into the change in fluores-
cence (ΔF/F0) using a baseline computed by averaging all images in a
recording (40,000 images). In a small fraction of our experiments, we
found a slight decrease in the overall fluorescence intensity which was
likely caused by bleaching (especially when the control excitation of
405 nmwasused). In these cases, we computed themean fluorescence
intensity of each frame and fitted the change in the mean intensity
using a second-order exponential function. The fitting result was then
used to correct the slow signal decay caused by bleaching.

The global signal in the imaging data, which is signal fluctuations
common to the whole brain69,71, has been reported to associate with
non-neuronal physiological artifacts, such as respiration and
hemodynamics72. We thus removed the global signal from the ΔF/F0
data via linear regression69,71, and this process is termed global signal
removal (GSR). The global signal in our imaging data had a high simi-
larity with the first PCs when PCA was performed before GSR was
implemented, and in such conditions, PC1 showed a global activation,
confirming that GSR removed global correlation in the imaging data.

In order to minimize the influence of blood vessels (especially
large veins), we generated a mask to remove large blood vessels in the
imaging data. To generate themask, we first enhanced blood vessels in
the time-averaged image using a filter (https://github.com/timjerman/
JermanEnhancementFilter/blob/master/vesselness2D.m), then created
a mask using ‘imbinarize’, a build-in function in MATLAB, using the
‘adaptive’ method with ‘Sensitivity’ = 0.5. Finally, the mask was
superimposed with the standard deviation of the image stack, and
manual ROIswere used to remove artifacts caused by remaining blood
vessels. Themask andmanual ROIs weremerged to get the final mask.

The blood vessel mask was applied to the ΔF/F0 data before fur-
ther processing was performed.

Regionalmap generation. In order tomatch the imaging data with an
anatomical atlas, we registered the imaging data to a reference atlas
(the Allen Mouse Brain Atlas)22,73. First, a flattened cortical map was
generated from the reference atlas, and the map was manually trim-
med to fit our imaging data by removing a fraction of the most pos-
terior and lateral regions in the neocortex. Such an operation is
commonly used in previous studies22,69,74. We then merged small
anatomy regions in the map and got the final reference regional map
with nine brain regions, including the primarymotor cortex (MOs), the
secondary motor cortex (Mop), the somatosensory cortex, barrel field
(SSb), the somatosensory cortex, upper limb (SSu), the somatosensory

cortex, lower limb (SSl), the primary visual cortex (VISp), the associa-
tion visual cortex (VISs), the dorsal retrosplenial cortex (RSPd), and the
lateral retrosplenial cortex (RSPl). Only a small part of the auditory
cortex can be imaged using the current method; we thus did not
include the auditory cortex.

For each recording, we registered the reference map onto the
imaging data using the registration package, ANTs (http://stnava.
github.io/ANTs/). The registrationwas performed in three steps: 1) The
time-averaged image was binarized using a combination of adaptive
thresholding and manual ROIs; 2) The reference map was manually
scaled to match the imaging data grossly. This step was performed to
facilitate the following registration using ANTs. 3) Automatic, elastic
registration was performed in ANTs using a similarity metric of
neighborhood cross-correlation.

Brain atlas-based quantification. To quantify theΔF/F0 for each brain
region, we first averaged the ΔF/F0 for each brain state and then
computed the mean ΔF/F0 in each brain region using a region mask
after the removal of blood vessels (Supplementary Fig. 4). The results
for each recording were then z-score normalized across the nine brain
regions and generated plotting data for Fig. 1e.

A similar quantitation procedure was used to quantify the dis-
tribution of the PCs or activity pattern and generated plotting data for
Supplementary Figs. 5b, 8c,10b, and 16.

Correlation matrix and hierarchical clustering. We first divided the
brain into a 16 × 16 grid (the size of each patch is ~10 × 10 pixels) and
computed all pairwise correlations using the ‘corrcoef’ function in
MATLAB to obtain a correlation matrix of neural activity in each brain
state. We then used the ‘clustergram’ function inMATLAB with default
parameters to perform hierarchical clustering, and grouped brain
regions with similar activity dynamics. The regional cluster was gen-
erated using a distance of 5. Clusters containing fewer than four pat-
ches were merged into the nearest cluster.

To generate the anterolateral and occipital network, we divided
cortical regions into two groups using hierarchical clustering and
averaged the results from 15 recordings to get the map in Fig. 2c.

PCAanalysis. PCAwas applied to thebloodvessels removedΔF/F0 data
to decomposite the imaging data and extract activity patterns using the
built-in function in MATLAB. For PCA across the entire recording, the
imagingdatawere temporallydown-sampledwith adecimating factorof
2 or 5 to reduce the computational load. No down-sampling was used
when PCAwas used to analyze data during REM. The resulting PCs were
then inpainted to fill regions removed by the blood vessel mask, using a
built-in function ‘inpaintExemplar’ in MATLAB with ‘PatchSize’= 5. The
inpainted PCs were then spatially smoothed using an averaging filter of
5 × 5. Finally, amask derived from the regionmapwas applied to the PCs
to remove pixels outside of the brain.

Because the PCs can be of either one of the polarities, we reversed
the polarity of themajor PCs (as well as the corresponding coefficient)
in some cases, such that a positive coefficient always corresponded to
an increase in the fluorescent signals.

Analysis of PC events. We first computed an adaptive baseline of the
coefficient (sampling rate, 5 Hz) of each PC using a moving average
(20 s), detected signals above 1x standard deviation from the baseline,
and used the peak of these signals to determine each event (from 2 s
before to 2 s after the peaks).We then used the Gaussian function to fit
each event and used the sigma of the Gaussian curve as the half-width
of each event.

The distribution of the event width for each recording was
used to generate Fig. 3e, and this distribution was then fitted using
the Gaussian function to obtain a mean event duration for each
recording.

Article https://doi.org/10.1038/s41467-022-34720-9

Nature Communications |         (2022) 13:6896 13

https://github.com/timjerman/JermanEnhancementFilter/blob/master/vesselness2D.m
https://github.com/timjerman/JermanEnhancementFilter/blob/master/vesselness2D.m
http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/


Analysis of PC1REM-like pattern during NREM and Wakefulness. The
cross-correlation (CC) between each image frame and PC1REM was cal-
culated using the ‘corrcoef’ function in MATLAB. The CC in each brain
state was averaged to get data for Fig. 5b. The REM-like events and
REM-opponent events were defined as image frames with a CC value
>0.4 or <−0.4, respectively. The neocortical patterns in Fig. 5c were an
average of 5 events as marked on the CC plot. The occurrence prob-
ability of the two events during the defined NREM periods was used to
generate Fig. 5d.

The CC was also used to analyze the relation between PC1REM-like
pattern and the infra-slow sigma oscillations or microarousals. EEG
sigma oscillation (9−17 Hz) was computed according to previous
work42 for manually selected NREM bouts with no microarousals. We
calculated the EEG sigmapower (9–17Hz) every 1 s and then computed
the correlation with smoothed CC (using a 10-s window).Microarousal
eventswere identifiedmanually as periodswith a brief increaseof EMG
power during NREM sleep.

Correlation between PC1REM and EEG θ/δ. We first computed a
spectrogram for EEG using a fast Fourier transform (FFT) with a fre-
quency resolution of 0.18Hz, and calculated the ratio between the θ
band (6–10Hz) and δ band (0.5–4Hz). We then averaged the ratio and
the coefficients of PC1REM in each 5-s window and computed the cor-
relation (Fig. 4e).

Correlation between PC1REM and eyemovements. To extract the eye
movements, we used the FaceMap software (www.github.com/
MouseLand/FaceMap)75. There was a high correlation between eye
movements in the horizontal direction and vertical direction; we thus
only used the horizontal movements for all analyses. To detect bouts
of eye movements, we first computed an adaptive baseline using a
moving average of 500 points, and detected signals that were 1x
standard deviation higher than the baseline.We then used the onset of
each eye movement to align the coefficients of PC1REM in each
recording. The mean coefficient was z-score normalized and averaged
between different animals (Fig. 4f).

To analyze the correlation between occipital activity and eye
movements during wakefulness, we manually identified each eye
movement event.

Detection of P-waves. P-waves were detected as large negative peaks
according to previous work41. We used the MATLAB function ‘find-
peaks’ to extract events greater than 4x standard deviation of the
pontine LFP during REM sleep. The detected events were used to align
the coefficients of PC1REM in each recording. The z-score normalized
coefficients were averaged across animals.

Detection of tonic REM vs. phasic REM. Tonic and phasic REM were
defined based on the presence of muscle twitches according to pre-
vious work37,76–78. We used the FaceMap software (www.github.com/
MouseLand/FaceMap) to extract facial movements and calculate the
mean of the signal during REM. Phasic REM was defined as REM with
greater than average facial movements, and tonic REM was defined as
REM with less than average facial movements.

Brain states scoring. To score the brain states using EEG/EMG signals,
we performed spectral analysis on the EEG using a fast Fourier trans-
form (FFT) with a frequency resolution of 0.18Hz. The brain states
were scored every 5 s semi-automatically using a MATLAB GUI and
validated manually by trained experimenters. Brain states classifica-
tion was performed according to established criteria:25,79 Wakefulness
wasdefined asdesynchronized EEG and high EMGactivity; NREMsleep
was defined as synchronized EEG with high-amplitude δ activity
(0.5–4Hz) and low EMG activity; REM sleep was defined as high power
at θ frequencies (6–10Hz) and low EMG activity.

We also divided wakefulness into active and quiet wakefulness
based on whether the facial movements of mice were greater or less
than average movements. Please note that the current definition is
different from the classical definition that uses body movements. We
used facialmovements becauseweonly recorded a video of the faceof
the head-fixed mice.

NREM/REM EEG spectrum during light stimulation. We first com-
puted a spectrogram for EEG using a fast Fourier transform (FFT) with
a frequency resolution of 0.18Hz. We then determined the NREM
periodduring light stimulation andbaseline (2min immediately before
light onset), computed the mean spectrum for stimulation and base-
line period for each recording, and then averaged the result for each
mouse. To avoid using data during the brain state transition period, we
occluded the first 10 s and the last 10 s for each NREM bout. The
average EEG spectrum for each mouse was then normalized using the
mean value of the EEG spectrum between 0.5 and 18Hz (18Hz was
chosen as the upper boundary because of the stimulation-induced
artifact in 20Hz in mice expressing ChrimsonR).

Brain state transition analysis. Brain state transition analysis was
performed according to procures described previously25,80. Briefly, for
a given timepoint (5-s bin), wefirst determined the number of trials (x)
that the mice were in a specific brain state, and then identified how
many (y) of the x trails were transiting into each brain state in the next
time point. The transition probability for each pair of brain states was
then computed (y/x). In Fig. 7e, i and Supplementary Fig. 21, each bar
represents the transition probability averaged across 12 consecutive
bins. The baseline transition probabilities were averaged across all
time bins within 300 s before laser onset.

Statistical tests
Statistic procedures. We performed a normality test on each dataset
using the Shapiro-Wilk test. The parametric tests (two-tailed paired or
unpaired Student’s t-tests) were used if the dataset was normally dis-
tributed (P < 0.05), otherwise, non-parametric tests (Wilcoxon signed-
rank test or Wilcoxon rank-sum test) were used. For multiple group
comparison, we used one-way or two-way ANOVA with post hoc
Tukey’s test. All the statistical tests were two-tailed and performed in
MATLAB (2019b) and OriginLab (OriginLab Corp., 2019b). The sig-
nificance level was set at P =0.05. For statistics for the optogenetic
experiment, we used bootstrap procedures:80 For each experimental
group with n mice (mi trials for mouse i), we resampled the data by
randomly drawing mi trials for each mouse (random sampling with
replacement) and calculated the mean across the n mice. The resam-
pling was repeated for 100,000 iterations to get the final distribution.
The confidence intervals were then extracted from the distribution
of the resampled mean values. To test whether laser stimulation
significantly modulated each brain state, we calculated the difference
between the mean of the laser period and baseline for each
bootstrap iteration. We then calculated a p-value from the resulting
distribution.

Sample size. We did not perform a calculation on the sample size. We
used a sample size comparable to studies using similar techniques and
animal models25,32,80,81.

Data exclusion criteria. Mice were excluded based on post hoc ver-
ification of the virus expression. No mouse was excluded for analysis.

The investigators were not blinded to the genotypes or the
experimental conditions of the animals.

Figure preparation. All figures were prepared using Adobe Illustrator
(Adobe, CS6). Diagrams in Figs. 1a, 4g, and 7a were adapted using
images from biorender.com (agreement #: CS24J97GPX).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are included in the
figures and supporting files. The raw data are available from the cor-
responding author upon request. Source data are provided with
this paper.

Code availability
Custom codes are available on GitHub (https://github.com/
xulabsleep/MesoscaleImagingInSleep).
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