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ABSTRACT Slewing bearing is one of key components in the large size machinery and its remaining

useful life (RUL) prediction is required to schedule a future action to avoid catastrophic events, extend life

cycles, etc. The vibration-based method has been widely used in the RUL prediction. However, the spurious

fluctuation usually exists in the vibration signal when the machines are operated under complex conditions.

In order to enhance performance of RUL predictionmodel, two kinds of new health indicators are constructed

by the spatial-temporal (ST) information firstly. One is the temporal indicators, which are derived by using

the smoothing mean values of positive and negative vibration signal. Another is the spatial indicator, which

is defined by fusing the multi-features extracted from the balance position information of vibration signal.

During this process, a new data processing method proposed in this paper improves the quality of the

vibration data and increases the number of samples. And then, the RUL prediction model is presented

by combing the ST indicators and long-short-term memory network (LSTM) to establish the relationship

between the ST indicators and the RUL of slewing bearings and overcome the sparsity of data. Moreover,

in order to accelerate the adjustment of ST-LSTMmodel, a fine-tuning ST-LSTMmodel is further proposed

by incorporating the generative adversarial networks (GAN) into the ST-LSTM. Experimental results verify

that the proposed RUL prediction model can well estimate the RUL of slewing bearings and its performance

is superior to some existing methods.

INDEX TERMS Balanced position, GAN, life prediction, slewing bearing, spurious fluctuation, ST-LSTM.

I. INTRODUCTION

Slewing bearings are widely used in mechanical equipment

and called the joints of machine. Due to the larger size

of the slewing bearing, any unexpected failure of bearings

may cause more serious problems than failure of the small

bearing. Minor failure may cause a drop in productivity or

downtime of mechanical equipment and serious failures can

cause major safety problems [1]–[4]. To ensure safety and

reliability of the slewing bearing, preventive and corrective

maintenance are necessary. The effective assessment of RUL

can avoid unnecessary spending time and consumption in

maintenance [5]–[7]. Condition monitoring and life predic-

tion provide the maintenance of slewing bearing with an

important basis [8]–[11]. The life prediction of the slewing

bearing is mainly composed of two parts. One is the signal
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processing, the other is the establishment of life prediction

model [12].

In signal processing, some important characteristics

including the correlation, monotonicity and robustness were

combined to select features, which made the life model more

effective and efficient [13]. A spectral correlation density

combination method was put forward to determine the fault

frequency and get better fault recognition [14]. The premise

of these methods for processing data requires high quality

signal data which are often obtained in a quiet laboratory.

The vibration signal collected in-situ environment will be

interfered by various noises. The linear rectification tech-

nique (LRT) was proposed to handle spurious fluctuation

which are not caused by faults [15], [16]. RMS Entropy

Estimator (RMSEE) was applied to avoid these fluctuations,

which improve the quality of the prognostic approach [17].

The methods with feature extraction and selection are benefit

to the establishment of the model and the corrections of

fluctuations are very effective for spurious fluctuations in the
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vibration signal. However, under actual working conditions,

spurious fluctuations and fluctuations caused by fault signals

might co-exist. Currently, there is no the technique to judge

whether this fluctuations are spurious fluctuations or not in

these literature. Fluctuations are not necessarily invalid fea-

ture and some valuable fluctuations need to be retained. If all

features are repaired as spurious fluctuations, some valuable

fault information will be lost, and the state assessment of the

slewing bearing may not be accurate. In this case, balance

position of slewing bearing is extracted in the paper. The

information of the balance position of the slewing bearing

can well reflect the current working condition of operation.

Balance position is usually kept constant under normal oper-

ating conditions, but when a fault occurs, the fluctuation will

occur in balance position due to the sudden impact. In the

actual working environment, the collected vibration signal of

slewing bearing often has large fluctuation. This fluctuation

is mainly caused by faults and external disturbances. The

spurious fluctuations generated by external disturbances can

mask the fluctuations caused by the faults or be mistaken

for the fluctuations caused by the faults. Spurious fluctua-

tion may seriously interfere with the evaluation of RUL of

the slewing bearing. This is one of the important reasons

why many fault diagnosis techniques have low accuracy in

practical work. Hence, the high quality data is the foundation

of health assessment. However, under complicated working

conditions, the collected vibration data are interfered by

various factors so the spurious fluctuations are abnormally

frequent. Fortunately, the defined balance position is a good

indicator for discriminating spurious fluctuations.

In the slewing life prediction model, the artificial intelli-

gence methods are applied more and more widely [18], [19].

Some features were fused into health indicators by recurrent

neural network (RNN) to characterize the operational sta-

tus of the bearing and the assessment of health status was

realized by the combination of multiple physical signals and

artificial neural network (ANN) [20], [21]. Zhu, et al. con-

structed a life prediction model of multi-scale convolutional

neural network (MSCNN), which kept the global and local

information synchronously [22]. The long-short-term mem-

ory network (LSTM) was used to predict remaining useful

life (RUL) of rolling element bearing and applied to the pre-

diction of fault time series, which achieved good prediction

result [23], [24]. Long short-term memory recurrent neural

network (LSTM-RNN) was employed to the prediction field,

improving the accuracy of the model. However, existing pre-

diction models only consider time series. Also, the data of

slewing bearing generally has the characteristic of sparsity,

so the life prediction model built on the slewing bearing will

deviate from the actual model. In this paper, ST-LSTM is

proposed to solve this problem, greatly improving the accu-

racy of the prediction model. Then, the generative adversarial

networks ST-LSTM (GAN-ST-LSTM) model is constructed

to fine-tune the ST-LSTM model to make this model more

excellent.

The main contributions of this paper are:

(1) It is the first time to use the spatial information of the

slewing bearing. The extracted spatial information has actual

information value, which represents the strength of the fault

in slewing bearing.

(2) The proposed method can obtain high quality data of

vibration signal. The spatial information is used to deter-

mine whether the random fluctuation in the vibration signal

belongs to the fault signal or not. The untrue fault signal can

be regarded as defect data and then the higher quality data can

be obtained through the repairing process.

(3) Three effective and reliable sample data can be

extracted from one vibration signal, which overcomes the

problem of insufficient training samples.

(4) The accuracy of the prediction model is greatly

improved. ST-LSTM proposed in this paper makes the life

prediction model of slewing bearing have spatial-temporal

characteristic. In ST-LSTM, a close relationship is stablished

between spatial-temporal indicators and RUL of slewing

bearings. On the basis of ST-LSTM, the GAN-ST-LSTM is

further constructed to enhance the ability of adaptive adjust-

ment of the life predictionmodel andmakes the life prediction

model of ST-LSTM more accurate.

The remainder of this paper is organized as follows.

In Section II, the method of how to achieve spatial and

temporal indicators of slewing bearing is introduced in

detail. In Sections III, the principle of LSTM is briefly

described. Then, according to spatial and temporal indicators

obtained, the structure of the ST-LSTMproposed in this paper

is specifically described. Finally, an optimization model

GAN-ST-LSTM is constructed. In Section VI, the slewing

bearing test-rig used to collect vibration signals and analysis

of experimental results with somemethods are presented. The

conclusions are drawn in Sections V.

II. SPATIAL AND TEMPORAL INDICATORS

Spatial and temporal indicators are important indicators for

the health status of slewing bearing and the key to building

ST-LSTM. The flow chart of how to achieve spatial-temporal

indicator is shown in Fig. 1.

A. ACQUISITION OF SPATIAL-TEMPORAL INFORMATION

The slewing bearing is an important rotating component in

the mechanical device. Its spatial information is generally

ignored by scholars. The main reason is that the slewing

bearing is generally considered to have a fixed spatial position

during operation. However, when a part of the slewing bear-

ing fails, unbalanced forces are generated. The unbalanced

forces will produce strong fluctuations which can change

the balance position of the slewing bearing in a short time.

Therefore, the balance position of the slewing bearing can

well reflect the failure of the slewing bearing and it is a

non-negligible indicator. The balance position of the slewing

bearing reflects its spatial information. As far as we know, the

spatial information of slewing bearing is difficult to capture
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FIGURE 1. The flow chart of spatial-temporal indicator.

and no one has tried to extract this indicator. There are often

the large spurious fluctuations in the vibration signal, which

will interfere with the life prediction model of slewing bear-

ing. To solve this problem, the spatial information extracted

from vibration signal is used to identify spurious fluctua-

tions. The method of extracting this spatial information is

constructed as follows. Two extraction methods are selected

in this paper to determine which way is more suitable for

extracting spatial information.

Require:P← the sum of all positive values in the vibration

signal in one second; n1← the number of positive values

of the vibration signal in one second; N ← the sum of

all negative values in the vibration signal in one second;

n2← the number of negative values of the vibration signal

in one second; S ← balance position; Mp ← positive mean

value;Mn← negative mean value.

Detailed steps are as follows:

Step I: Select a vibration signal of 4500 seconds during

the full-life vibration period. The data of every second is a

separately selected individual.

Step II: CalculateMp andRp of the positive vibration signal

in each second.

Mp =
P

n1

Rp =

√

√

√

√

√

n1
∑

i

xi∧2

n1
(1)
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FIGURE 2. Extraction of spatial-temporal information.

Step III: Calculate theMn and Rn of the negative vibration

signal in each second.

Mn =
N

n2

Rn =

√

√

√

√

√

n2
∑

i

xi∧2

n2
(2)

Step IV: Calculate S.

S =
Mp +Mn

2
(3)

The acceleration sensor is used to collect the vibration

signal and the sampling frequency is 2048. xi represents the

ith data in one second. Acquired vibration signal is denoised

by EEMD. Then vibration signal obtained after extraction are

shown in Fig. 2 below. One point on the abscissa is equal to

4 minutes.

It can be seen from the Fig. 2 that Rp and Rn are greatly

affected by abnormal noise value, resulting in instability

during the life cycle. Mp and Mn are relatively stable and the

data is reliable. If Rp and Rn are used to calculate S, abnormal

noise signals in S will be relatively amplified. Thus, the Mp

and Mn are more suitable for calculating S.

Specific reasons of extracting spatial indicator by this

method:

(1) Compared with the random selection of vibration sig-

nals, the value obtained by the mean method of separating

positive and negative signals is more representative, which

greatly eliminates the occasional interference.

(2) The difference of the vibration signal reflects the dif-

ference of the position information, so the balance position

change can be extracted from the vibration signal. When the

slewing bearing fails, the vibration signal becomes compli-

cated and instantaneous impact forces cause the changes in

the balance position.

(3) Random fluctuations caused by external noise signals

that may exist in Mp and Mn can be offset each other.

The sensor and the slewing bearing are fastened together

despite the interference of external noise signals. The balance

position of the slewing bearing has not changed with respect

to the position of sensor. The influence of the noise signal

on the positive and negative values of the vibration signal is

almost the same in a short time. So S can exclude spurious

fluctuations caused by external noise. S should be constant at

different times under normal conditions, however, the slight

changes often occur due to manufacturing errors and installa-

tion errors and work failures. S is a good spatial information

reflecting the health status of the slewing bearing. According

to information of S, it can be judged whether random fluctu-

ation caused by faults or not.

As shown in Fig. 2, takingMp as an example, althoughMp

has abnormal fluctuation in area of fluctuation 1 and fluctu-

ation 2 respectively, their corresponding S has no significant

change. On the contrary, the corresponding S of Mp in fluc-

tuation 3 has undergone a significant step change, explaining

that a fault has occurred within the time corresponding to the

fluctuation 3. The flutuations in area of fluctuation 1 and fluc-

tuation 2 are not caused by faults, which is unfavorable for the

life prediction of slewing bearing. Valuable fault information

is included in fluctuation 3. If it is considered as spurious

fluctuation information to repair, the life assessment of the

slewing bearing will be deviated from real life. This area of

fluctuation 3 needs to retain the original information.Mn and

Mp have the same analysis process. Nonlinear rectification

technique is used to handle spurious fluctuations in fluctua-

tion 1 and fluctuation 2 to get new data and the results are

shown in the Fig. 3.

After processing by nonlinear rectification technique,

the repaired vibration signal is illustrated in Fig. 3. It is

worth noting that we have obtained three data sets now while

there was only one training set for raw vibration signal.

Moreover, by removing random fluctuations in raw vibration

signal, the training samples contain higher quality data. The

high quality data and increasing number of training samples

provide a more reliable basis for the RUL assessment of
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TABLE 1. The information of features.

FIGURE 3. The repaired spatial-temporal information.

slewing bearing subsequently. Since the data contained in

S are not obvious, further processing is required to extract

obvious features.

B. TEMPORAL INDICATOR

In order to get the more accurate temporal indicators,

a smooth curve method is performed on Mp and Mn. The

results are shown in Fig. 4.

C. SPATIAL INDICATOR

Although a lot of fault information can be reflected by S to

some extent, the information in S is relatively weak. Hence,

FIGURE 4. Temporal indicator.

some classical features are used to represent the fault infor-

mation in S as reported in Table 1.
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FIGURE 5. Spatial indicator.

xn is the nth point of the S, fi is the frequency and pi is

power spectrum amplitude. Ci(t) is intrinsic mode functions.

After the above features are extracted, the fusion process is

performed on them by using locality preserving projections

(LPP) [25]–[27]. The neighborhood structure of the data can

be preserved optimally by LPP which is suitable to fuse the

features of S. The fusion result of outstanding features is

regarded as the spatial indicator, as shown in Fig. 5.

In Fig. 5, themoment of the early fault is at the point of pro-

ducing the significant fluctuations in S. Overall, the extracted

spatial indicator can reasonably reflect the degradation trend

of the slewing bearing. Early failures are critical to the life

assessment of slewing bearing. Slewing bearing is in a serious

degradation stage after 4000 point.

III. LIFE PREDICTION MODEL OF SLEWING BEARING

A. LSTM

As an improved model of the traditional RNN model, LSTM

has better ability to learn long-term memory information

than traditional RNN models. Also, in the field of natural

language processing and image recognition, LSTM has a

bigger advantage than RNN [28]. The cell unit and three gates

are included in the core structure of LSTM. The three gates

are input gate, forget gate and output gate. The input of new

information is controlled by the input gate. The amount of

information discarded is determined by the forget gate and

the output of the final output information is filtered by the

output gate. Cell unit determines the state of the cell at the

current time [29]. The structure of LSTM is shown in the

Fig. 6.

B. ST-LSTM

Usually, a large amount of data need to be trained and learned

to ensure the functional integrity of these gates in LSTM.

In the field of deep learning, the lack of sufficient sample data

is a tricky problemwhich adversely affects the accuracy of the

life prediction of slewing bearings. Fortunately, through the

data processing earlier in this paper, we can get three sets of

valid data from vibration signals. The sparsity of the data may

lead to the deviation between the life predictionmodel and the

real model. Establishing a connection between training sam-

ples can solve this problem. The relationship among spatial

and temporal indicator and the RUL of the slewing bearing

is interrelated and inseparable. This relationship can be used

as an implicit information to guide the learning of the gates

in LSTM, which plays a role in enhancing training samples.

The relationship between them is shown in Fig. 7.

As demonstrated in Fig. 6, LSTM can’t combine the tem-

poral indicator and the spatial indicator effectively. Also, it is

not enough to establish a precise life prediction model of the

slewing bearing by consider only the temporal indicator. It is

necessary to combine temporal indicators, spatial indicators

and RUL. The established life prediction model of the slew-

ing bearing should have the spatial-temporal characteristics.

In order to solve these problems, as show in Fig. 8, ST-LSTM

is proposed in this paper. ST-LSTM can effectively combine

spatial and temporal indicator of slewing bearing under work-

ing condition.

The prediction of RUL model is constructed as follows:

Require: it ← the input gate; ft ← the forget gate;

ot ← the output gate; ct ← the state of cell; ht ← the

final output; b ← the bias of each gate; σ ← the sigmoid

function in each state; w ← the weights matrix. The sub-

scripts of the weight matrix have their own meanings. For

example, wxi represents the weight matrix of hidden state to

input gate; wxo represents the weight matrix of input gate

FIGURE 6. The structure of LSTM.
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FIGURE 7. The spatial-temporal connection of RUL.

to output gate; wcf represents the weight matrix of cell to

forget gate. st ← the spatial indicator expression of slewing

bearing in the continuous time interval between t- 1 time

and t time; tt ← the temporal indicator expression of slewing

bearing in the continuous time interval between t - 1 time and

t time; cf ← correction factor; wt(st) ← weight of temporal

difference; ws(st)← weight of spatial difference.

The main steps of ST-LSTM:

Step I: Calculate the st and tt sequences according to the

obtained spatial and temporal indicator of slewing bearing.

Construct ST gate with the st and tt with (6).

st = (spatial indicator)t − (spatial indicator)t−1

tt = (temporal indicator)t − (temporal indicator)t−1

Step II: The life prediction model of the slewing bearing is

obtained according to the ST-LSTM model. The final output

state ht is the result of the ST-LSTM, ht represents the RUL

of the slewing bearing by ST-LSTM at the moment.

Fine tune model of ST-LSTM (GAN-ST-LSTM):

Step III: ST-CNN is used to discriminate the life prediction

model of slewing bearing. If ST -CNN discriminates that the

model produced by ST-LSTM is false, the penalty factor will

also be brought in and ST-LSTM will regenerate the model

until ST-CNN cannot discriminate between the generated

model and the real model. Otherwise, ST-LSTM will carry

out the life prediction of next stage.

Step IV: Repeat step III until the prediction of life cycle is

completed. ht represents the RUL of the slewing bearing by

GAN-ST-LSTM.

The principle of ST-LSTM is given as follows:

Input gate: The input gate consists of the hidden state of the

previousmoment and the existing sequence. New information

will be selectively recorded into the cell state. Some valuable

information will be stored in the cell state. Its calculation

formula is

it = σi (wxixt + whiht−1 + wci ⊙ ct−1 + bi) (4)

Forget gate: In forget gate, the sigmoid activation function

is used to control the output between 0 and 1. 0 means forget-

ting all the information and 1 means keeping all information.

The forget gate will selectively forget the information in the

hidden state of the previous moment sequence. These forgot-

ten messages are generally unimportant or highly disruptive,

such as some noise information in the vibration signal. Its

calculation formula is

ft = σf
(

wxf xt + whf ht−1 + wcf ⊙ ct−1 + bf
)

(5)

Spatial-temporal gate: In order to combine the spatial indi-

cator and the temporal indicator, the model of life prediction

of slewing bearings needs to have spatial-temporal charac-

teristics. ST gate is added to the LSTM model. The input of

the ST gate is composed of three part, besides the input xt , tt
and st are added. The information of tt and st exists as a

separate gate, showing the temporal and spatial correlation

more directly. On the one hand, stt participates in the state of

the currently input unit, which can control the temporal and

spatial information of tt and st into a new cell state. On the

other hand, 1-stt participates in the cell state of the previous

moment, which can filters out unimportant historical infor-

mation and interference signals together with the forgetting

gate. In the structure of this ST-LSTM, stt can be regarded as

the input gate of the spatial-temporal characteristics and 1-stt

FIGURE 8. The structure of ST-LSTM.
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can be regarded as the forget gate of the spatial-temporal char-

acteristics. They can control the spatial-temporal information

together so the model has spatial-temporal characteristics.

In this way, the relationship between the spatial indicator and

the temporal indicator in the slewing life prediction model

can be fully studied. The calculation formula of ST-gate is as

follows:

stt = σst
(

wx(st)xt + wt(st)tt + ws(st)st + bst
)

(6)

Cell: The improved cell can better integrate important

historical information and existing information, so the current

cell state stores the comprehensive information of each gate

and the result of cell is the candidate value. In the ST-LSTM

network layer, spatial-temporal information stt will partici-

pate in the current cell state and 1-stt will be added to the cell

state at the previous moment. The calculation formula of cell

in LSTM is

ct = ft ⊙ ct−1 + it ⊙ tanh (wxcxt + whcht−1 + bc)

Its improved calculation formula in ST-LSTM is

ct= ft⊙ct−1⊙(1−stt )+it⊙tanh (wxcxt+whcht−1+bc)⊙stt

(7)

Output gate: The role of the output gate is to control the

amount of information, which is transferred from current

cell state to output value ht . The judgment information will

be saved in the hidden layer. The function of the activation

function tanh is to keep the output value of the cell at the

current time in the interval [−1, 1]. In order to increase

the accuracy of the model, the correction factor cf is added

to the ST-LSTM model and the correction factor represents

the direction of actual output life. The correction factor can

correct the output result.

The calculation formula of output gate in ST- LSTM is as:

ot = σo (wxoxt + whoht−1 + wco ⊙ ct + bo) (8)

The calculation formula of final output in LSTM is

ht = ot ⊙ tanh(ct + b)

Its improved calculation formula in ST-LSTM is

ht = ot ⊙ tanh(ct + b)+ cf (9)

C. GAN-ST-LSTM

Generative Adversarial Network (GAN) has two networks,

one is generator and the other is discriminator. Generator is

guided by discriminator to train model. Discriminator is used

to discriminate the generated model. GAN is widely used

in many areas of artificial intelligence [30], [31]. For exam-

ple, in the field of image denoising [32] and image genera-

tion [33], [34], GAN has achieved good results. In this paper,

GAN-ST-LSTM is proposed to fine tune the predictionmodel

of slewing bearing. It is a secondary optimization of LSTM.

In the model of GAN-ST-LSTM, ST-LSTM is considered as

generator, ST-CNN is considered as discriminator. The goal

FIGURE 9. The structure of GAN-ST-LSTM.

of the discriminant model ST-CNN is to discriminate whether

the model generated by the ST-LSTM is false. If the discrim-

inant result cannot distinguish between LSTM model and

the real model, the result of ST-LSTM is RUL of slewing

bearing. Otherwise, ST-LSTMwill regenerate themodel until

ST-CNN cannot discriminate between the generated model

and the real model. The structure of GAN-ST-LSTM is shown

in Fig. 9.

In order to distinguish between real access sequences

and access sequences generated by the generator. Spatial-

temporal information is introduced into the convolutional

neural network (CNN) to enhance discriminative ability [28].

The principle of ST-CNN is as follows:

Give a RUL sequence,

x = {R1,R2,R3, · · ·RN } (10)

and convert it to an access node with spatial-temporal

information

Rsti = Ri ⊕ si ⊕ qi (11)

⊕ is splicing operation and the access sequence with

spatial-temporal information can be obtained.

xst = {Rst1 ,Rst2 ,Rst3 · · ·R
st
N } (12)

Express it as a matrix:

ζ1:N = Rst1 ⊕ R
st
2 ⊕ R

st
3 ⊕ · · · ⊕ R

st
N (13)

Extract features of the matrix using multiple filters

{f1, f2, f3, · · · fm}. The size of filter’s window is aj, The con-

volution of ζ1:N is as follows:

e
j
i=σ

(

f⊗ ζi:i+aj−1 + b
)

i = 1, 2, · · ·N − aj+1 (14)

⊗ is a bitwise multiply summation operation, and b is a

bias term. The corresponding feature map of fj is

Fj = {e
j
1, e

j
2, · · · , e

j
N−aj+1

} (15)

Filters with different window size can extract dif-

ferent sequence features. For the resulting feature map

{F1,F2, · · · ,FM }, perform the max-pooling over time.

∼
ej = max{e

j
1, e

j
2, · · · , e

j
N−aj+1

} (16)
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FIGURE 10. The structure of slewing bearing test-rig.

TABLE 2. Main parameters of slewing bearing.

Get M-dimensional feature vector.

F =
∼
e
1
⊕
∼
e
2
⊕ · · · ⊕

∼
e
M

(17)

Enter the feature vector into the following classifier to get

the probability that this sequence is a real access sequence.

∧
y = σ (wo ∗ F + bo) (18)

IV. EXPERIMENT AND RESULTS

A. EXPERIMENT OF SLEWING BEARING

The comprehensive performance test-rig of slewing bear-

ing is mainly composed of mechanical system, hydraulic

system, measurement and control system. The function of

the hydraulic cylinder’s combination loading is to simulate

the force of the actual working environment. As is shown

in Fig. 10, hydraulic cylinder 1 provides axial force. The com-

bination of hydraulic cylinder 2 and hydraulic cylinder 3 can

provide radial force and overturning moment. The pinion on

the outer ring of the slewing bearing is driven by the hydraulic

motor to realize the rotation of the slewing bearing. The col-

lection of sensing data and the control of hydraulic system are

realized by measurement and control system. The real-time

vibration signal of the slewing bearing is saved by the mea-

surement and control system. The National Instruments (NI)

data acquisition card is included in the measurement and con-

trol system to complete data collection. The main parameters

of slewing bearing are shown in Table 2. In the measurement

FIGURE 11. The flow chart of the test-rig.

FIGURE 12. The disassembly of the slewing bearing.

and control system, the host computer communicates with the

Siemens Programmable Logic Controller (PLC) through the

Object Linking and Embedding for Process Control (OPC)

protocol. PLC issued commands to control the operation of

different hydraulic cylinders and hydraulic motors. The flow

chart of the experiment test-rig is shown in the Fig. 11.

In the case of gradually increasing the load, the slewing

bearing got stuck and could not be operated finally. Dur-

ing the experiment, interference signals were set around the

periphery. After the experiment was completed, the slew-

ing bearing was disassembled. The disassembled picture is

shown in Fig. 12. In Fig. 12, the pictures are running pulley,

cage, outer ring, inner ring from left to right. As can be seen

from the picture, each part has suffered damage of different

degrees. These failures lead to the termination of the life of

the slewing bearing.

B. ANALYSIS OF RESULTS

In order to verify the effectiveness of the proposed method.

RNN, LSTM and LSTM-RNN are used to compare with the

method in this paper.

In these predictive models, there are four important hyper-

parameters which are learning rate, epoch, batch size and

neurons. According to experience, the range of learning rate is

from 0.001 to 0.0001. The curve of training cost should follow

the law of slide-type descent. When the curve of training

cost does not follow this rule, the magnitude of the learning

rate adjustment can be determined based on error function

of each iteration. If the error rate is reduced relative to the

previous iteration, the learning rate can be increased by 5%.

If the error rate increases, it means that the optimal value is

skipped and the learning rate should be reduced to 50%. The

learning rate should be adjusted until the curve of training cost

follow the law of slide-type descent. The selection of epoch:

Choose a conservative epoch based on relevant experience
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TABLE 3. The optimal hyperarameter of each model.

and increase the epoch until RMS of the error in prediction

results falls to the stable stage. If epoch continues to increase,

over-fitting will occur and the RMS will increase or there is

no clear downward trend in RMS. The epoch at this time is

what we need. Similarly, the optimal batch size and neurons

are also selected by this way. After optimization, the optimal

hyperparameters of each model are shown in Table 3.

A rolling window will be set up when training data. The

rolling window contains 10 temporal indicators and 10 cor-

responding spatial indicators which are used as inputs. The

outputs of the training set are the corresponding RUL. The

inputs of the test set are also contained in anther rolling

window and the inputs are the one temporal indicator and one

corresponding spatial indicator behind the training set. When

a set of prediction result comes out, the rolling window of the

training set and test set will move forward by one unit. The

process will stop when the entire process of life prediction is

completed.

The prediction results of these methods are shown

in Fig. 13. In these figures, the dotted lines represent the

boundary of confidence interval (CI) which can be achieved

by the method of bootstrap sampling. The last 600 points

are used as prediction points and set the service time to

0 at the beginning of the prediction. The ordinate represents

the RUL of slewing bearing. It can be seen that the pre-

diction result of RNN is worst because it only depends on

the single state of the previous training data, which causes

not matching between the objective function and the pre-

dicted objective function. In addition, the prediction results

of ST-LSTM and GAN-ST-LSTM are much better than those

of LSTM and LSTM-RNN. At most of the time, the pre-

dicted results of LSTM are not within the 90% confidence

interval and they are not stable. Moreover, compared with

LSTM in the early prediction stage, the prediction accuracy

of LSTM-RNN do not significantly improve. In the later

prediction stage, the prediction results tend to be more stable.

Compared with RNN, LSTM and LSTM-RNN, the accu-

racy of prediction result is significantly improved by pro-

posed ST-LSTM. It should be noted that ST-LSTM is the

first improvement of LSTM in this paper. The prediction

results of ST-LSTM are all in the 90% confidence interval,

and the stability is better. Because of the existence of ST

gate, ST-LSTM has ST characteristics. RUL can be effec-

tively combined with spatial and temporal indicators by the

ST gate in ST-LSTM, which solves the problem of data

sparsity. The GAN-ST-LSTM is the second improvement of

LSTM. GAN-ST-LSTM can fine tune the prediction model

FIGURE 13. The result of life prediction.

of ST-LSTM. The discriminator discriminates the prediction

model generated by the generator ST-LSTM. If the model
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TABLE 4. Prediction results of five methods.

is inaccurate, the predictionmodel generated by the generator

can be re-adjusted. When the generator can’t discriminate the

generated model and the real model, the prediction result will

be output. As seen from Fig. 13(d) and Fig. 13(e), the pre-

dicted model of GAN-ST-LSTM is adjusted faster at around

150 point and 290 point than ST-LSTM. The model accuracy

of GAN-ST-LSTM is also higher than ST-LSTM.

In order to intuitively represent the performance of

each predictive model, mean absolute error (MAE), root

mean square error (RMSE) and mean absolute percent

error (MAPE) are used to measure the quality of the predic-

tion result. Their corresponding formulas are as follows:

MAE =
1

n

n
∑

i=1

|yi − y
′
i| (19)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − y
′
i)
2 (20)

MAPE =

∑ yi−y
′
i

yi
× 100%

n
(21)

where n represents the total number of prediction time points;

yi indicates the actually RUL of slewing bearing; y′i denote the

prediction RUL.

As given in Table 4, each kind of prediction error of

ST-LSTM is greatly reduced compared to RNN, LSTM

and LSTM-RNN. The corresponding error of each model

shows that the ST-LSTM model proposed in this paper

has great advantages in life prediction of slewing bearing.

It also shows that there is a close relationship among spa-

tial indicator and temporal indicator and the remaining life.

ST gate in ST-LSTM can adjust the prediction model well

and significantly improve the accuracy of the prediction.

The GAN-ST-LSTM is the secondary improvement based on

ST-LSTM in this paper, whose speed adjustment is acceler-

ated within adjustable range. Moreover, the predicted results

of the GAN-ST-LSTMwith the slightly fine-tuned prediction

mode are better than ST-LSTM.

V. CONCLUSION

High quality data and accurate mathematical model are both

important in life prediction. This paper reports some cre-

ative and effective work to enhance RUL of slewing bearing.

(1) A novel algorithm based on balance position is pro-

posed to discriminate spurious fluctuations of vibration sig-

nal, which can improve the quality of sensors’ data obviously.

(2) The connection between spatial-temporal indicators and

RUL is established by ST-LSTM to solve the data sparsity.

ST-LSTM model can predict the RUL of a slewing bear-

ing from multiple dimensions, not only time series. Com-

pared with the typical prediction models such as RNN,

LSTM, and LSTM-RNN, the relative life prediction accuracy

of ST-LSTM is improved by 78.29%, 69.7% and 60.9%.

Also, based on generative adversarial networks (GAN),

GAN-ST-LSTM is constructed to accelerate speed of model

adjustment significantly. In the future, the method proposed

in this paper will be verified in more real-time monitoring

platform and more accurate models will be obtained.

REFERENCES

[1] B. Zhang, H. Wang, Y. Tang, B. Pang, and X. Gao, ‘‘Residual useful

life prediction for slewing bearing based on similarity under differ-

ent working conditions,’’ Exp. Techn., vol. 42, no. 3, pp. 279–289,

Jun. 2018.

[2] Y. Feng, X.-D. Huang, R.-J. Hong, and J. Chen, ‘‘Online residual useful life

prediction of large-size slewing bearings—A data fusion method,’’ J. Cent.

South Univ., vol. 24, no. 1, pp. 114–126, Jan. 2017.

[3] B. Y. Kosasih, W. Caesarendra, K. Tieu, A. Widodo, C. A. Moodie,

and A. K. Tieu, ‘‘Degradation trend estimation and prognosis of large

low speed slewing bearing lifetime,’’ Appl. Mech. Mater., vol. 493,

pp. 343–348, Jan. 2014.

[4] J. Yu, ‘‘Bearing performance degradation assessment using locality pre-

serving projections and Gaussian mixture models,’’ Mech. Syst. Signal

Process., vol. 25, no. 7, pp. 2573–2588, Oct. 2011.

[5] P. Ding, H. Wang, W. Bao, and R. Hong, ‘‘HYGP-MSAM based model for

slewing bearing residual useful life prediction,’’ Measurement, vol. 141,

no. 2019, pp. 162–175, Jul. 2019.

[6] X. Gao, X. Huang, H. Wang, R. Hong, and J. Chen, ‘‘Effect of raceway

geometry parameters on the carrying capability and the service life of a

four-point-contact slewing bearing,’’ J Mech Sci Technol, vol. 24, no. 10,

pp. 2083–2089, Oct. 2010.

[7] X. Yan, Y. Liu, and M. Jia, ‘‘A feature selection framework-based mul-

tiscale morphological analysis algorithm for fault diagnosis of rolling

element bearing,’’ IEEE Access, vol. 7, pp. 123436–123452, 2019, doi: 10.

1109/access.2019.2937751.

[8] J. Deutsch and D. He, ‘‘Using deep learning-based approach to predict

remaining useful life of rotating components,’’ IEEE Trans. Syst. Man

Cybern, Syst., vol. 48, no. 1, pp. 11–20, Jan. 2018.

[9] A. Nait Aicha, G. Englebienne, K. Van Schooten, M. Pijnappels,

and B. Kröse, ‘‘Deep learning to predict falls in older adults based

on daily-life trunk accelerometry,’’ Sensors, vol. 18, no. 5, p. 1654,

May 2018.

[10] L. Ren, Y. Sun, H. Wang, and L. Zhang, ‘‘Prediction of bearing remaining

useful life with deep convolution neural network,’’ IEEE Access, vol. 6,

pp. 13041–13049, 2018.

[11] Y. Qian, R. Yan, and R. X. Gao, ‘‘Amulti-time scale approach to remaining

useful life prediction in rolling bearing,’’ Mech. Syst. Signal Process.,

vol. 83, pp. 549–567, Jan. 2017.

[12] M. Yakout, A. Elkhatib, and M. G. A. Nassef, ‘‘Rolling element bearings

absolute life prediction using modal analysis,’’ J. Mech. Sci. Technol.,

vol. 32, no. 1, pp. 91–99, Jan. 2018.

[13] B. Zhang, L. Zhang, and J. Xu, ‘‘Degradation feature selection for remain-

ing useful life prediction of rolling element bearings,’’ Qual. Reliab. Eng.

Int., vol. 32, no. 2, pp. 547–554, Mar. 2016.

[14] D.-S. Yoo, J. Lim, and M.-H. Kang, ‘‘ATSC digital television signal

detection with spectral correlation density,’’ J. Commun. Netw., vol. 16,

no. 6, pp. 600–612, Dec. 2014.

[15] W. Ahmad, S. A. Khan, M. M. M. Islam, and J.-M. Kim, ‘‘A reliable tech-

nique for remaining useful life estimation of rolling element bearings using

dynamic regression models,’’ Rel. Eng. Syst. Saf., vol. 184, pp. 67–76,

Apr. 2019.

[16] W. Ahmad, S. A. Khan, and J.-M. Kim, ‘‘A hybrid prognostics technique

for rolling element bearings using adaptive predictive models,’’ IEEE

Trans. Ind. Electron., vol. 65, no. 2, pp. 1577–1584, Feb. 2018.

VOLUME 8, 2020 9749

http://dx.doi.org/10.1109/access.2019.2937751
http://dx.doi.org/10.1109/access.2019.2937751


W. Bao et al.: RUL Assessment of Slewing Bearing Based on ST Sequence

[17] J. B. Ali, B. Chebel-Morello, L. Saidi, S. Malinowski, and F. Fnaiech,

‘‘Accurate bearing remaining useful life prediction based on Weibull

distribution and artificial neural network,’’ Mech. Syst. Signal Process.,

vols. 56–57, pp. 150–172, May 2015.

[18] L. Eren, T. Ince, and S. Kiranyaz, ‘‘A generic intelligent bearing fault

diagnosis system using compact adaptive 1D CNN classifier,’’ J. Signal

Process. Syst., vol. 91, no. 2, pp. 179–189, Feb. 2019.

[19] C. Ren-Xiang, ‘‘Rolling bearing fault identification based on convolution

neural network and discrete wavelet transform,’’ J. Vib. Eng. Technol.,

vol. 31, no. 5, pp. 883–891, May 2018.

[20] L. Guo, N. Li, F. Jia, Y. Lei, and J. Lin, ‘‘A recurrent neural network

based health indicator for remaining useful life prediction of bearings,’’

Neurocomputing, vol. 240, pp. 98–109, May 2017.

[21] H. Wang, M. Tang, and X. Huang, ‘‘Smart health evaluation of slewing

bearing based on multiple-characteristic parameters,’’ J Mech Sci Technol,

vol. 28, no. 6, pp. 2089–2097, Jun. 2014.

[22] J. Zhu, N. Chen, and W. Peng, ‘‘Estimation of bearing remaining useful

life based on multiscale convolutional neural network,’’ IEEE Trans. Ind.

Electron., vol. 66, no. 4, pp. 3208–3216, Apr. 2019.

[23] A. Z. Hinchi and M. Tkiouat, ‘‘Rolling element bearing remaining useful

life estimation based on a convolutional long-short-term memory net-

work,’’ Procedia Comput. Sci., vol. 127, pp. 123–132, Jan. 2018.

[24] X. Wang, J. Wu, C. Liu, H. Yang, Y. Du, and W. Niu, ‘‘Exploring LSTM

based recurrent neural network for failure time series prediction,’’ Beijing

Hangkong Hangtian Daxue Xuebao/J. Beijing Univ. Aeronaut. Astronaut.,

vol. 44, no. 4, pp. 772–784, Apr. 2018.

[25] R. Wang, F. Nie, R. Hong, X. Chang, X. Yang, and W. Yu, ‘‘Fast

and orthogonal locality preserving projections for dimensionality reduc-

tion,’’ IEEE Trans. Image Process., vol. 26, no. 10, pp. 5019–5030,

Oct. 2017.

[26] P. Ding, H. Wang, W. Bao, and R. Hong, ‘‘HYGP-MSAM based model

for slewing bearing residual useful life prediction,’’ Exp. Techn., vol. 43,

no. 2019, pp. 341–358, Feb. 2019.

[27] Q. Yu, R. Wang, B. N. Li, X. Yang, and M. Yao, ‘‘Robust locality preserv-

ing projections with cosine-based dissimilarity for linear dimensionality

reduction,’’ IEEE Access, vol. 5, pp. 2676–2684, 2017.

[28] M. Wielgosz, A. Skoczeń, and M. Mertik, ‘‘Using LSTM recurrent neu-

ral networks for monitoring the LHC superconducting magnets,’’ Nucl.

Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip.,

vol. 867, pp. 40–50, Sep. 2017.

[29] F. Karim, S. Majumdar, H. Darabi, and S. Chen, ‘‘LSTM fully convo-

lutional networks for time series classification,’’ IEEE Access, vol. 6,

pp. 1662–1669, 2018.

[30] G.M.Wang, ‘‘A generative adversarial network based on energy function,’’

Zidonghua Xuebao/Acta Automatica Sinica, vol. 44, no. 5, pp. 793–803,

May 2018.

[31] W. Tang, S. Tan, B. Li, and J. Huang, ‘‘Automatic steganographic distortion

learning using a generative adversarial network,’’ IEEE Signal Process.

Lett., vol. 24, no. 10, pp. 1547–1551, Oct. 2017.

[32] X. Yi and P. Babyn, ‘‘Sharpness-aware low-dose CT denoising using

conditional generative adversarial network,’’ J. Digit. Imag., vol. 31, no. 5,

pp. 655–669, Oct. 2018.

[33] B. Huang, W. Chen, X. Wu, C.-L. Lin, and P. N. Suganthan, ‘‘High-

quality face image generated with conditional boundary equilibrium gen-

erative adversarial networks,’’ Pattern Recognit. Lett., vol. 111, pp. 72–79,

Aug. 2018.

[34] Z. Wang, Z. Chen, and F. Wu, ‘‘Thermal to visible facial image transla-

tion using generative adversarial networks,’’ IEEE Signal Process. Lett.,

vol. 25, no. 8, pp. 1161–1165, Aug. 2018.

WEIGANG BAO is currently pursuing the M.S.

degree in mechanical engineering with Nanjing

Tech University. His current research interests

include condition monitoring, signal processing,

fault diagnosis, and the algorithm of artificial

intelligence.

XIAODONG MIAO received the B.S. and Ph.D.

degrees in mechanical engineering from the

Nanjing University of Aeronautics and Astronau-

tics, Nanjing, China, in 2008 and 2013, respec-

tively. He is currently an Assistant Professor of

mechanical engineering with Nanjing Tech Uni-

versity. His research interests include sensors and

signal processing, machinery condition monitor-

ing, fault diagnostics, and applications of artificial

intelligence.

HUA WANG received the B.S. and Ph.D. degrees

in mechanical engineering from Harbin Engineer-

ing University, Harbin, China, in 2001 and 2006,

respectively. He has been holding a Short-Term

Visiting position at the Dublin Institute of Technol-

ogy, Ireland, since 2010. He was a Visiting Scholar

with the Department of Mechanical and Industrial

Engineering, University of Massachusetts, USA,

from 2014 to 2015. He is currently a Full Professor

of mechanical engineering with Nanjing Tech Uni-

versity. His research interests include machinery condition monitoring and

fault diagnosis, mechanical signal processing, intelligent fault diagnostics,

and remaining useful life prediction. He is also the Senior Member of the

China Mechanical Engineering Society. He is also a Reviewer for several

SCI-indexed journals in this field.

GUICHAO YANG, photograph and biography not available at the time of

publication.

HAO ZHANG, photograph and biography not available at the time of

publication.

9750 VOLUME 8, 2020


