
Research Article

RemainingUseful LifeEstimationofAircraft EnginesUsing a Joint
Deep Learning Model Based on TCNN and Transformer

Hai-Kun Wang ,1,2 Yi Cheng ,1 and Ke Song 1

1School of Artificial Intelligence, Chongqing University of Technology, Chongqing 40400, China
2Chongqing Industrial Big Data Innovation Center Co., Ltd., Chongqing 40400, China

Correspondence should be addressed to Hai-Kun Wang; hkwang@cqut.edu.cn

Received 17 September 2021; Revised 9 November 2021; Accepted 10 November 2021; Published 24 November 2021

Academic Editor:)ippa Reddy G

Copyright © 2021 Hai-Kun Wang et al.)is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

)e remaining useful life estimation is a key technology in prognostics and health management (PHM) systems for a new
generation of aircraft engines. With the increase in massive monitoring data, it brings new opportunities to improve the
prediction from the perspective of deep learning.)erefore, we propose a novel joint deep learning architecture that is composed
of two main parts: the transformer encoder, which uses scaled dot-product attention to extract dependencies across distances in
time series, and the temporal convolution neural network (TCNN), which is constructed to fix the insensitivity of the self-
attention mechanism to local features. Both parts are jointly trained within a regression module, which implies that the proposed
approach differs from traditional ensemble learning models. It is applied on the Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) dataset from the Prognostics Center of Excellence at NASA Ames, and satisfactory results are obtained,
especially under complex working conditions.

1. Introduction

With the progress of industrial technology and the
upgrading of global industry, the demand for safe and re-
liable products and equipment in all fields is gradually in-
creasing. Prognostics and health management (PHM) [1]
has received considerable attention. Remaining useful life
(RUL) prediction is a core task in PHM. Generally, the RUL
of the system is defined as “the length from the current time
to the end of the useful life” [2].)e main purpose of RUL
prediction is to monitor the health status of system
equipment, so that system maintenance personnel can know
the current operating status of system equipment in real
time, implement condition-based predictive maintenance,
and reduce system maintenance costs while avoiding un-
expected failures of the system [3].

In the literature, the basic algorithms for predicting RUL
can be divided into two categories, i.e., physical model-based
approaches and data-driven model-based approaches [4].
)e first approaches describe the degradation stage of a

system by constructing mathematical models on the basis of
the failure mechanisms or the first principle of damage [3].
)e physical model established with an in-depth under-
standing of failure modes and effective estimation of model
parameters can provide accurate RUL estimation, e.g., the
Paris-Erdogan (PE) model to describe crack growth [5, 6]
and the Norton law to describe the creep evolution of
turbines [7, 8]. However, physical model-based approaches
have two problems that are difficult to solve. One is that the
established physical model is difficult to be directly applied
to other systems; the other is that the establishment of an
efficient physical model requires complex prior knowledge.
Based on these limitations, data-driven approaches are in-
creasingly being valued. Among them, stochastic model-
based approaches are the first to bear the brunt.)e gamma
process model has been used in RUL prediction tasks, and
there is much additional research [9]; however, gamma
process models are only effective in describing monotonic
processes, because noise must follow a gamma distribution.
Huang et al. [10] proposed a nonlinear heterogeneous

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 5185938, 14 pages
https://doi.org/10.1155/2021/5185938

mailto:hkwang@cqut.edu.cn
https://orcid.org/0000-0001-7577-3268
https://orcid.org/0000-0002-4631-0480
https://orcid.org/0000-0002-0671-1562
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5185938

Wiener process model with adaptive drift to characterize
degradation trajectories, but the Wiener process (including
some other stochastic processes) is based on the assumption
of the Markov property.)is assumption does not always
work in applications.

Benefitting from the advent of the industrial big data era,
the scale of system status monitoring data collected by
sensors has continued to grow.)e in-depth architecture-
based method provides better generalization capabilities and
scalability and does not require special professional prior
knowledge. Deep learning has achieved great success in
various fields [11–13]. In recent years, research on deep
learning in RUL prediction has also made progress.

Recent researchers have established many models based
on deep architecture for RUL prediction tasks. Bhattacharya
et al. [14] proposed using the moth flame optimization
(MFO) algorithm for feature selection and used the features
in a DNN.)eir excellent results on the battery RUL pre-
diction task proved the effectiveness of the deep architecture.
Badu et al. [15] applied a CNN to RUL prediction for the first
time, applied convolution and pooling filters to multi-
channel sensor data along the time dimension, and achieved
competitive results. Li et al. [16] extracted the time-fre-
quency domain features from the degradation data of rolling
bearings and used the multiscale time-frequency domain
features as the input of a CNN to develop an intelligent
bearing RUL prediction method. However, system status
monitoring data are often time series data, and CNNs can
only extract local features and lack the ability to capture and
learn the long-term dependencies in the data. A deep belief
network (DBN) is a probabilistic generative model that is
composed of multiple restricted Boltzmann machines
(RBMs). Zhang et al. [17] proposed a multiobjective deep
belief network ensemble (MODBNE) model. MODBNE
regards each DBN as a conflicting object and applies a
multiobjective evolutionary algorithm based on the basic
DBN training method to produce an ensemble model
composed of multiple DBNs. Zemouri and Gouriveau [18]
and Zhang et al. [19] proposed an RUL prediction model
based on a recurrent neural network (RNN) [20]. An RNN
can process sequence data, but it encounters difficulties in
processing long sequences of data due to the vanishing
gradient problem. An LSTM is an improved approach de-
rived from an RNN. Based on an RNN, a gating mechanism
is introduced to control the information flow in the memory
unit, which solves the vanishing gradient problem in RNNs
and makes it possible to learn the dependencies with a
relatively long span. References [21, 22] used a long short-
term memory (LSTM) network to predict the RUL of tur-
bofan engines. Zhang et al. [23] used an LSTM to predict the
RUL of lithium batteries, and their results also proved the
effectiveness of the method based on this model. Some
researchers have also made improvements to the vanilla
LSTM to improve the performance of RUL prediction. Li
et al. [24] optimized the connection between the input gate
and the forget gate, strengthened the focus on historical data,
and improved the accuracy of predicting the RUL of lithium
batteries. Considering that the optimization of hyper-
parameters is always a difficult and time-costly task for deep

models, Agrawal et al. [25] proposed optimizing an LSTM
with a genetic algorithm (GA) to be able to autonomously
predict the given hyperparameters and improve the con-
sistency of predictions.)e stacking of different models has
also become a way to improve prediction performance. Al-
Dulaimi et al. [26] proposed a parallel network composed of
an LSTM and a CNN to predict the RUL of an engine and
achieved excellent results. Bi-LSTM consists of two opposite
LSTM networks and can input data in both forward and
backward directions, which further improves the data
processing capability of LSTMs.)e literatures [27, 28] have
used Bi-LSTM-based approaches in the RUL prediction task.
Jiang et al. [29] and Remadna et al. [30] further combined
the Bi-LSTM and CNN to develop a new fusion model.
Inspired by the idea of an encoder-decoder, Liu et al. [31]
developed a new learning-based encoder-decoder model
based on the LSTM and CNN to predict RUL. Different from
Jiang et al. [29], Liu et al. [31] used series LSTM and CNN as
an encoder and then used a fully connected neural network
as a decoder. Some recent studies are summarized in Table 1
for reference.

CNN-based prediction approaches perform well in local
context feature extraction, but they cannot capture long-
term dependency. RNN-based prediction approaches are
limited by the recurrent mode, which fundamentally limits
their computing speed [36]. Especially, when processing
long series of data, the time cost of both training and in-
ference will increase, so it is difficult to realize real-time
prediction.)e transformer network proposed by Vaswani
et al. [37] was first applied in the natural language processing
(NLP) field, and since then, it has been successfully applied
in various fields [38, 39].

)e transformer is completely based on the self-attention
mechanism. Compared with the sequential input of the
RNN, the transformer inputs the whole sequence at one time
and uses scaled dot-product attention to capture cross-
distance dependencies.)e interval of historical data will not
become an obstacle, which provides the transformer with
more potential than recurrent networks in obtaining long-
term dependencies. On the other hand, the special self-at-
tention mechanism can realize parallel computing, and the
computing cost will not be the upper limit of the model.
Based on this, this paper uses the transformer encoder for
sequence modelling to predict the RUL. Considering that the
self-attention mechanism is not particularly sensitive to the
local context and that the sensor data often have a strong
local correlation, we propose to use a convolutional neural
network (CNN) to extract local context information.

In this work, we used three different convolution-based
neural networks to extract the local features of the input time
series data as a supplement to the transformer encoder. Two
of them are deep residual networks (ResNets) [40] and
densely connected convolutional networks (DenseNets)
[41], which have achieved great success in the field of
computer vision [42, 43].)e other is called the temporal
convolution neural network (TCNN) in this work, which is
different from ResNet and other networks designed for
image feature extraction. TCNN uses 1D-convolution in-
stead of 2D-convolution.)e reason for adopting this

2 Computational Intelligence and Neuroscience

approach is to ensure that the sensor values in each time step
of the multisensor data sequence are regarded as a whole,
because they jointly explain the state of the system in current
time step. In our proposed joint deep learning model, the
CNN module and the transformer module extract the fea-
tures of the input data, and then these features are fed into
the regression module together. We provide the feature
recalibration mechanism (FRM) in the regression module to
solve the problem of unequal output feature levels of
multiple models.

)e proposed joint learningmodel provides a new scheme
to predict RUL, which can flexibly extract the required fea-
tures through the collocation of different models (two models
are used in this experiment, but they are extensible under the
premise of meeting the time cost), and then recalibrate the
output of different models using FRM. Experiments on the
C-MAPSS dataset show that our model has a significant
performance improvement compared with previous work
under complex operating conditions and failure modes.

)is work’s main contributions are as follows:

(1) We proposed a 1D convolution network called
TCNN in this work to emphasize the contribution of
the local context of time series data.)e reason for
proposing TCNN is that although the dot-product
self-attention extracts high-level features at each
time step regardless of distance, its own character-
istics preclude it from giving extra attention to local
contexts.)e local context is particularly important
for studying the degradation patterns in multisensor
sequence data.

(2) We applied FRM in the regression module to further
process the features extracted by the submodels
instead of directly feeding them to the fully con-
nected layer.)is function gives the model the ability
to automatically evaluate the importance of features
from different submodels, which makes our joint
learning model different from general hybrid
models.

)e overall organization of the paper is as follows.
Section 2 introduces the structure of the proposed model.
Section 3 describes the dataset and preprocessing method.
Section 4 presents the experimental results and analysis.)e
conclusions and future perspectives of the work are shown in
Section 5.

2. Methodology

A joint deep learning model combined with a transformer
encoder and CNN is constructed to predict the RUL. In this
section, we first introduce the transformer encoder and then
introduce the structure of CNNs used in this paper. Finally,
we describe the regression module used to output the
predicted RUL. Parameter settings are given in Sections 2.4
and 4.2.

2.1. Transformer Encoder.)e transformer [37] is com-
posed of an encoder and decoder. It is a feature extractor
based on the self-attention mechanism. Different from
RNN, LSTM [44], and other recurrent neural networks,
the transformer accepts the whole time series at the same
time and completely depends on the attention mecha-
nism to draw global dependencies between input and
output. In addition, the multihead mechanism allows the
model to jointly attend to information from different
representation subspaces at different time steps.

With the continuous use of the system, its performance
will gradually degenerate until the threshold of failure.)e
degradation evolution of the system can be indirectly re-
flected from the collected sensor data. In this work, the
encoder part of the transformer is used as a feature extractor
to extract potential degraded features.

)e transformer encoder is composed of a stack of
several identical encoder layers, and each encoder layer
consists of two sublayers: a self-attention sublayer and a
fully connected feedforward sublayer. Each sublayer is
followed by layer normalization; in addition, the residual
connection is applied to the input and output of each
sublayer.)e input to the transformer encoder is a mul-
tivariate time series, which is represented as X ∈ Rk×d,
where k is the length of the time series, and d is the di-
mension of features.)e output dimension of each
transformer encoder layer is still k × d.)e structure of the
transformer encoder layer for RUL prediction is shown in
Figure 1.

2.1.1. Positional Encoding. Before the transformer encoder,
for the model to take advantage of the sequence order, we
must inject some information about the relative or absolute
position of the time point in the sequence. Following the
work in [37], sine and cosine functions of different fre-
quencies are used for position encoding:

Table 1: Recent deep architecture-based approaches for RUL
prediction.

Authors Year Approach Object

Hasani et al. [32] 2017 Autoencoder

Bearing
Li et al. [16] 2019 CNN
Hu et al. [33] 2019 DBN
Jiang et al. [34] 2020 Attention-LSTM

Badu et al. [15] 2016 CNN

Turbofan

Zhang et al. [17] 2016 Multi-DBN
Al-Dulaimi et al. [26] 2019 LSTM+CNN
Liu et al. [31] 2019 Autoencoder

Agrawal et al. [25] 2021
Optimized LSTM-

GRU

Li et al. [24] 2020 LSTM

Battery
Yu et al. [28] 2020 Bi-LSTM
Ren et al. [35] 2021 CNN-LSTM
Bhattacharya et al. [14] 2021 MFO-DNN

Computational Intelligence and Neuroscience 3

PE(pos,2i) � sin
pos

10000

2i/d(),
PE(pos,2i+1) � cos

pos

10000

2i/d(),
(1)

where pos is the position of a time point, and i is the index of
the feature. PE is a position embedding matrix, whose shape
depends on the input sequence. Using this function, the
model would be allowed to easily learn to attend by relative
positions.)en, we only need to add the position embedding
matrix and the input sequence. Note that the position
embedding matrix is given and does not need to be learned
in training in this work.

2.1.2. Multihead Self-Attention. Multihead self-attention
can be interpreted as applying multiple self-attention
mechanisms called the scaled dot-product attention func-
tion.)e output of each self-attention function is called a
head. Scaled dot-product attention can be depicted as
mapping a query and a set of key-value pairs to output,
where the queries, keys, and values are derived from the
linear mapping of the representation vector at a time point.
)e output is computed as a weighted sum of the values,
where the weight assigned to each value is computed by a

compatibility function of the query with the corresponding
key. In practice, all queries, keys, and values, which are
packaged as matrices Q, K, and V, respectively, are com-
puted in parallel by matrix operation. For simplicity, it is still
assumed that the input of the multihead self-attention
module is multivariate time series X ∈ Rk×d.)en, the
formula for calculating Q, K, and V can be expressed by

Qj � XW
Q
j ,

Kj � XW
K
j ,

Vj � XW
V
j ,

(2)

where WQ
j ∈ Rd×dk , WK

j ∈ Rd×dk , and WV
j ∈ Rd×dv are the

learned weight matrices used to calculate the matricesQj,Kj

and Vj of head j, respectively, dk is the size ofW
Q
j andWK

j ,
and dv is the size ofW

V
j .)en, apply the scaled dot-product

attention function to Qj, Kj, Vj:

Attention Qj, Kj, Vj() � softmax
QjK

T
j��

dk
√ Vj. (3)

Finally, the output of the multihead self-attention sub-
layer can be obtained according to the following formula:

MultiHead(Q,K, V) � Concat head1, . . . , headh()WO,

Where headj � Attention Qj, Kj, Vj(),
(4)

where h is the number of heads, and WO ∈ Rhdv×d is the
parameter matrix that maps the multiple heads back toRk×d.
In this work, we set dk � dv � 16, and h � 8.)ree trans-
former encoder layers are created.

2.1.3. Feed-Forward Network. A fully connected feed-for-
ward network (FFN) consists of two linear transformations
with a rectified linear unit activation function (ReLU) [45] in
between, which is applied to each encoder layer separately
and identically.

FFN(x) � max 0, xW1 + b1()W2 + b2. (5)

2.2. CNNs for Local Feature Extraction. One of the main
advantages of the transformer is that it uses the attention
mechanism to model global dependencies among nodes in
input data, but it does not pay special attention to local
dependencies. However, for multivariate time series, espe-
cially for the multivariate industrial sensor data of interest in
this paper, there is often a strong correlation between ad-
jacent time steps. Naturally, we propose to use a convolu-
tion-based network as a local feature extractor of the input
data as a supplement to the transformer.

In this work, we present three convolution-based neural
network architectures as local feature extractors.)ey are
the TCNN proposed in this paper and the classical networks:
deep residual network (ResNet) and densely connected
convolutional network (DenseNet).

Multi-Head
self-Attention

Layer Normalization

Feed Forward

Layer Normalization

E
n

co
d

er L
ayer

Multivariate time series

Positional

Encoding

Figure 1:)e structure of the transformer encoder layer.

4 Computational Intelligence and Neuroscience

ResNet was first proposed by He et al. [40], which was
developed to tackle the issue of degradation and vanishing
gradients, and won 1st place in the ILSVRC competition in
2015.)is network has achieved great success in the field of
computer vision. A light ResNet used in this work is shown
in Figure 2(a). Each convolution layer is followed by batch
normalization and an ReLU (not shown in the figure). For a
complete explanation of ResNet, refer to [40].

DenseNet [41] shows excellent performance by en-
couraging feature reuse and significantly reduces the
number of parameters and computational cost.)e way to
build DenseNet architecture is to make further use of fea-
tures on the basis of shortcut connections proposed by
ResNet, that is, to establish a connection between all pairs of
layers in the network, so that the layer can obtain the features
of all preceding feature maps. A light DenseNet with
structures “bottleneck” and “compression” used in this work
is shown in Figure 2(b). For a complete explanation of
DenseNet, refer to [41].

TCNN is different. ResNet or other traditional CNN
networks are designed in the field of computer vision.)ey all
carry out the 2D convolution operation, and all convolution
kernel sizes are usually design parameters such as 3 × 3 or
5 × 5. However, the sensor values in each time step of the
multisensor data sequence should be regarded as a whole,
because they jointly explain the state of the object in this time
step.)erefore, we propose to use 1D convolution instead of
2D convolution to obtain better RUL prediction results.)e
structure of the TCNN we used is described in Figure 3. Each
convolution block in Figure 3 actually contains a convolution
layer, a batch normalization layer, an activation layer, and a
dropout layer in order.)e kernel size of all 1D convolution
layers is 3, and the padding is 1.)e stride of the first 1D
convolution layer is 1, and the number of output channels is
the same as that of the input.)e stride of the other 1D
convolution layers is 2, and the number of output channels is
twice that of the input.)ismeans that every time the features
are halved, the number of channels doubles. Finally, an av-
erage pooling operation is performed for each channel. In this
work, the activation function is ReLU, the dropout rate is 0.5,
and a total of 4 convolution layers were built.

2.3. RegressionModule. We concatenate the output features
of the transformer encoder and CNN (one of TCNN,
ResNet, or DenseNet) to form a feature vector x ∈ Rm (m is
the sum of the feature numbers of the transformer encoder
and CNN output). To obtain the predicted value of RUL, the
usual method is that the feature vector is directly fed to the
regressionmodule to complete the regression task. However,
the two parts of the features of x come from the parallel
processing of the input multivariate time series by the
transformer encoder and CNN. Usually, we cannot measure
the level of the output features of the two modules.
)erefore, we apply FRM to x.)e FRM can be summarized
as letting x go through a two-layer fully connected network
to output a normalized vector v with the same dimension as
x and then taking the Hadamard product of x and v to
obtain the recalibrated x. Its mathematical expression is

x′ � x ∘ v � x ∘ Sigmoid W2
′ReLU W1

′x()(), (6)

where x′ is the recalibrated x, which is also the vector finally
fed to the regression module. W1

′ ∈ R(m/16)×m and
W2
′ ∈ Rm×(m/16) are both parameter matrices determined in

training, and “ ∘ ” is the Hadamard product. To obtain v, we
use two fully connected layers.)e first layer uses the ReLU
activation function, which helps increase the nonlinearity of
the transformation. In addition, the first layer reduces the
dimension to 1/16 of the original, which helps reduce the
computational consumption. Due to the sigmoid activation
function, v is normalized to (0, 1), which means that, after
training, the model can decide whether to give a value in x a
large weight or a small weight to recalibrate the feature
vector x.

Finally, x′ is fed to a two-layer fully connected network
(FCN). In this work, the size of the hidden layer is obtained
by the random search algorithm introduced in Section 2.4,
and the activation function is ReLU.)ere is only one output
of the output layer, i.e., the predicted RUL.

2.4. Loss Function and Hyperparameters

2.4.1. Loss Function.)emean square error (MSE) is used to
build the loss function, as shown in the following equation:

Loss �
1

B
ypre − ytarget

2, (7)

where ypre and ytarget are the predicted output of the pro-
posed model and the established target output, respectively.
B is the number of units in a minibatch in the training. We
use Adam as the optimizer of our model.

2.4.2. Hyperparameter Selection.)e hyperparameters of
the deep model have a significant impact on the results.
Although, in the case of this article, it is feasible to imple-
ment manual search and grid search (complete training and
testing only takes a few hours), but considering that the
application of manual search or grid search to new datasets is
a poor choice, we use an easy-to-implement and effective
random search algorithm [46] in this work.)ere are 7
hyperparameters determined by random search, of which
only the learning rate is a continuous value, and the rest are
discrete values.)e number of encoder layers, the number of
TCNN layers, and the kernel size of the TCNN are lists with
increments of 1, and the last three rows in Table 2 are lists
with exponential growth.

2.5. Model Complexity. We analyzed the complexity and
parameter requirements of the two core components of the
transformer (i.e., self-attention and feed-forward network)
and the three CNN architectures established in this paper in
Table 3.)e complexity of CNNs is determined by their
convolution operation. When the input sequence is rela-
tively short, the bottleneck of the transformer encoder is the
FFN. However, when the dimension of D is not high, the
complexity of the self-attention module will dominate with

Computational Intelligence and Neuroscience 5

increasing input sequence length.)e transformer is a
general and flexible architecture, but its disadvantage is that
transformer does not introduce a priori knowledge about the
input data structure, and its information transmission
process completely depends on the similarity measurement
of content.)is is why we choose to introduce CNN ar-
chitecture into our joint learning model.

3. Dataset and Preprocessing

3.1. Data Description. In this work, the Commercial Mod-
ular Aero-Propulsion System Simulation (C-MAPSS) [47]
dataset was used to support this study, and this dataset was
previously reported by the Prognostics CoE at NASA Ames.
)is dataset is available at https://ti.arc.nasa.gov/tech/dash/

Input

3x3 conv, 16

3x3 conv, 16

3x3 conv, 64, /2

3x3 conv, 64

Global AvgPool

Output

3x3 conv, 32, /2

3x3 conv, 32

3x3 conv, 16

identity

down sample
1x1, stride=2

down sample
1x1, stride=2

(a)

T
ran

sitio
n

 layer

Input

3x3 Conv, 16

2x2 AvgPool, /2

1x1 Conv, 32

Global AvgPool

D
en

se B
lo

ck
 1

D
en

se B
lo

ck
 2

Output

(b)

Figure 2:)e classic CNNs used in this paper. (a) DenseNet. (b) ResNet.

Input (d×k)

1D conv, _×2k

1D conv, _×4k

1D conv, _×2nk

AvgPool-1D

Output

1D-conv, d×k

n layers

Figure 3:)e structure of TCNN.

6 Computational Intelligence and Neuroscience

groups/pcoe/prognostic-data-repository.)e information
of the C-MAPSS dataset used is listed in Table 4. C-MAPSS
consists of four datasets (from FD001 to FD004), corre-
sponding to different operating conditions and fault mode
combinations. Each dataset is further divided into training
and test subsets. Datasets consist of multiple multivariate
time series, and each dataset can be regarded as an n × 26
matrix, where n corresponds to the number of time cycles,
which contains 26 columns of operation state data.)e first
column is the engine ID, the second column is the time cycle
index, and the third to fifth columns indicate the operating
conditions.)e remaining variables represent the 21 sensor
readings that reflect the engine degradation over time.

)e engine runs normally at the start of each time series
and develops a fault at some step during the time series. In
the training subset, the fault grows in magnitude until
system failure. In the test subset, the time series ends at a
point prior to the complete system failure. C-MAPSS also
provided a vector that records the ground truth of the RUL
for the test engines.

3.2. Degradation Curve.)e degradation of the system
usually begins after a certain period of usage time. In the early
stage of system use, it is difficult to accurately predict the RUL,
and the predicted RUL will have a large deviation from the
actual situation. Such prediction is not of great significance,
because the system state is still very healthy at this time.
)erefore, a piecewise model was used instead of a linear
model to construct a degradation curve.)e piecewise model
was originally presented in [48], and it has been proven to be

an effective method to improve the prediction performance of
the model [49, 50]. Specifically, the previous stage of the
degradation curve is set to a constant and then begins to
degenerate linearly. In this work, the constant value is set to
120.)e degradation curve is shown in Figure 4.

3.3. Data Preparation.)e FD002 and FD004 datasets have
six different operating conditions. In this work, one-hot
encoding is used to encode six different operating conditions
and then replace the data from Columns 2 to 4 of the dataset.

)e C-MAPSS dataset provides the readings of 21
sensors at each sampling point, and the details of each sensor
are given in the literature [47]. However, not every sensor
provides useful degradation information. For example, the
measurement results of some sensors do not show a cor-
relation with time in the whole life cycle of the unit.
According to the research results in the literature [51], we
selected the outputs of 14 sensors from 21 sensors to build
the training samples and test samples of the deep model.

To eliminate the influence of different scales of sensor
readings, it is necessary to normalize the data of each sensor
to be within the range of (0, 1) according to equation (8)
before any training and testing.

Norm Xf() � Xf
−X

f
min()

Xf
max −X

f
min + α

, (8)

whereXf represents the readings of sensor f over the whole
time cycle. We applied a trick here. Because the degradation
curve is built by the piecewise model, there will be a large
number of training samples with a label value of 120, which
is a kind of sample imbalance. A sigmoid function is used in
the RUL output neuron. To avoid too many label values
being unreachable, we add a scaling value α � 1 to the
denominator in equation (8), so that the maximum value of
normalized data is slightly less than 1.

)e sliding time window method is applied to build
training samples. For the proposed prediction model, we
hope that the time series as training samples can be as long as
possible to obtain more context information. However,
because of the minimum sampling length of test engines, as
seen in Table 4, the size of the corresponding sliding win-
dows of FD001 to FD004 is set to 31, 21, 38, and 19.

Table 2: Hyperparameters determined by random search.

Hyperparameter Range Type

1 Layers of encoder [1, 6] Discrete
2 Layers of TCNN [1, 4] Discrete
3 Kernel size of TCNN [2, 5] Discrete
4 Learning rate [1e− 4, 1e− 1] Continuous
5 Size of hidden layer of FCN [16, 256] Discrete
6 Size of hidden layer FFN [16, 256] Discrete
7 Batch size [16, 128] Discrete

Table 3: Complexity and parameter counts of core components of
the proposed joint model. d is the sequence length. k is the rep-
resentation dimension. s is the kernel size of convolutions.

Module Complexity Parameters (K)

Self-attention O(d · k2) 17
FFN O(d2 · k) 40
TCNN O(s · d · k2) 53
ResNet O(s · d · k2) 67
DenseNet O(s · d · k2) 46

Table 4: Details of C-MAPSS dataset.

C-MAPSS FD001 FD002 FD003 FD004

Min. cycles of TE 31 21 38 19
Number of units in TR 100 260 100 249
Number of units in TE 100 259 100 248
Operating conditions 1 6 1 6
Fault modes 1 1 2 2
∗TR: training subsets; TE: testing subsets.

Computational Intelligence and Neuroscience 7

4. Experiments & Results

In this section, we first briefly introduce the evaluation
metrics.)en, we present the experimental results of our
joint models on C-MAPSS to evaluate the performance for
RUL prediction and analyze the experimental results. Fi-
nally, we compared the joint model with previous works.

4.1. Performance Evaluation. To measure the prediction
performance of the proposed joint model, two evaluation
functions are used: scoring function [47] and root mean
square error (RMSE) [52].)e formula is as follows:

RMSE �

�������
1

N
∑N
i�1

e2i

√√
, (9)

Score �

∑N
i�1

e− ei/13 − 1() for ei < 0

∑N
i�1

eei/10 − 1() for ei ≥ 0


, (10)

where N is the number of engines and
ei � RUL

(prediction)
i − RUL

(target)
i . RMSE is a common metric

used to evaluate the error of prediction values. Equation (10)
shows that the scoring function has a greater penalty for
overestimated RUL, because overestimated RUL will lead to
unexpected engine failure, while underestimated RUL will
only lead to early maintenance. Obviously, an under-
estimated RUL will cause less damage and is more likely to
be accepted.)e combination of RMSE and score can
evaluate the performance of the model more effectively.)e
comparison of the metrics is shown in Figure 5.

4.2. Hyperparameter Selection. We used a random search
algorithm to determine the 7 hyperparameters described
in Section 2.4. A total of 6 experiments were imple-
mented. As shown in Figure 6, each scale on the abscissa

represents an experiment.)e scale value represents how
many independently identically distributed random
searches and trainings have been performed in this ex-
periment. Note that there is no overlap in each experi-
ment, which means that a total of 504 trainings were
performed instead of 256.)e hyperparameter values
chosen by the random search algorithm are shown in
Table 5.

4.3. RUL Prediction of Joint Models

4.3.1. Prediction Results.)e experimental results of the
proposed joint model using different CNN structures on the
C-MAPSS dataset are shown in Figure 7. Figure 7 presents
the RUL prediction results of the joint models on four
subsets. Note that we rearrange the units of each test subset
in descending order according to the target RUL (black dots
in the figure). On the other hand, the middle and late stages
of the unit life are of greater concern, so the units with an

0

50

100

150

200

250

T
ar

ge
t

R
U

L

50 100 150 200 2500

Run cycle

piece-wise

linear

Figure 4: Comparison of linear and piecewise degradation.

0

20

40

60

80

100

120

140

160

v
a
lu
e

–20 0 20 40–40

error

SCORE

RMSE

Figure 5: Score function and RMSE.

O
p

ti
m

al
 l

o
ss

16 (#2) 32 (#3) 64 (#4) 128 (#5) 256 (#6)8 (#1)

Experiments

0.020

0.022

0.024

0.026

0.028

Figure 6:)e optimal loss of each of the 6 experiments.

8 Computational Intelligence and Neuroscience

actual RUL higher than 120 are omitted in the figure to focus
on the prediction results of units in the middle and late
stages of degradation. As shown in Figure 7, for the units in
the middle of the degradation process, the prediction results
on the four subsets are not satisfactory, and many units have
large prediction deviations. We believe that this is because
the degradation features of these units are still not obvious
enough.)e recognition results of the model are somewhat
ambiguous. Fortunately, the model shows high performance
for the units in the late stage of the degradation process. We
attribute this to the fact that the data of the units in the late
stage of degradation contain more obvious fault informa-
tion, and the model is more inclined to identify accurate
fault patterns from these data.)is characteristic is par-
ticularly important in practical industrial applications.
Maintenance personnel can obtain more accurate RUL
predictions at later stages of the system lifespan to avoid
unexpected failures. We select units with relatively complete

running cycles from the four test subsets and present their
respective prediction results in Figure 8 as a supplementary
explanation of the above characteristics. It can be seen that,
for the entire lifespan of a single unit, as the unit degradation
progresses, the closer to the failure point it is, the higher the
prediction accuracy of the RUL is.

Examining the results of the models on the four datasets
indicates that the prediction results of the models on FD001
and FD003 are much better than those of FD002 and FD004.
From the prior knowledge from the C-MAPSS dataset, it can
be inferred that this is due to the different complexity of
subsets, which is manifested in the operating conditions and
fault modes, i.e., FD001 contains a single operating condition
and fault mode, while FD004 has the most complex case; it
contains six operating conditions and two fault modes,
which makes the prediction on FD004 particularly difficult.
)e operating conditions and fault modes of the datasets can
be found in Table 4.

Table 5: Chosen hyperparameter values.

Hyperparameter Value

1 Layers of encoder 3
2 Layers of TCNN 4
3 Kernel size of TCNN 3
4 Learning rate 1e− 4
5 Size of hidden layer of FCN 64
6 Size of hidden layer FFN 64
7 Batch size 32

40 60 80 10020

Unit

0

20

40

60

80

100

120

R
em

ai
n

in
g

U
se

fu
l L

if
e

(c
yc

le
s)

predicted RUL of TCNN

predicted RUL of ResNet

predicted RUL of DensNet

Target RUL

(a)

100 125 150 175 200 225 25075

Unit

0

20

40

60

80

100

120

R
em

ai
n

in
g

U
se

fu
l L

if
e

(c
yc

le
s)

predicted RUL of TCNN

predicted RUL of ResNet

predicted RUL of DensNet

Target RUL

(b)

30 40 50 60 70 80 90 10020

Unit

0

20

40

60

80

100

120

R
em

ai
n

in
g

U
se

fu
l L

if
e

(c
yc

le
s)

predicted RUL of TCNN

predicted RUL of ResNet

predicted RUL of DensNet

Target RUL

(c)

100 120 140 160 180 200 220 24080

Unit

0

20

40

60

80

100

120

R
em

ai
n

in
g

U
se

fu
l L

if
e

(c
yc

le
s)

predicted RUL of TCNN

predicted RUL of ResNet

predicted RUL of DensNet

Target RUL

(d)

Figure 7: Comparison between the predicted RUL and the target RUL on test units. Units have been rearranged in decreasing order of the
target RUL, and the units with an actual RUL higher than 120 are omitted. (a) FD001 test set. (b) FD002 test set. (c) FD003 test set. (d) FD004
test set.

Computational Intelligence and Neuroscience 9

4.3.2. Comparison of the Proposed Models.)e evaluation
metrics of the experimental results of the joint models on the
C-MAPSS dataset are shown in Tables 6 and 7.)e best
results (except the last row) on each subset are shown in
bold. Table 6 corresponds to the RMSE metric described in
equation (9), and Table 7 corresponds to the score metric
described in equation (10). According to the experimental
results of these two metrics, all the results of the joint model
using TCNN on the three subsets, namely, FD001, FD002,
and FD003, are the best, and the best result on the FD004
subset is obtained from ResNet. DenseNet’s overall per-
formance is slightly worse than TCNN and ResNet.)is
proved that the use of TCNN for 1D convolution in the time
dimension is indeed slightly better than the use of ResNet
and DenseNet.

In addition to the statistical metrics RMSE and score
provided in Tables 6 and 7, respectively, Figure 9 gives the
box plot and the histogram with the density curve (obtained
by kernel density estimation) of the prediction error of the
three models on the FD002 test set, which clearly and in-
tuitively shows the overall situation of the prediction results

of the models. In the box plot shown in Figure 9(a), the
upper and lower edges of the box represent the upper and
lower quartiles, and the whiskers show the position of the
most extreme data point in the range of 1.5 times the
quartile. We observed that the median and upper and lower
quartiles of the three models are very close, but the joint
model using TCNN has fewer outliers. Each outlier in the
figure actually represents a bad prediction of RUL, so the
joint model using TCNN has a more robust prediction result
than the other twomodels and can obtain a relatively reliable
prediction result. Figure 9(b) shows the histograms of the
RUL prediction error and its density curves.)e three
density curves are actually very close, and the peak positions
of the three are very close to the ideal position. However, it
can still be observed that TCNN is not prone to high
underestimated life, while ResNet is not prone to high
overestimated life.

RMSE is sensitive to large deviations. To evaluate the
impact of large deviation values, the statistical metric mean
absolute error (MAE) of the prediction results is shown in
Table 8.)e results in Table 8 show that there are some

60 80 100 120 140 160 18040

Time Cycle

20

40

60

80

100

120
R

em
ai

n
in

g
U

se
fu

l L
if

e
(c

yc
le

s)

Predicted RUL

Actual RUL

(a)

50 100 150 200 2500

Time Cycle

20

40

60

80

100

120

R
em

ai
n

in
g

U
se

fu
l L

if
e

(c
yc

le
s)

Predicted RUL

Actual RUL

(b)

100 150 200 25050

Time Cycle

20

40

60

80

100

120

R
em

ai
n

in
g

U
se

fu
l L

if
e

(c
yc

le
s)

Predicted RUL

Actual RUL

(c)

100 150 200 25050

Time Cycle

20

40

60

80

100

120

R
em

ai
n

in
g

U
se

fu
l L

if
e

(c
yc

le
s)

Predicted RUL

Actual RUL

(d)

Figure 8: RUL predictions of units belonging to different subsets. (a) Unit 23 in FD001. (b) Unit 69 in FD002. (c) Unit 20 in FD003. (d) Unit
31 in FD004.

10 Computational Intelligence and Neuroscience

difficult-to-predict samples in the prediction results of the
model. Interestingly, the MAEs of the three models on all
subsets are very close. To verify whether the three models give
similar results for each test sample, we rearrange the prediction
errors of the three models according to the descending order of
TCNN’s prediction error (ei � RUL

(prediction)
i − RUL

(target)
i).

)e results are shown in Figure 10. Only the results on FD003
are given here. Figure 10 shows that the prediction results of the
joint models for a single test sample do not show a consistent
trend, which proves that the three models learned different
discrimination methods. We average the prediction results of
the three models, which directly represents the prediction
results of a simple ensemble learning model composed of three
joint models.)e corresponding RMSEmetric can be found in
the last row of Table 6. Compared with the single joint model,
the ensemble model can further improve the prediction ac-
curacy. However, the disadvantage of the ensemble model is
that the time cost of training and prediction will increase
several times, which increases the difficulty of online appli-
cation.)erefore, we believe that a joint learningmodel such as
“Transformer+TCNN” has more practical value.

4.3.3. Comparison with Previous Work. Many previous
works have achieved some results on the C-MAPSS dataset.
To prove our research progress, we use the best
“Trans. + TCNN” model to compare it with the previous
research results.)e comparison of RMSE is shown in
Table 9, and the comparison of the score is shown in Ta-
ble 10.)e best results on each subset are still in bold.)e
last row of the table shows the improvement or retrogression
of our model compared with the best results in the past.

As shown in Tables 9 and 10, our joint model has shown
excellent performance and has made a comprehensive lead
in the FD002 and FD004 subsets. Specifically, the most
significant improvement occurred in the score metric on the
FD002 subset, which improved 53.6% compared to the best
result of the previous works, and the smallest improvement
occurred in the RMSE metric on the FD004 subset, which
increased by 17.8%, still a considerable number. Unfortu-
nately, the performance of our joint model is degraded by
10.0% in the score metric of the FD003 subset. In addition, in
the comparison of the remaining several results, our joint
model has only slight improvement or retrogression. We

Table 6: RMSE comparison of the joint models.

Architecture FD001 FD002 FD003 FD004

Trans. + TCNN 12.31 15.35 12.32 18.35
Trans. + ResNet 12.75 15.58 12.46 17.97

Trans. +DenseNet 12.47 16.08 13.05 18.92
Ensemble of above 11.40 14.75 11.35 17.30

Table 7: Score comparison of the joint models.

Architecture FD001 FD002 FD003 FD004

Trans. + TCNN 252 1267 296 2120
Trans. + ResNet 288 1280 318 2079

Trans. +DenseNet 254 1453 415 2583

-50

-40

-30

-20

-10

0

10

20

30

40

50

E
r
r
o
r

TCNN ResNet DenseNet

(a)

0.00

0.01

0.02

0.03

0.04

D
en
si
ty

-40 -20 0 20 40 60-60

Error

TCNN

ResNet

DenseNet

(b)

Figure 9: RUL prediction error distribution on the FD002 test set. (a) Box plot of prediction error. (b) Error histogram with the density
curves.

Computational Intelligence and Neuroscience 11

have learned that, compared with the FD001 and FD003
subsets, the FD002 and FD004 subsets have more complex
fault modes and operating conditions; therefore, our joint
model is more robust on complex datasets and shows better
performance, without significant degradation on simple
datasets.)is means that our model has indeed been
successful.

5. Conclusion and Future Perspectives

In this work, we proposed a joint deep learning model
combined with the transformer encoder and CNN for the
RUL prediction task. We use the self-attention mechanism
of the transformer to capture the cross-distance dependence
in the time series and eliminate the distance limitation
between historical data; therefore, the length of the input
time series data does not affect the performance of the
model.)is is difficult for recurrent neural networks.
Moreover, considering that the self-attention mechanism is
not particularly sensitive to the local context and that the
sensor data often have a strong local correlation, we use the
CNN to extract local information. We compared three
different structures of CNNs through experiments, and the
results prove that TCNN using 1D convolution is more
suitable for multivariate sensor time series data.)e re-
gression module makes our joint learning model different
from the ensemble learning model, which is also composed
of multiple models.)e application of FRM enables the
model to recalibrate the importance of the output features of
multiple models.)e experimental results on the C-MAPSS
dataset show that the performance of our joint model is
better than that of the previous work under complex fault
modes and operating conditions. Our joint deep learning
model for RUL prediction can be combined with different
models to adapt to different tasks. It is flexible and has
development potential.

)ere are several limitations here that deserve further
study. First and most intuitive, the proposed approach has
some performance degradation compared with previous
works with simple operating conditions and fault modes. A
reasonable conjecture is that the lack of structural bias in the
transformer architecture makes it prone to overfitting on
small-scale data (i.e., FD001 and FD003). How to further
improve the generalization performance of the model is a
direction worth discussing. Additionally, many fields tend to
focus on the application of the RUL prediction algorithm in
real-time online prediction, and our work does not evaluate
the online prediction performance of the proposed ap-
proach.)is requires the algorithm to balance time cost and
accuracy. How to optimize the model to complete this is
worthy of further research.

Data Availability

Previously reported C-MAPSS data were used to support
this study and are available at https://ti.arc.nasa.gov/tech/
dash/groups/pcoe/prognostic-data-repository/.)e prior
study (and dataset) is cited at the relevant place within the
text as a reference [47].

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Table 8: MAE comparison of the joint models.

Architecture FD001 FD002 FD003 FD004

Trans. + TCNN 9.06 11.54 7.67 13.60
Trans. + ResNet 9.02 11.50 8.51 13.72
Trans. +DenseNet 9.06 12.08 8.58 13.78

20 40 60 80 1000

Unit

–40

–20

0

20

40

R
em

ai
n

in
g

U
se

fu
l L

if
e

(c
yc

le
s)

Target
error of TCNN

error of ResNet
error of DensNet

Figure 10: Comparison of prediction error on FD003.

Table 9: RMSE comparison of ours and prior methods.

Methods FD001 FD002 FD003 FD004

CNN [15] 18.45 30.29 19.82 29.19
LSTM [52] 16.14 24.49 16.18 28.17
BiLSTM [53] 13.65 23.18 13.74 24.86
BiLSTM+MSCNN [29] 12.75 22.46 11.35 24.10
DAG network [54] 11.96 20.34 12.46 22.43
MHCNN+LSTM [55] 12.19 19.93 12.85 22.89
RULENet [56] 13.96 22.19 14.76 25.41
Trans. + TCNN 12.31 15.35 12.32 18.35

IMP −2.9% 23.0% −8.5% 17.8%

Table 10: Score comparison of ours and prior methods.

Methods FD001 FD002 FD003 FD004

CNN [15] 1290 13600 16000 7890
LSTM [52] 338 4450 852 5550
BiLSTM [53] 295 4130 317 5430
BiLSTM+MSCNN [29] 281 5170 278 4790
DAG network [54] 229 2730 553 3370
MHCNN+LSTM [55] 259 4350 343 4340
RULENet [56] 310 3900 310 3800
Trans. + TCNN 252 1267 296 2120

IMP −10% 53.6% −6.5% 37.1%

12 Computational Intelligence and Neuroscience

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

Acknowledgments

)is study was supported by the Scientific Research
Foundation of Chongqing (2019ZD118), the Scientific and
Technological Research Program of Chongqing Municipal
Education Commission (KJQN202001142), and the
Chongqing Research Program of Basic Research and
Frontier Technology (Grant No. cstc2020jcyj-msxmX0352).

References

[1] D. Wang, K. L. Tsui, and Q. Miao, “Prognostics and health
management: a review of vibration based bearing and gear
health indicators,” IEEE Access, vol. 6, pp. 665–676, 2017.

[2] X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining
useful life estimation - a review on the statistical data driven
approaches,” European Journal of Operational Research,
vol. 213, no. 1, pp. 1–14, 2011.

[3] N. C. Xiao, K. Yuan, and H. Zhan, “System reliability analysis
based on dependent Kriging predictions and parallel learning
strategy,” Reliability Engineering & System Safety, vol. 218,
Article ID 108083, 2021.

[4] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao,
“Deep learning and its applications to machine health
monitoring,” Mechanical Systems and Signal Processing,
vol. 115, pp. 213–237, 2019.

[5] P. Paris and F. Erdogan, “A critical analysis of crack prop-
agation laws,” Journal of Basic Engineering, vol. 85, no. 4,
pp. 528–533, 1963.

[6] Y. Qian, R. Yan, and R. X. Gao, “A multi-time scale approach
to remaining useful life prediction in rolling bearing,” Me-
chanical Systems and Signal Processing, vol. 83, pp. 549–567,
2017.

[7] Y. Hu, P. Baraldi, and F. D. Maio, “Online performance
assessment method for a model-based prognostic approach,”
IEEE Transactions on Reliability, vol. 65, no. 2, pp. 718–735,
2015.

[8] P. Baraldi, F.Mangili, and E. Zio, “Investigation of uncertainty
treatment capability of model-based and data-driven prog-
nostic methods using simulated data,” Reliability Engineering
& System Safety, vol. 112, pp. 94–108, 2013.

[9] H.-K. Wang, H.-Z. Huang, Y.-F. Li, and Y.-J. Yang, “Con-
dition-based maintenance with scheduling threshold and
maintenance threshold,” IEEE Transactions on Reliability,
vol. 65, no. 2, pp. 513–524, 2016.

[10] Z. Huang, Z. Xu, X. Ke, W. Wang, and Y. Sun, “Remaining
useful life prediction for an adaptive skew-Wiener process
model,” Mechanical Systems and Signal Processing, vol. 87,
pp. 294–306, 2017.

[11] W. Su, X. Zhao, and Y. Cao, “VL-BERT: pre-training of
generic visual-linguistic representations,” in Proceedings of the
International Conference on Learning Representations, Addis
Ababa, Ethiopia, April 2020.

[12] Y. Liu, K. Chen, and C. Liu, “Structured knowledge distillation
for semantic segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 2599–2608, Long Beach, CA, USA, June 2019.

[13] S. Zhang, H. Peng, and J. Fu, “Learning 2D temporal adjacent
networks for moment localization with natural language,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 7, pp. 12870–12877, 2020.

[14] S. Bhattacharya, P. Kumar Reddy Maddikunta,
I. Meenakshisundaram et al., “Deep neural networks based

approach for battery life prediction,” Computers, Materials &
Continua, vol. 69, no. 2, pp. 2599–2615, 2021.

[15] G. S. Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural
network based regression approach for estimation of
remaining useful life,” in Proceedings of the International
Conference on Database Systems for Advanced Applications,
pp. 214–228, Dallas, TX, USA, April 2016.

[16] X. Li, W. Zhang, and Q. Ding, “Deep learning-based
remaining useful life estimation of bearings using multi-scale
feature extraction,” Reliability Engineering & System Safety,
vol. 182, pp. 208–218, 2019.

[17] C. Zhang, P. Lim, and A. Qin, “Multi objective deep belief
networks ensemble for remaining useful life estimation in
prognostics,” IEEE transactions on neural networks and
learning systems, vol. 28, no. 10, pp. 2306–2318, 2016.

[18] R. Zemouri and R. Gouriveau, “Towards accurate and re-
producible predic-tions for prognostic: an approach com-
bining a RRBF network and an autoregressive model,” IFAC
Proceedings, vol. 43, no. 3, pp. 163–168, 2010.

[19] X. Zhang, Y. Dong, and L. Wen, “Remaining useful life es-
timation based on a new convolutional and recurrent neural
network,” in Proceedings of the IEEE 15th International
Conference on Automation Science and Engineering,
pp. 317–322, Vancouver, Canada, August 2019.

[20] B. A. Pearlmutter, “Gradient calculations for dynamic re-
current neural networks: a survey,” IEEE Transactions on
Neural Networks, vol. 6, no. 5, pp. 1212–1228, 1995.

[21] Y. Liao, L. Zhang, and C. Liu, “Uncertainty prediction of
remaining useful life using long short-term memory network
based on bootstrap method,” in Proceedings of the IEEE In-
ternational Conference on Prognostics and Health Manage-
ment, pp. 1–8, Seattle, WA, USA, June 2018.

[22] Y. Liu, G. Zhao, and X. Peng, “Deep learning prognostics for
lithium-ion battery based on ensembled long short-term
memory networks,” IEEE Access, vol. 7, pp. 155130–155142,
2019.

[23] Y. Zhang, R. Xiong, H. He, andM. G. Pecht, “Long short-term
memory recurrent neural network for remaining useful life
prediction of lithium-ion batteries,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 7, pp. 5695–5705, 2018.

[24] P. Li, Z. Zhang, and Q. Xiong, “State-of-health estimation and
remaining useful life prediction for the lithium-ion battery
based on a variant long short term memory neural network,”
Journal of Power Sources, vol. 459, pp. 1–12, 2020.

[25] S. Agrawal, S. Sarkar, G. Srivastava, P. K. Reddy Maddikunta,
and T. R. Gadekallu, “Genetically optimized prediction of
remaining useful life,” Sustainable Computing: Informatics
and Systems, vol. 31, Article ID 100565, 2021.

[26] A. Al-Dulaimi, S. Zabihi, and A. Asif, “Hybrid deep neural
network model for remaining useful life estimation,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 3872–3876, Brighton, UK,
May 2019.

[27] Z. Pan, Z. Xu, and C. Chi, “Remaining useful life prediction
based on a Bi-directional LSTM neural network,” in Pro-
ceedings of the International Conference on Control & Auto-
mation, pp. 985–990, Sapporo, Japan, July 2020.

[28] Y. Yu, C. Hu, X. Si, J. Zheng, and J. Zhang, “Averaged Bi-
LSTM networks for RUL prognostics with non-life-cycle la-
beled dataset,” Neurocomputing, vol. 402, pp. 134–147, 2020.

[29] Y. Jiang, Y. Lyu, and Y. Wang, “Fusion network combined
with bidirectional LSTM network and multiscale CNN for
remaining useful life estimation,” in Proceedings of the

Computational Intelligence and Neuroscience 13

International Conference on Advanced Computational Intel-
ligence, pp. 620–627, Dali, China, March 2020.

[30] I. Remadna, S. L. Terrissa, and R. Zemouri, “Leveraging the
power of the combination of CNN and Bi-Directional LSTM
networks for aircraft engine RUL estimation,” in Proceedings
of the Prognostics and Health Management Conference,
pp. 116–121, Besançon, France, May 2020.

[31] H. Liu, Z. Liu, and W. Jia, “A novel deep learning-based
encoder-decoder model for remaining useful life prediction,”
in Proceedings of the International Joint Conference on Neural
Networks, pp. 1–8, Budapest, Hungary, July 2019.

[32] R. M. Hasani, G. Wang, and R. Grosu, “An automated auto-
encoder correlation-based health-monitoring and prognostic
method for machine bearings,” 2017, https://arxiv.org/abs/
1703.06272.

[33] C. H. Hu, H. Pei, and X. S. Si, “A prognostic model based on
DBN and diffusion process for degrading bearing,” IEEE
Transactions on Industrial Electronics, vol. 67, no. 10,
pp. 8767–8777, 2019.

[34] J. R. Jiang, J. E. Lee, and Y. M. Zeng, “Time series multiple
channel convolutional neural network with attention-based
long short-term memory for predicting bearing remaining
useful life,” Sensors, vol. 20, no. 1, p. 166, 2020.

[35] L. Ren, J. Dong, and X. Wang, “A data-driven auto-cnn-lstm
prediction model for lithium-ion battery remaining useful
life,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 5, pp. 3478–3487, 2020.

[36] K. Park, Y. Choi, W. J. Choi, H.-Y. Ryu, and H. Kim, “LSTM-
based battery remaining useful life prediction with multi-
channel charging profiles,” IEEE Access, vol. 8, pp. 20786–
20798, 2020.

[37] A. Vaswani, N. Shazeer, and N. Parmar, “Attention is all you
need,” in Advances in Neural Information Processing Systems,
pp. 5998–6008, MIT Press, Cambridge, MA, USA, 2017.

[38] H. Kameoka, W.-C. Huang, K. Tanaka, T. Kaneko, N. Hojo,
and T. Toda, “Many-to-many voice transformer network,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 29, pp. 656–670, 2021.

[39] J. Wang and J. Feng, “Hybrid attention distribution and
factorized embedding matrix in image captioning,” IEEE
Access, vol. 8, pp. 154453–154460, 2020.

[40] K. He, X. Zhang, and S. Ren, “Deep residual learning for
image recognition,” in Proceedings of the Conference on
Computer Vision and Pattern Recognition, pp. 770–778, Las
Vegas, NV, USA, June 2016.

[41] G. Huang, Z. Liu, and L. van der Maaten, “Densely connected
convolutional networks,” in Proceedings of the CVPR,
pp. 2261–2269, Honolulu,, HI, USA, July 2017.

[42] M. Zong, R. Wang, X. Chen, Z. Chen, and Y. Gong, “Motion
saliency based multi-stream multiplier ResNets for action
recognition,” Image and Vision Computing, vol. 107, Article
ID 104108, 2021.

[43] S. Albahli, N. Ayub, and M. Shiraz, “Coronavirus disease
(COVID-19) detection using X-ray images and enhanced
DenseNet,” Applied Soft Computing, vol. 110, Article ID
107645, 2021.

[44] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[45] G. Xavier, B. Antoine, and B. Yoshua, Deep Sparse Rectifier
Neural Networks, Université de Montréal, Montreal, Canada,
2011.

[46] J. Bergstra and Y. Bengio, “Random search for hyper-pa-
rameter optimization,” Journal of Machine Learning Research,
vol. 13, no. 2, 2012.

[47] A. Saxena and K. Goebel, “Turbofan engine degradation
simulation data set,” in NASA Ames Prognostics Data Repo-
sitoryNASA Ames Research Center, Moffett Field, CA, USA,
2008.

[48] F. O. Heimes, “Recurrent neural networks for remaining
useful life estimation,” in Proceedings of the International
Conference on Prognostics and Health Management, pp. 1–6,
Denver, CO, USA, March 2008.

[49] M. Sayah, D. Guebli, and N. Zerhouni, “Towards distribution
clustering-based deep LSTM models for RUL prediction,” in
Proceedings of the Prognostics and Health Management
Conference, pp. 253–256, Besançon, Frace, May 2020.

[50] J. Cornelius, B. Brockner, and S. H. Hong, “Estimating and
leveraging uncertainties in deep learning for remaining useful
life prediction in mechanical systems,” in Proceedings of the
IEEE International Conference on Prognostics and Health
Management, pp. 1–8, Detroit, MI, USA, June 2020.

[51] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, “Remaining
useful life estimation of engineered systems using vanilla
LSTM neural networks,” Neurocomputing, vol. 275, pp. 167–
179, 2018.

[52] S. Zheng, K. Ristovski, and A. Farahat, “Long short-term
memory network for remaining useful life estimation,” in
Proceedings of the IEEE International Conference on Prog-
nostics and Health Management, pp. 88–95, Dallas, TX, USA,
June 2017.

[53] J. Wang, G. Wen, S. Yang, and Y. Liu, “Remaining useful life
estimation in prognostics using deep bidirectional LSTM
neural network,” in Proceedings of the Prognostics and System
Health Management Conference, pp. 1037–1042, Chongqing,
China, October 2018.

[54] J. Li, X. Li, and D. He, “A directed acyclic graph network
combined with CNN and LSTM for remaining useful life
prediction,” IEEE Access, vol. 7, pp. 75464–75475, 2019.

[55] H. Mo, F. Lucca, and J. Malacarne, “Multi-Head CNN-LSTM
with prediction error analysis for remaining useful life pre-
diction,” in Proceedings of the Conference of Open Innovations
Association, pp. 164–171, Trento, Italy, September 2020.

[56] M. Natsumeda and H. Chen, “RULENet: end-to-end learning
with the dual-estimator for remaining useful life estimation,”
in Proceedings of the IEEE International Conference on
Prognostics and Health Management, pp. 1–8, Detroit, MI,
USA, June 2020.

14 Computational Intelligence and Neuroscience

https://arxiv.org/abs/1703.06272
https://arxiv.org/abs/1703.06272

