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ABSTRACT The evaluation of lithium battery performance is a complex and very important issue. Generally,

manufacturers perform battery burn-in tests and evaluate the performance of lithium batteries based on

capacity, internal resistance, voltage, and other parameters in the cycle. However, due to the complexity

of practical applications and the difficulty of parameter measurement, it is necessary to evaluate the status of

health (SOH) of lithium-ion batteries from the side. Analysis of battery charge and discharge data found that

using the charge and discharge time to evaluate the health of the battery is effective and feasible, especially

the time during the discharge/charge platform period, and the parameter measurement is more convenient.

In this paper, three time-health indicators are constructed and analyzed in detail, and then the health of the

battery is evaluated using a simple Bayesian Monte Carlo theory. The experimental results of four batteries

show that the scheme is simple and convenient, and can effectively evaluate the SOH of lithium-ion batteries.

INDEX TERMS Optimal health indicator, lithium-ion battery, correlation analysis, time difference, Bayesian

Monte Carlo, state of health.

I. INTRODUCTION

In recent years, non-renewable energy sources such as oil

have gradually been exhausted, therefore, the research in

electric vehicles and hybrid vehicles has been intensified

around the world and it will be regarded as the important

vehicle models in the future. Because lithium-ion batteries

can store electrical energy in the form of chemical energy

and can be reused, therefore, it can be widely used in various

industrial and civil fields such as electric vehicles, mobile

devices, drones according to different specifications. The

main advantages of lithium-ion batteries are high energy

density, low self-discharge rate, long life, etc.However, it can-

not discharge at a large current and has the disadvantage

of poor safety, therefore, the deterioration monitoring of

lithium-ion batteries and the prediction of remaining use-

ful life are extremely important in practical applications.

Generally, the health indicator of the battery is the releasable
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capacity, but it is not convenient to calculate, so a better

indicator is needed to characterize the State-of-Health (SOH)

from the side, and this is important for lithium battery health

management and reliability. In essence, themore accurate and

reliable the predictions, the users can maintain the system

promptly to ensure safety and avoid disasters.

Many scholars conducted research work on degradation

modeling and Remaining Useful Life (RUL) prediction in

past years. Saha et al. used particle filter to study the Remain-

ing Useful Life prediction of the battery algorithm [1], [2].

He et al. [3]. studied the health status and remaining ser-

vice life of lithium-ion batteries using the Dempster-Shafer

theory and Bayesian Monte Carlo theory, respectively.

Wang et al. [4], Xing et al. [5], and Liu et al. [6] used

the correlation vector machine and three-parameter capac-

ity degradation model, combines empirical exponential and

a poly-nominal regression model and particle filtering,

the Grey Correlation Analysis and Ensemble MONotonic

Echo State Network algorithm to track the battery’s degra-

dation trend and predicted the RUL of battery, respectively.
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Hu et al. [7] used the Gauss–Hermite particle filter technique

to project the capacity fade to the end-of-service value or

the failure limit for the RUL prediction. Liu et al. [8], [9]

used the discharging voltage difference of equal time inter-

val and an optimized relevance vector-machine algorithm,

combines the battery capacity and time interval of equal

discharging voltage and a data-driven monotonic echo

state networks algorithm to track the nonlinear patterns

of battery degradation, respectively. Zhou et al. [10] and

Huang et al. [11] used the mean voltage falloff and discharg-

ing cycle, instantaneous discharging voltage and the unit

time voltage drop to estimations the state-of-health of Li-ion

batteries, respectively. Su et al. [12] and Ren et al. [13] stud-

ied the interacting multiple model particle filter, integrating

the auto encoder with deep neural network (DNN) for RUL

prediction of lithium-ion battery. Sun et al. incorporating

capacitance, resistance, and constant current charge time used

particle filter algorithm to predict remaining useful life [14].

Power attenuation is difficult to study, so it is usually reflected

by internal impedance or other factors [15],. Wei et al. used

the impedance variables and Particle Filter and Support Vec-

tor Regression to estimate the impedance degradation param-

eters [16]. Sun et al. presents that the order of stress factors

in terms of significance for cycle life derating is temperature

> charge/discharge C-rate > charge cut-off current > charge

cut-off voltage [17]. Saxena et al. used an accelerated fade

model under multiple C-rate loading conditions and a non-

linear mixed-effects regression to consider the variability of

repeated capacity measurements [18]. Lee et al. detecting

anomalies before EOL to reducing the time for the qualifi-

cation test of Li-ion batteries [19]. Zhang et al. [20], [21],

and Cadini et al. [22] combines the relevance vector machine

and particle filter, Box–Cox transformation and the Monte

Carlo simulation, and particle filtering and neural net-

works to estimate the remaining useful life, respectively.

Zhu et al. [23] investigated through experiments that the

Effect of the alternating current pulse heating method on

battery SoH for large laminated power lithium-ion batteries,

and indicates that the AC heating method does not aggravate

the battery degradation.

Generally, the internal mechanism of the battery involves

many complicated factors such as materials and chemical

reactions, but it is not convenient to monitor these inter-

nal parameters in the application environment. Therefore,

it requires a simple and unambiguous estimation of the

remaining useful life and the state of health of lithium-ion

batteries from the side. Besides, the measurement of the

battery capacity requires the use of complex integration oper-

ations, this increases computational costs. And it is difficult

to accurately monitor the temperature due to the temper-

ature change of the battery itself as well as the ambient

temperature and sensor position. Therefore, it is necessary

to study a simpler evaluation scheme for the SOH of the

batteries.

In this paper, the research on the degraded dataset of

lithium-ion batteries is carried out from the perspective of

time, extract the time variable as a health indicator and com-

pared with the voltage. Then the relationship between time

variables and capacity degradation was studied by correlation

analysis, and the optimal health indicator was used after

analysis. Besides, to compare with the capacity indicator,

experiments were performed on four batteries using a simple

Bayesian Monte Carlo method as a prediction algorithm.

Experimental results show that using optimal time dif-

ference indicator (discharge/ charge/hybrid ) to estimate

the state of health of the lithium-ion battery and the

life prediction track of lithium-ion battery more accu-

rately. Besides, since the difference between two val-

ues is used, it is not necessary to align the sam-

pling frequency, which is also one of the advantages of

using time difference as a health indicator in this paper.

This scheme is suitable for occasions lacking precision

equipment.

The rest part of the paper is organized as follows: Section II

analyzes the dataset, extracts the capacity series, time series,

voltage series data. Section III establishes a health indicator

based on time series and conducted correlation analysis to

select the optimal health indicator. Section IV details the

Bayesian Monte Carlo theory based on time series health

indicators. Section V gives the experimental results of the

SOH predicts based on time series health indicator and capac-

ity series health indicator for comparison. Section VI gives

the discussion of the experiment. Finally, the Conclusions are

drawn in Section VII.

II. ANALYSIS OF THE EXPERIMENTAL DATASET

The dataset was selected from the dataset Battery Aging

ARC-FY08Q4 provided by the Prognostics CoE at National

Aeronautics and Space Administration (NASA) Ames

Research Center [24]. It includes 3 different operational pro-

files for charging, discharging and impedance of 4 lithium-ion

batteries (#05, #06, #07 and #18) operating at room tem-

perature. The charging was carried out in a constant cur-

rent of 1.5 A until the battery voltage reached 4.2 V, and a

constant voltage was maintained to charging until the cur-

rent reduced to 20 mA. The discharge at a constant cur-

rent of 2A until the voltage drops to 2.7V, 2.5V, 2.2V, and

2.5V, respectively. When the capacity of the battery has been

degraded by 30% (from 2 Ahr to 1.4 Ahr), the experiment

is stopped.

Select the experimental data of 4 batteries(#05, #06,

#07, and #18) in the battery data set and plot the capac-

ity data as shown in Fig.1. As can be seen from Fig.1,

the new lithium-ion battery has the largest discharge time

after being fully charged. However, as the battery is repeat-

edly charged and discharged, a variety of complex causes

decay in the amount of electricity that can be released such

as the passivation film increases, the active material par-

ticles fall off, the lattice collapse of the active material,

etc, this phenomenon is also called battery degradation.

Taking the #06 battery as an example, the relationship
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FIGURE 1. Capacity degradation curves of 4 batteries (ARC-FY08Q4-B006).

FIGURE 2. Relationship between battery voltage and sampling point time
during different cycles (Discharge curve).

FIGURE 3. Voltage changes in each cycle: (a) first 200 sampling points
(about 200 curves, each represents voltage at same sampling point
in 168 cycles), (b) energy is about to be exhausted, (c) relationship
between voltage and sampling time point in 168 cycles (168 curves).

between its working voltage, sampling time and the number

of cycles are shown in Fig.2.

About 200 curves of the voltage change of the first 200 or

so sampling points (corresponds to the first 200 columns in

the right half of Table 1) are shown in Fig.3a, the voltage

near the moment when the energy of the energy is about to

be exhausted in each cycle are shown in Fig.3b. It can be

TABLE 1. The time and the voltage of the same sample
point(#06 battery).

FIGURE 4. Relationship between battery voltage and sampling point time
during different cycles(charging process).

FIGURE 5. The charging process curve contains 3900 sampling points.
(a): the first 1300 sampling points. (b): curves 1, 2, 3, 6, 9, . . . 3897, 3900.

seen from Fig.3a that as the battery is repeatedly charged and

discharged, the voltage at the same sampling instant of each

cycle tends to decrease faster and faster, for example, the top

curves of Fig.3a exhibits a near-horizontal characteristic,

while a lowermost curve exhibits a steeper feature. The curves

of the battery voltage in each cycle are shown in Fig.3c,

the 168 curves in Fig.2 and Fig.3c represent the changes

in voltage during 168 cycles, respectively, the sampling

points during each cycle are inconsistent from 180 to 371.

In addition, the voltage drops in cycle1 to cycle 30 and

cycle 43 faster than other cycles in Figures 2 and 3c. After

analyzing the battery data provided by NASA, it was found

that this was caused by different sampling frequencies, except

for these cycles, the other sampling time points were almost

the same, since the difference between the two values is used,

it is not necessary to align the sampling frequency in Fig.2

(as shown by the cycle 1 to 30 and 43 in Fig. 2 and 3c).

Similar to the discharge process, the main charging process

(about 3.5V to 4.2V) is shown in Fig.4 and the characteristic

curves during the charging process are shown in Fig.5. As can

be seen from Fig.2 and Fig.4, as the cycle increases, the rate
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FIGURE 6. Discharge curve of the 100th cycle (#06 battery).

of battery voltage drop/rise will accelerate, that is, the time

required to discharge/charge will be shortened.

III. HEALTH INDICATOR EXTRACTION AND THE

CORRELATION ANALYSIS

A. HEALTH INDICATOR EXTRACTION AND SELECTION

Combined with the analysis in section II, as can be seen from

Fig.3a and Fig.5a, as the deterioration of the battery becomes

serious, the battery discharge time and the fully charge time

will be shorter. Therefore, it can consider using the battery’s

charge/discharge time as a battery health indicator. This needs

to select as the start point and the endpoint, but the data of the

battery monitored by the instrument is often unsatisfactory

at the beginning of discharge, this is mainly caused by the

battery itself and the equipment factor, etc. In Fig.3a, there

are large blanks present at the first few sampling points, and

from the analysis of the raw data of NASA, the first point is

near the starting voltage of about 4.2V, and the voltage from

the third sampling point is lower than 4V, it is between 3.99V

and 3.98V and 3.89V.

Taking the #06 battery as an example, the time and voltage

are extracted for research, as shown in Table 1 (only a small

part of the data is listed), the voltages and sampling times of

the first to fourth sampling points in cycle 28 to cycle 32 are

listed in this table. As can be seen from Fig.3a and Table 1,

there are only two data of the voltage dropped from 4.2V to

4V, besides, the data is complicated and inconvenient to use

when the battery is exhausted as shown in Fig.3b.

B. QUALITATIVE ANALYSIS OF DISCHARGE TIME

DIFFERENCE HEALTH INDICATOR

From basic characteristics of battery, the battery discharge

process is mainly divided into 3 stages. The first stage is

the period of rapid voltage drop, about from the initial volt-

age drop to 4V. The second stage is the platform period of

discharge, it is steadily decreasing from about 4V to 3.2V.

The third stage is the voltage drops sharply until the cut-off

voltage of the battery. The schematic diagram of discharge

process shows in Fig.6.

From the above analysis and Fig.6, it can be seen that

both the second and third phases are more likely to collect

more data, in the second stage, the magnitude of the voltage

change is small, but the time varies greatly, considering that in

applications, lithium batteries usually work during the second

stage, so it is more suitable to monitor the SOH of lithium

FIGURE 7. Experimental curves: (a,c,e,g) Time required for different
voltage drops and the capacity. (b,d,f,h) The relationship between them.

batteries during the platform period of discharge from the

perspective of time. To research the broad applicability of

time health indicator, four batteries (#05, #06, #07 and #18)

were used for experiments to investigate the arbitrariness

of the voltage drop range. Taking 4V-3.8V, 3.9V-3.6V,

3.7V-3.3V, and 3.63V-3.58V as examples, which correspond

to voltage drops of 0.2V, 0.3V, 0.4V, and 0.05V, respectively,

the correlation analysis are shown in Fig.7.

From the analysis, it can be found that the four curves all

have a high correlation with the capacity degradation curve,

therefore, the change of the time required for the voltage drop

can reflect the deterioration in the battery, that is, the global

degradation characteristics of the battery. The time required

for the voltage to decrease slightly and the capacity degrada-

tion curve of battery #05, #07 and #18 are no longer given

(similar to Figures.7a, 7c, 7e, and 7g).

C. CORRELATION ANALYSIS OF HEALTH INDICATOR

In statistics, Kendall’s tau correlation coefficient (Kendall’s

tau), Pearson’s linear correlation coefficient (Pearson’s r),

Spearman’s rank correlation coefficient (Spearman’s rho) can

be used for statistical analysis of Norminal Data, Interval

Data and Ordinal Data, which can be used to analyze the

Linear trends and monotonous trends of the data [25], [26].
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Kendall tau rank correlation coefficient (Kendall’s tau) is

used to measure the association between the time required

and capacity degradation quantities to establish whether two

variables may be regarded as dependent, the advantage of

this test is it doesn’t rely on any assumptions on the distribu-

tions of X or Y. If the agreement between the two rankings,

the coefficient has value 1, if the disagreement between the

two rankings, the coefficient has value −1, if X and Y are

independent, the coefficient approximately equal to zero.

This coefficient τ can be written as Equations 1.

τ =
K

1
2
n (n− 1)

,

K =

n−1
∑

i=1

n
∑

j=i+1

ξ∗ (Xa, i,Xa, jYb, i,Yb, j)

ξ∗ (Xa, i,Xa, jYb, i,Yb, j)

=







+1, (Xa, i− Xa, j) (Xa, i− Xa, j) > 0

0, (Xa, i− Xa, j) (Xa, i− Xa, j) > 0

−1, (Xa, i− Xa, j) (Xa, i− Xa, j) > 0































(1)

The Spearman correlation coefficient (Spearman’s rho) is

defined as the Pearson correlation coefficient between the

ranked variables can be written as Equation 2, it is a non-

parametric measure of statistical dependence between two

variables, it can be used to evaluate whether the relationship

between the time required for discharge and the lithium bat-

tery capacity reduction data is monotonic.

ρrgX ,rgY =
cov (rgX , rgY )

σrgX σrgY
(2)

In this equation, ρ denotes the usual Pearson correla-

tion efficient, cov (rgX , rgY ) is the covariance of the rank

variables are the standard deviations of the rank variables,

σrgX , σrgY are the standard deviations of the rank variables,

if all n ranks are distinct integers (n is the number of obser-

vations), it can be calculated by Equations 3.

ρ (a, b) = 1 −
6

∑

d2i
n(n2−1)

di = rg (Xi) − rg (Yi)

}

(3)

The pearson correlation coefficient (Pearson’s r) ρX ,Y of

the variables (X, Y) is equal to the covariance cov(X, Y)

divided by the product of their respective standard deviations

(ρX · ρY ), it can be written as Equation 4.

ρX ,Y =
cov (X ,Y )

σXσY

=
E (XY ) − E (X)E (Y )

√

E
(

X2
)

− E2 (X)

√

E
(

Y 2
)

− E2 (Y )

=

∑

XY −
∑

X
∑

Y

N
√

(
∑

X2 −
(
∑

X)
N

2
) (

∑

Y 2 −
(
∑

Y)
2

N

)





























(4)

The correlation coefficient has a value between −1.0 and

1.0, the larger the absolute value, the stronger the nega-

tive/positive correlation, and the closer the correlation is to

TABLE 2. Correlation between time difference and capacity degradation.

TABLE 3. Correlation between time difference and capacity degradation.

zero, the weaker the correlation, or the correlation can be

quantified to several degrees, where ρ > 0 represents the

positive correlation between the two variables and ρ < 0 rep-

resents the negative correlation between two variables; when

|ρ| > = 0.8, the two variables can be considered highly corre-

lated; when 0.8 > |ρ| > = 0.5, the two variables can be con-

sidered moderately correlated; and 0.5 > |ρ| > = 0.3 regarded

as low-level correlation; when |ρ| < 0.3, the correlation is

considered weak or even irrelevant (assuming the correlation

is expressed by r). Here, it is taken as a measure of the

correlation between time series and capacity degradation.

Using the voltage drop of 0.1V as a Benchmark, the corre-

lation coefficients (CC) of the time difference sequence and

capacity degradation sequence are shown in Table 2 and 3.

It can be seen that the two highest correlation coefficients

of the #05 and #06 batteries correspond to the time required

for the voltage drop from 3.6V to 3.5V, and the highest corre-

lation coefficient of #07 battery and #18 battery corresponds

to the time required for the voltage to drop from 3.7V to

3.6V and from 3.6V to 3.5V, respectively. Similar to Table 2,

the key correlation coefficients are listed in Table 3.

However, the time series health indicator corresponding to

different ranges of voltage drop are also different. In order to

study this problem, 3 correlation coefficients of four voltages

of 3.63-3.58V, 3.7-3.3V, 3.9-3.6V and 4-3.8V are selected,

and a total of 48 data for research, these correlation coef-

ficients are shown in Table 4. It can be found that only

VOLUME 8, 2020 55451



Z. Yun, W. Qin: Remaining Useful Life Estimation of Lithium-Ion Batteries Based on Optimal Time Series Health Indicator

TABLE 4. Correlation between time difference and capacity degradation.

the Kendall’s tau of the 0.2V volt drop are higher than the

correlation coefficient of 0.05V volt drop of the #18 battery,

but all other correlation coefficients of less than 0.05V volt

drop, this is due to the uncertainty of the initial actual voltage

caused by the uncertainty initial floating state of the battery.

From the analysis above, it can be concluded that the

correlation is related to the voltage range. According to the

characteristics of lithium batteries, the discharge voltage is a

process of decreasing, stable, and rapid decreasing (similar

to Fig.6), wherein a battery with a long stable period and

a high discharge platform is better, which is related to the

manufacturing process. Therefore, using the dischargeable

time duration within the discharge platform period as the

health indicator can better reflect the deterioration condition

of the lithium battery, similar conclusions were reached after

analyzing different time horizons. Besides, using strongly

correlated data can better represent the degradation status of

lithium batteries. It can be found in Table 4 that although

the 3.7-3.3V interval includes the 3.4 to 3.3V interval that

is not highly correlated, the three correlation coefficients

are 0.9825, 0.9959, and 0.9993. Therefore, the interval

of 3.7-3.3V can still well characterize the SOH of lithium

batteries.

Therefore, in practical applications, the voltage range

should be as close as possible to the center of the platform

area or use several voltage ranges separately to comprehen-

sively evaluate the health status of the lithium battery. In this

paper, we will experiment with these four voltage ranges as

examples, and the subsequent experimental results also verify

the robustness and applicability of the method.

D. ANALYSIS OF CHARGE TIME DIFFERENCE HEALTH

INDICATOR AND HYBRID HEALTH INDICATORS

Similar to sectionIII-B, as can be seen from Figures 3 and 5

that the charging process also includes several stages. First,

the voltage will rise quickly to around 3.8V; next, it will sta-

bilize to 4.2V after a long time of charging; finally, the volt-

age is maintained at 4.2V to continue charging. Therefore,

similar to Tables 2 and 3, the correlation analysis of the

voltage range from 3.6V to 4.2V is shown in Tables 5 and 6.

From Table 5 and 6, it can be seen that the correlation

TABLE 5. Correlation between time difference and capacity degradation.

TABLE 6. Correlation between time difference and capacity degradation.

TABLE 7. Correlation between time difference and capacity degradation.

coefficient is the greatest when the voltage is around 3.8V,

3.9V, 4.0V.

Similar to the discharge process, calculate the correlation

coefficients as shown in table 7, these 5 intervals roughly

cover the voltage difference of 0.3V, 0.2V and 0.05V near

the maximum correlation interval in Table 5 and 6.

Fig. 8 shows the relationship between the capacity and the

time required for the three types of voltage rise (3.7V-4.0V,

3.9V-4.1V, 3.88-3.93V). It can be clearly seen that there is

an outlier in this Figure, which is because the new battery

already has power when it is first charged. Therefore, the time

of the first charge is independent of the trend of these curves.

Next, consider hybrid health indicators. From the above

analysis, it can be known that both the charging time dif-

ference and the discharging time difference can character-

ize the health status of the battery. To fully reflect the

charge/discharge characteristics, combine the charge time

difference and discharge time difference health indicators into

a new health indicator. In the selection interval, according

to the previous correlation analysis results, consider types

of indicators, a hybrid indicator covers the charging time

from 3.9V to 4.1V and the discharging time from 3.7V to

3.4V, another is 3.7V-3.9V / 3.9V-3.7V. The results are shown
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FIGURE 8. Experimental curves: (a) 3.7V-4.0V and capacity. (c) 3.9V-4.1V
and capacity. (e) 3.88V-3.93V and capacity. (b,d,f) relationship.

TABLE 8. Correlation coefficient between hybrid health indicators and
capacity degradation.

FIGURE 9. Experimental curves: (a) Time required for voltage drops from
3.9V to 4.1V / 3.7V-3.4V and the capacity. (b) Relationship between them.

in Table 8 and Fig.9. Only the experimental results of the

battery #05 and #06 are given here, the others are similar.

Because the hybrid health indicator takes into account

both the discharge process and the charging process, it can

comprehensively characterize the battery degradation state.

E. THE VOLTAGE DIFFERENCE HEALTH INDICATOR

Next take the discharge process as an example to analyze the

impact of monitoring accuracy. Since it is impossible to know

in advance what voltage value the battery will reach at some

point during the discharge process, therefore, the voltage drop

during the period from 500 seconds to 1000 is selected as an

example for the analysis of the health indicator. To simulate

the actual situation, take the accuracy of voltage 0.1V, time

accuracy of 1 second, part of the raw data is processed as

TABLE 9. Part of the processed data and comparison table 1(Discharge).

FIGURE 10. Experimental curves of voltage drop health indicator of
#06 battery: (a-b) 1s and 0.1V, (c-d) 1s and 0.01V, (e-f) 1s and 0.001V.

shown in Table 9 (corresponds to Fig.10(a) and Fig.10b) to

compare Table 1.

Although the voltage value at a certain time during battery

discharge cannot be obtained in advance, however, it can be

known from the test data that the voltage around 500s is about

3.7V, and the voltage drops to about 3.6V at 1000s when

the accuracy of 0.1V and one second is selected. Therefore,

a time interval of 500s to 1000s (corresponding to 3.7V to

3.6V) can be selected to analyze the performance of two

health indicators. To further research, two types of voltages

accuracy 0.01V and 0.001V are also selected and the time

precision is in units of one second. The results are shown

in Fig.10. In addition, experiments were performed with a

time accuracy of 0.1 s and 0.01 s and a voltage accuracy

of 0.01V. The results are shown in Fig.11.

Through the above experiments, it can be seen that the

accuracy of the voltage seriously affects the correlation

results of the health indicator, but the accuracy of the time

has little effect on the correlation. The reason for this phe-

nomenon is that the voltage of the battery is only reduced

from 3.2V to 2.5V during the entire discharge cycle, only

a voltage drop of 1.5V. But the actual discharge time of a
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FIGURE 11. Experimental curves of time difference health indicator of
#06 battery: (a-b) 0.1s and 0.01V (c-d) 0.01s and 0.01V.

battery is usually hundreds of seconds, thousands of seconds,

even tens of thousands of seconds, if the battery runs out of

power in a short time, it may be due to the battery’s severe

aging, or the battery capacity selection is inappropriate.

Although high-voltage accuracy and high-time accuracy

acquisition are helpful for lithium battery monitoring, this

requires high-precision equipment. Besides, high-frequency

sampling will cause a large amount of unnecessary data,

which will cause the problem of the insufficient computing

capacity of the system. Based on the above analysis results,

the time difference health indicator has a clear advantage

over the voltage drop health indicator in the actual battery

management system.

IV. THE BAYESIAN MONTE CARLO THEORY BASED ON

TIME SERIES HEALTH INDICATOR

A. THE MODEL OF TIME SERIES HEALTH INDICATOR

After multiple fittings to time sequence Health Indicator,

the fitting effect of double exponential model and the time

difference series data is more consistent. Still taking the

battery #06 as an example, the seven fitting curves of the time

required for charging/discharging are shown in Fig.12.

Perform multiple fitting experiments on the four voltage

differences of the 4 batteries, the fitting curves are all similar

to Fig.12, it can be seen that the fitting effect of the time series

using the double exponential model y = a1 × exp(a2 × k) +

a3 × exp(a4 × k) is better, this is consistent with the capacity

decay degradation model used by many studies. To evaluate

the goodness of fit of the time series double exponential

model, the R-squared adjusted (R2adj) indicator is used to

evaluate the fitting effect, the R-squared adjusted is defined

as Equation 5, SSE is the sum of squared error,SST is the sum

of squared total, n is the number of observations, and p is the

number of regression coefficients, and the RMSE of the curve

is also calculated, the values are shown in Table 10.

R2adj = 1 − (
n− 1

n− p
)
SSE

SST
(5)

FIGURE 12. Fit curves of the time series (#06): (a-d) discharge process,
(e-g) charge process.

TABLE 10. R2
adj

and RMSE of the time series double exponential model.

Therefore, the state equation and the observation equation

of the lithium battery time difference sequence can be mod-

eled according to this equation. The required time difference

sequence of the lithium battery can be expressed in a dynamic

system, the random signal to be estimated is included in the

equation of state, and the available measurement value of

observation equation, usually the state-space model can be

written as Equations 6.
{

xt = f (xt−1, ut)

yt = g (xt , vt)
(6)

In Equations 6, xt is the value to be estimated, f is the state

transition function, ut is the state noise, yt is the observed

value, g is the measurement function, vt is the observation

noise, so, the time difference sequence model of the lithium

battery can be written as Equations 7,








Tk = a1 × exp (a2 × k) + a3 × exp (a4 × k) + vk

ai,k = ai,k−1 + uai

vk ∼ N (0, σT ) , uai ∼ N
(

0, σai
)

(7)

Tk is the time required in cycle k , u and v are the Gaussian

noise, ai is the initial value which can be obtain from the

experiment dataset, and we experimentally research the SOH

of lithium battery based on time series by this set of equations.

B. THE BAYESIAN MONTE CARLO THEORY

In Equations 7 of Section IV-A, it needs to calculate

the estimated value of ai in the kth cycle based on the
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data before the k cycle, then the time required in the kth

cycle can be known. Usually, the state transfer obeys the

first-order Markov model, and each observation(the time

difference sequence) is independent of each other. Therefore,

the Bayesian formula can be used to solve the posterior

probability density to obtain the optimal estimate of the

future, the model can be used to predict the prior probability

density and the new measurement results can be used to

correct the prior probability density [27]–[31]. Since the data

of the first k-1 cycles is known, the probability density of the

k-1 cycle is p(ak−1|Tk−1), since the parameter a and the

time T are independent, the Chapman-Komolgorov

Equation 9 can be obtained from the integral of the

Equation 8. Here, ak represents the state of the parameter

a in Equation 7 at the Kth cycle (calculating a1, a2, a3, a4,

respectively), and Tk represents the discharge time of the

battery corresponding to the voltage range selected in the Kth

cycle.

p(ak , ak−1|T0:k−1)

= p(ak |ak−1,T0:k−1)p(ak−1|T0:k−1) (8)

p(ak |T0:k−1)

=

∫

p(ak |ak−1,T0:k−1)p(ak−1|T0:k−1)dak−1

=

∫

p(ak |ak−1)p(ak−1|Tk−1)dak−1 (9)

After obtaining the measurement time value Tk at time K ,

and the time value Tk at the k cycles is determined only by the

parameter ak at the k cycles, then the Bayesian formula can

be used to update the prior probability to obtain the posterior

probability, as shown in Equation 10.

p(ak |T0:k ) =
p(Tk |ak ,T0:k−1)p(ak |T0:k−1)

p(Tk |T0:k−1)

=
p(Tk |ak )p(ak |T0:k−1)

∫

p(Tk |ak )p(ak |T0:k−1)dak
(10)

It is known from the measurement equation in Equation 7

that Tk is only related to ak. Therefore, the p(Tk |ak ) in

Equation 10 is also called the likelihood function, and it is

determined by the measurement equation and is only related

to the probability distribution of the measurement noise.

Since the Bayesian formula requires complex integral calcu-

lation. However, the Monte Carlo simulation method uses a

large number of samples to approximate the posterior proba-

bility distribution of the variables, therefore, the summation

calculation can be used to approximate the integration. Sup-

pose that N independent and identically distributed samples

ai0:k can be obtained from the posterior probability density

p(ak |Tk ), when the value N is large enough, the frequency

can approximate to the probability, then the Equation 11 can

be obtained, and the δ is the Dirichlet function.

p̂(a0:k |T0:k ) →
1

N

N
∑

i=1

δ(a0:k − ai0:k ) (11)

However, even if the posterior probability density

p(a0:k |T0:k ) of the state is known, it is still difficult to sample.

Therefore, it is necessary to introduce a probability density

function that is easy to sample, that is, the importance sam-

pling function π (a0:k |T0:k ), and its estimate can be expressed

as Equation 12. In fact, this is also the central idea of Bayesian

importance sampling, that is, sampling from a reference

distribution pi that is known and easily sampled. Then use the

sample set obtained by sampling the reference distribution to

perform weighted summation to approximate the posterior

distribution p(a0:k |T0:k ), and then the Equation 13 can be

obtained.

π̂ (a0:k |T0:k )

=
1

N

N
∑

i=1

δ(a0:k − ai0:k ) (12)

p(a0:k |T0:k )

=

∫

p(ξ0:k |z0:k )δ(ξ0:k − ai0:k )dξ0:k

=

∫ {
p(ξ0:k |T0:k )

π (ξ0:k |T0:k )
δ(ξ0:k − ai0:k )

}

π (ξ0:k |T0:k )dξ0:k

=

∫
p(T0:k |ξ

i
0:k )p(ξ

i
0:k )

p(T0:k )π (ξ
i
0:k |T0:k )

︸ ︷︷ ︸

w∗i
k

δ(ξ0:k − ai0:k )π (ξ0:k |T0:k )dξ0:k

(13)

After introducing importance function π (a0:k |T0:k ),

the estimate of posterior probability density can be written

as














p̂∗(a0:k |T0:k ) =
1

N

N
∑

1

w∗i
k δ(a0:k − ai0:k )

w∗i
k =

p(T0:k |a
i
0:k )p(a

i
0:k )

p(T0:k )π (a
i
0:k |T0:k )

(14)

However,from the equation 13 and 14, the weight wik can

be written as

wik = w∗i
k p(T0:k ) =

p(T0:k |a
i
0:k )p(a

i
0:k )

π (ai0:k |T0:k )
(15)

Therefore, the following equation can be obtained from

Equation 14, 15.

p̂∗(a0:k |T0:k ) =
1

N

N
∑

1

wik
p(T0:k )

δ(a0:k − ai0:k ) (16)

p(T0:k ) =

∫

p(a0:k )p(T0:k |a0:k )da0:k

=

∫
p(T0:k |a0:k )

π (a0:k |T0:k )
p(a0:k )π (a0:k |T0:k )da0:k (17)

Then the estimated value of the required time T can be

written as Equation 18

p̂(T0:k ) ≈
1

N

N
∑

1

wikδ(a0:k − ai0:k ) (18)
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The following equations can be obtained from Equation 16

and Equation 18.

p̂∗(a0:k |T0:k ) ≈
1

N

N
∑

1

wik
p̂(T0:k )

δ(a0:k − ai0:k )

=
1

N

N
∑

1

wik

1
N

N∑

1

wikδ(a0:k − ai0:k )

δ(a0:k − ai0:k )

=

N
∑

1

wik
N∑

1

wik

︸ ︷︷ ︸

w̃ik

δ(a0:k − ai0:k ) (19)

Then obtain the k-th time step distribution p (a0:k |T0:k)

from the previous distribution according to the following

recursive equations.

p (a0:k |T0:k)

=
p (ak |a0:k−1,T0:k−1) p (a0:k−1|T0:k−1) p (Tk |a0:k ,T0:k−1)

p (Tk |T0:k−1)

= p (a0:k−1|T0:k−1)
p (Tk |a0:k) p (ak |a0:k−1)

p (Tk |T0:k−1)
(20)

If the importance function π is selected as

π (a0:k |T0:k )=π (ak |a0:k−1,T0:k )π (a0:k−1|T0:k−1) (21)

The weights w̃k can be obtained according to Equation 15

and Equation 19.

w̃ik = w∗i
k p (T0:k)

=
p

(

ai0:k |T0:k
)

π (ai0:k |T0:k )
p (T0:k)

=
p

(

ai0:k−1|T0:k−1

)

p
(

Tk |a
i
k

)

p
(

aik |a
i
k−1

)

π (aik |a
i
0:k−1,T0:k )π (a

i
0:k−1|T0:k−1)p (Tk |T k−1)

= wik−1

p
(

Tk |a
i
k

)

p
(

aik |a
i
k−1

)

π (aik |a
i
0:k−1,T0:k )

(22)

The importance function π (ak |a
i
0:k−1,T0:k )=p(ak |a

i
k−1)

is usually chosen in practical engineering [32]–[34],

therefore, the weight recursion Equation 23 can be

obtained.

wik = wik−1p(Tk |a
i
k ) (23)

C. THE RESAMPLING

However, as the experiment progressed, the importance

weights will gradually concentrate on a few random number

samples, so the resampling is required, discarding random

numbers with small weights, and copy those random

numbers with strong weights, usually he threshold can

be set here according to actual needs, (e.g., the effec-

tive random number is less than 75% of the number

of particles). The resamplingmethods include random resam-

pling, polynomial resampling, system resampling, residual

FIGURE 13. The flowchart of the proposed experiment scheme.

resampling, reallocation resampling layered resampling, and

various derivative re-sampling methods. Each resampling

method also has its own advantages and disadvantages.

In this paper, residual resampling methods are used to

resolve the degradation problem of random particles [35],

[36]. The idea of residual resampling is to resample the

integer part and fractional part separately. the number of

runs will be less. There are 3 steps in residual resampling

method:

step 1: Obtain {N
i
}a≤i≤N from Mult(N − R;w1 . . .wN )

Here, R =
∑N

n=1(Floor(Nw
i)), wi = Nwi−Floor(Nwi)

N−R
Here, the Floor is the integer arithmetic.

step 2: N i = Floor(Nwi) + N
i

step 3: Redistribute the weight of each sample w̃i = 1/N

D. THE SOH PROGNOSTICS

In this paper, the BayesianMonte Carlo theory (BMC) is used

to estimation of the time during which the lithium battery can

be discharged in the future cycle, the N future state can be

estimated using N sample random numbers aik , so, the SOH

of the lithium battery can be evaluated using this principle [3].

According to Equation 7 and Equation 23, the N-step forward

prediction of the time required variable in this experiment can

be calculated according to the following equation, and the

SOH of the lithium battery can be judged according to the

threshold Pre-set by the user.

T k+p =

N
∑

1

T ik+p

=

N
∑

1

wik





ai1,k × exp
(

ai2,k × (k + p)
)

+ai3,k × exp
(

ai4,k × (k + p)
)



 (24)

Based on the dischargeable time series health indicator,

the SOH of the batteries are predicted and estimated by

using the Bayesian Monte Carlo theory, the flowchart of

the experiment scheme proposed in this paper is shown

in Fig.13.
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FIGURE 14. Prediction results: (a) 4V-3.8V (b) 3.9V-3.6V (c) 3.7V-3.3V
(d) 3.63V-3.58V (e) Errors in figures14a ∼ 14d (f) Prediction based on
capacity.

V. EXPERIMENT RESULTS

A. EXPERIMENTS BASED ON DISCHARGE TIME HEALTH

INDICATORS

Based on the dischargeable time-series health indicator,

the SOH of the four batteries (#05, #06, #07 and #18) are

estimated by using the Bayesian Monte Carlo theory. In order

to compare the effect of predicting by using this scheme,

the capacity was also selected as a health indicator and exper-

iments were performed using the same algorithm.

Three different cycles were randomly selected as a start-

ing point for prediction experiments, a total of 15 experi-

ments per each battery, the 60 experimental results are shown

in Fig.14 ∼ 17, and the unit of time is Seconds, the unit of

capacity is Ampere-hour, besides, in the legend, predicted

indicates that a different starting point is selected for predic-

tion, estimate represents using the previous data to predict the

next data. The detailed analysis is in Section VI (Discussion).

In Fig.14 and 15, the Figures14a ∼ 14d and Fig.15a ∼ 15d

are experimental results based on the time required series

for the battery #05 and #06, the prediction error is shown

in Fig.14e and Fig.15e, the common BMC-based capacity

degradation prediction result shows in Fig.14f and Fig.15f.

In the experiments of these two batteries, four voltage

drops of 4V-3.8V, 3.9V-3.6V, 3.7V-3.3V and 3.63V-3.58V are

selected respectively, the dotted line represents the end of

life (EOL).

The experimental results of battery #07 and battery #18 are

shown in Fig.16 ∼ 17. To research the prediction effect

FIGURE 15. Prediction results: (a) 4V-3.8V (b) 3.9V-3.6V (c) 3.7V-3.3V
(d) 3.63V-3.58V (e) Errors in figures 15a ∼ 15d (f) Prediction based on
capacity.

FIGURE 16. Prediction results: (a) 4V-3.8V (b) 3.94V-3.64V (c) 3.7V-3.3V
(d) 3.63V-3.58V (e) Errors in figures 16a ∼ 16d (f) Prediction based on
capacity.

of non-integer voltage ranges, the experimental scheme of

these two batteries has been slightly modified. we select the

voltage was dropped from 3.94V to 3.64V( battery #07) and

VOLUME 8, 2020 55457



Z. Yun, W. Qin: Remaining Useful Life Estimation of Lithium-Ion Batteries Based on Optimal Time Series Health Indicator

FIGURE 17. Prediction results: (a) 4V-3.8V (b) 3.86V-3.56V (c) 3.7V-3.3V
(d) 3.63V-3.58V (e) Errors in figures 17a∼ 17d (f) Prediction based on
capacity.

FIGURE 18. Boxplots of the error (error = x* − x): (a) #05 (b) #06 (c) #07
(d) #18.

3.86V to 3.56V( #18), the experiments results correspond to

Fig.16b ∼ 17b. Compared with Fig.14b ∼ 15b, although the

voltage drop is still 0.3V, the voltage ranges are changed,

in other cases, the experimental scheme was the same as

that of battery #05 and #06. The boxplot of error is shown

in Fig.18.

B. EXPERIMENTS BASED ON CHARGE TIME HEALTH

INDICATORS

Similar to SectionV-A, using the charge time difference

health indicator to conduct experiments. The three voltage

FIGURE 19. Experiment results of battery #06: (a) 3.88V-3.93V
(b) 3.7V-4.0V (c) 3.9V-4.1V (d) Error.

FIGURE 20. Experiment results of battery #07: (a) 3.88V-3.93V
(b) 3.7V-4.0V (c) 3.9V-4.1V (d) Error.

FIGURE 21. Prediction results: (a) boxplot battery #06 (b) boxplot
battery #07.

range corresponding to the health indicator in the experi-

ment is 3.8-3.93V, 3.7-4.0V, 3.9-4.1V, respectively. Choose

battery 06 and 07, randomly select 3 different cycles as the

starting point, a total of 18 experimental results are shown

in Fig.19 and 20, the boxplot of error is shown in Fig.21.

C. EXPERIMENTS BASED ON HYBRID HEALTH

INDICATORS

Similar to the above, using the hybrid health indica-

tors to experimental. The corresponding voltage ranges
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FIGURE 22. Prediction results #05: (a) Hybrid health indicators A
(b) Hybrid health indicators B (c) Errors (d) Boxplot.

FIGURE 23. Prediction results #18: (a) Hybrid health indicators A
(b) Hybrid health indicators B (c) Errors (d) Boxplot.

are A: 3.9V-4.1V/3.7-3.4V and B: 3.9V-3.7/3.7V-3.9V,

respectively. Select battery #05 and #18, randomly use

3 cycles as the starting point of the experiment, a total

of 12 experiments results are shown in Fig.22 and 23. The

experimental errors and box plots are also given, same as

above.

VI. DISCUSSION

A. DISCUSSION ABOUT DISCHARGE TIME HEALTH

INDICATOR

In Section V, the experimental results of state prediction of

discharge time for battery (#05, #06, #07 and #18) in the

future based on time required for a voltage drop of 0.2 volts

as a health indicator are shown in Fig.14 ∼ 17, respectively.

Since the capacity degradation of battery #07 in battery

raw dataset does not reach the threshold of 1.38V, therefore,

the threshold dotted line is not shown in the experimental

results of battery #07. The dotted lines are experimental

TABLE 11. The values of the boxplots & means(Fig 18a).

results near the end of life, and this accuracy can meet the

practical application. To further analyze the characteristics of

the experiment error. In Fig. 14e, 15e, 16e and 17e, a total

of 48 curves (each curve represents the error from the begin-

ning to the end in each experiment) are drawn as 48 boxplots

in Fig.18a, 18b, 18c and 18d. Because the time difference

corresponding to different voltage differences in the figure is

different, taking the maximum 0.4V voltage drop and the

minimum 0.05V voltage drop as examples, the time corre-

sponding to 0.4V voltage drop is from about 2400 seconds

to about 1500 seconds, but the time corresponding to 0.05V

voltage drop is from about 300s to about 150s.

To observe the error after multiple experiments, errors

of 12 predictions are drawn together (Figures 14e, 15e, 16e

and 17e), since it is difficult to label legend here,

the explained as follows, the ordinate is the error (unit is

seconds), four colors represent four different voltage drops

selected, three symbols on the curve represent three predic-

tions, the abscissa of the curve represents the number of

cycles. It can be clearly seen from Figures 14e, 15e, 16e

and 17e and Fig.18 that, since the length of time required

for different discharge voltage drops is different, the error is

different.

Take Battery #05 as an example (Fig.14e and 18a),

it is obvious from 12 boxplots that the range between

25th percentiles and 75th percentiles is also small, the val-

ues in the 12 boxplots are shown in table 11, a sim-

ilar conclusion can be drawn from the analysis of

battery #06 (Fig.15e, Fig.18b), battery07 (Fig.16e, Fig.18c),

and battery18 (Fig.17e, Fig.18d).

Finally, from the experimental error box diagram, it can be

found that the error outliers of the experimental results are

related to the correlation of the health indicator. The lower

the correlation coefficient, the more the error outliers.

B. DISCUSSION ABOUT CHARGE TIME HEALTH

INDICATOR

The experimental results based on the charging time health

indicator are shown in Fig.19, 20, and 21. Three Figures are

the experimental results of #06, #07 and the box plots of

errors, respectively. From the experiment, it can be seen that

not only the discharge time can characterize the health of
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the battery, but also the charging time can also characterize

the health of the battery, but the interval of the best time

health indicator is different. FromFig. 4, Fig. 5 and sectionIII-

D, it can be known that there is an interval similar to the

discharge plateau period during the charging process, which

is approximately 3.9V to no more than 4.2V. After 4.2V,

the voltage stabilizes at 4.2V and continues to constant volt-

age charging. Other analysis is similar to sectionVI-A.

C. DISCUSSION ABOUT HYBRID HEALTH INDICATOR

It can be seen from the experiment that the Hybrid health

indicator that integrates the discharge process and the charg-

ing process also well characterizes the health status of the

battery. In addition, it can be seen from his Fig.22 and 23 that

not only the error is related to the interval of the time health

indicator, but also closely related to its correlation. Because

the Hybrid health indicator B combines the best charging

time state and the non-optimal discharging time, the effect of

Hybrid health indicator B is slightly worse than A, especially

in the Fig.23b, that is, the outliers of indicator B are more

than A in the boxplot (red circle). Other analysis is similar

to sectionVI-A

VII. CONCLUSION

Generally, the health monitoring and RUL prediction of

lithium batteries are mainly estimated by calculating the

attenuation of the accumulated discharge power amount per

cycle in the past, which is not suitable for practical applica-

tions. In this paper, from the perspective of time, this paper

analyzes the relationship between three types of time health

indicators and capacity decline.To evaluate the prediction

effect based on time health indicator, the Bayesian Monte

Carlo theory is used to predict the future discharge time of

lithium batteries.

The research results show that the dischargeable

time/charging time of lithium batteries in each cycle is

highly correlated with the health status of lithium batteries.

According to the actual demand, the time series of the

voltage discharge platform period can be used as a health

indicator to characterize the degradation of lithium batteries,

and the closer to the center of the platform period, the better

the prediction effect. The charging process is similar to the

discharging process, and the Hybrid time health indicator

combined with the charging and discharging process can also

achieve the same effect. Also, the prediction of BMC based

on time health indicator can well estimate and predict the

SOH of lithium batteries. This scheme can directly evaluate

the State of lithium battery by the discharge time, and directly

obtain the predicted dischargeable time of the battery in the

future, and can also estimate the capacity.

From a quantitative perspective, the prediction method

based on capacity as a health indicator mainly rely on

the voltage drop from 4.2V to 2.7V, the max difference is

only 1.5V, but from time perspective, the same sampling

frequency, the discharge time in NASA battery dataset is

from a minimum of about 9 seconds to maximum of nearly

4000 seconds, the time difference magnitude is thousands

of times the magnitude of voltage difference, the reflection

effect of deterioration is more significant. The other two types

of health indicators have similar conclusions.

Therefore, the method proposed in this paper has cer-

tain application value in situations where high-precision test

equipment cannot be used to evaluate the SOH of battery,

such as mobile devices, drones, and electric vehicle testing.In

our future research, considering the high-precision health

indicator of lithium batteries under random conditions, more

efficient prediction methods and the more accurate model of

lithium battery degradation will be further studied.

NOMENCLATURE

SOH State Of Health

RUL Remaining Useful Life

SSE Sum of squares for error

SST Sum of squares for total

RMSE Root mean squared error

R2adj R-squared adjusted

Kendall’s tau Kendall’s tau correlation coefficient

Pearson’s r Pearson’s linear correlation coefficient

Spearman’s rho Spearman’s rank correlation coefficient
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