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Remaining useful life (RUL) estimation is one of the main objectives of prognostics and health management (PHM) frameworks.
For the past decade, researchers have explored the application of deep learning (DL) regression algorithms to predict the system’s
health state behavior based on sensor readings from the monitoring system. Although the state-of-art results have been achieved
in benchmark problems, most DL-PHM algorithms are treated as black-box functions, giving little-to-no control over data
interpretation. 'is becomes an issue when the models unknowingly break the governing laws of physics when no constraints are
imposed. 'e latest research efforts have focused on applying complex DL models to achieve low prediction errors rather than
studying how they interpret the data’s behavior and the system itself. 'is paper proposes an open-box approach using a deep
neural network framework to explore the physics of a complex system’s degradation through partial differential equations (PDEs).
'is proposed framework is an attempt to bridge the gap between statistic-based PHM and physics-based PHM. 'e framework
has three stages, and it aims to discover the health state of the system through a latent variable while still providing a RUL
estimation. Results show that the latent variable can capture the failure modes of the system. A latent space representation can also
be used as a health state estimator through a random forest classifier with up to a 90% performance on new unseen data.

1. Introduction

As the evolution of traditional condition-based maintenance
(CBM) techniques, prognostics and health management
(PHM) frameworks seek to study and predict the evolution
of a system’s health state based on data collected from sensor
readings. 'is data is expected to contain critical informa-
tion related to the system’s past and current health state [1].
'e main goal of a PHM framework is to estimate the
remaining useful life (RUL) of the system, which is later used
as a metric for decision-making during the optimization of
maintenance policies and health management [1, 2].
Obtaining accurate RUL estimations from sensor data re-
quires a precise knowledge and understanding of the system
and, depending on the available information, three main

approaches can be implemented for the RUL estimation:
physics-based models (PBMs) [3], data-driven approaches
(DDAs) [4], and hybrid methods [5]. In this context, we
present a deep learning framework to uncover the physics of
complex systems’ degradation.'e framework is inspired by
physics-informed neural networks and can be considered a
hybrid method for the health state assessment and RUL
estimation.

Hybrid methods combine PBMs and DDAs to overcome
their weaknesses and combine their strengths [5, 6]. On the
one hand, PBMs rely on a mathematical representation to
describe the degradation physics governing the system.
'ese methods require a few data points for the training
process and yield results directly interpretable by the user.
Although PBMs are highly accurate and reliable, they are
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system-dependent models and cannot be easily scaled and
adapted from one system to another. 'is is why PBMs
reliability prognostics studies are usually limited to local
crack propagation and corrosion [3], making their direct
application to complex systems a challenging task.

On the other hand, machine learning [7] and deep
learning (DL) [8] have become the preferred application of
DDAs to PHM. 'ese techniques provide an alternative to
analyze complex systems when the physics behind the
degradation process is unknown. 'ese can extract abstract
information and features from massive datasets while
building and discovering complex functional and temporal
relationships from the data [9]. Deep learning approaches
have been implemented in a great variety of systems for
prognostics purposes, such as lithium-ion batteries state of
health (SOH) and state of charge (SOC) estimation, [10–13],
RUL estimation in rolling bearings [14–16], and turbofan
engines [17–20].

Although great advances have been made in DL applica-
tions to PHM, there are still many challenges to face before
implementing these models in the industry [2, 9]. One of these
challenges is model interpretability, as DL applications create
explainable models that cannot be directly interpreted by the
end-user. 'is has had a detrimental effect on the engineers’
trust to implement DL models in real-life systems [21].
Without interpretability, one can only rely on performance
metrics to select a model. 'is can bias the user to choose
models with a low error on their training and validation data,
regardless of the model’s true representation of the system
under study. In this regard, third-party software and packages
have been developed, providing information on feature rele-
vance for models’ predictions [22, 23]. For instance, in [21], the
authors presented an algorithm called Local Interpretable
Model-Agnostic Explanations (LIME) that provides insight
into the relevance that input features have on an ML classi-
ficationmodel’s prediction. A similar frameworkwas presented
by Lundberg and Lee [22] called Shapley Additive explanations
(SHAP) for deep learning models. 'is framework assigns
weight values to the input features as importance measures of
their effect on the DL model’s output. 'ese third-party al-
gorithms provide valuable information for the models’ inter-
pretability: nevertheless, they primarily address classification
models focusing on natural language or image processing and
cannot be implemented within the model itself. Such algo-
rithms can be used as preprocessing or postprocessing tech-
niques. However, they do not influence the model’s
performance as feature relevance does not have any influence
on the models’ learning process.

In the context of DL-PHM models, two elements
heighten the barriers for model interpretability that are yet
to be addressed: the use of time as an explicit variable and the
explicit relationship between the physics of the system and
the input variables of the model. Indeed, most of the DL-
PHM models do not explicitly consider time as a variable in
their calculations. Works that apply recurrent neural net-
works (RNN) and its long-short term memory (LSTM)
variation [24–26] use input data with time implicitly em-
bedded through consecutive feature logs, which are then
interpreted by the model. Here, the network is trained with a

sequence of data points to understand the time scale rep-
resented in the data. 'us, the network is given the addi-
tional task of interpreting the time relationship among its
features. However, new unseen data logs might have dif-
ferent temporal behavior in their log sequences. Likewise,
embedding the physics of degradation of a system to a DL
framework is a challenging task. Although advances have
been made in this area [27, 28], solutions heavily rely on the
availability of an empirically based mathematical model (i.e.,
crack propagation and corrosion, resp.) to describe the
damage propagation or future behavior of the system
degradation.

'e latest advances in DL algorithms have shown that it
is possible to embed partial differential equations (PDEs) to
DL models. Raissi et al. [29] presented a physics-informed
neural network (PINN) framework to solve PDEs by in-
corporating them as a penalization term to the cost function
during the neural network (NN) training process. 'e
framework also allows us to discover PDEs embedded in the
data when an explicit equation is not available. 'is opens
the door to create a dynamic relationship between the sensor
data and the degradation process in complex systems using
DL models in PHM. In this paper, we present a deep neural
network (DNN) framework for RUL prognostics that maps
the monitoring data and time to a latent variable repre-
sentation linked to the system’s degradation dynamics
through a PDE-like penalization function. Once the model is
trained, the latent space representation works as a system
health estimator quantitatively and qualitatively. In other
words, this framework resembles a PDE, where, given initial
feature values (i.e., initial conditions), the algorithm can
estimate a RUL value through the PDE solution for a given
time after the given initial conditions.

Up to date, most DL applications to PHM focus on either
diagnostics or prognostics. Very few research works have
provided frameworks that can perform these two tasks si-
multaneously. For instance, Kim and Sohn [30] presented a
multitask deep CNN with double outputs, one for prognostics
and another for diagnostics. 'is requires manually hand-
crafting labels and significantly increases the number of
trainable parameters. 'e training of RNN models requires
input data shaped as timewindows, which can be impractical to
create when sensor data is not sampled at a constant rate or
contains missing data points, which is common in real case
scenarios. Time windows can also be a source of overfitting if
the preprocessing of the data is not carefully done. Further,
none of the aforementioned frameworks provide interpretation
or visualization of their results. As such, the contributions of
this paper are the following:

(1) We present a framework that aims to bridge the gap
between statistics-based and physics-based PHM
applications.

(2) Inspired in PINN, the proposed framework uses a
dynamic PDE-like penalization function that ex-
plicitly binds the monitoring data and time to the
system’s degradation process. 'is is the first ap-
plication of PINN to DL-PHM frameworks to the
authors’ best knowledge.
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(3) By using time explicitly, the framework is able to
capture the temporal behavior of the data directly.
'is differs from other commonly used DL algo-
rithms in PHM frameworks such as convolutional
neural networks (CNNs) and long short-term
memory (LSTM) neural networks which infer these
relationships from the data structure instead.

(4) 'e framework delivers a combined diagnostics and
prognostics analysis of a system by providing a RUL
estimation along with a health classifier between the
system’s healthy and degraded states.

(5) 'e proposed framework also provides interpret-
ability of the system’s health state through the visual
representation of a latent variable.

'e remainder of this paper is structured as follows: Section
2 presents the background behind PDEs applied to DL. Section
3 discusses the proposed DL framework, which is trained with
the dataset presented in Section 4. 'e obtained results and
their discussion are presented in Section 5. Section 6 outlines
the main conclusions and remarks of this study.

2. Physics-Informed Deep Learning

Most DL algorithms’ applications are implemented as black-
box functions in which the extraction of abstract relation-
ships in the data is left for the machine to find. In this regard,
efforts have been made to provide both interpretation and
constraints to these techniques from a physics perspective.
Raissi et al. [29] proposed a physics-informed neural net-
work framework that integrates and solves PDEs given a set
of initial and boundary conditions. In this work, the authors
show that a PINN framework can also be used to recover or
create PDEs from the data itself without any prior under-
lying knowledge on the physics governing the system under
study. To understand how this algorithm works, it is nec-
essary to quickly review the architecture behind DL models
as function representations and the principles of PDEs.

'e main structure in DL is deep neural networks. Here, an
input value is evaluated through sequential combinations of
nonlinear functions to yield the desired output value. Hence, one
can represent the output y of a NN as a function in the form of

ŷ � f(X,W), (1)

where f(X,W) is the NN,X are the input values, andW is a
tensor of parameters called weights, which defines the
function. Two key components compose a NN: layers and
hidden units (also known as neurons). A layer is a nonlinear
function of an input value, commonly represented as

hi � σ WT
i hi−1 + bi( ), (2)

where hi is the hidden layer i, represented by its weight
matrix Wi and bias vector bi. Notice that the relationship
among hi, Wi, and X is a simple linear regression. 'is is
then evaluated in a nonlinear function σ, also referred to as
activation function. 'e dimensions of the weight matrix for
a NN layer are determined by the number of neurons from
the previous layer and its number of neurons. As it can be

observed in equation (2), a layer takes as input the output of
the previous layer, and it yields an output, which then goes
on into the next hidden layer, and so on until the output
layer is reached. For instance, equation (3) shows a two-layer
NN of input X, output ŷ, and activation function σ:

ŷ � σ WT
2 σ WT

1X + b1( ) + b2( ) � f(X,W). (3)

'us, for a given dataset (X, y), the parameters defining
the NN in equation (3) are optimized to minimize the av-
erage of the squared errors, which is the so-called loss
function described in equation (4). Given a set of data points
(often referred to as dataset), equation (4) can be optimized
using gradient descent [31] and backpropagation [32]:

loss �
1

N
∑N
i�1

yi − yi( )2. (4)

On the other hand, PDEs model the behavior of a
function of interest based on the relationship between its
partial derivatives with respect to its input variables. For
instance, let u(z, t) be a two-dimensional function of space
and time. 'en, a PDE for u(z, t) can be represented as

ut � F z, u, uz, . . .( ), (5)

where subindexes indicate partial derivatives of the function
u(z, t), for example, uz � zu(z, t)/zz. 'e right-hand side of
equation (5) is represented by a function F with input variables
related to the space variable. In their proposedmethodology for
PINNs, Raissi et al. took advantage of automatic differentiation
[33] to formulate a PDE-like penalization function by con-
sidering the target variable of interest by u(z, t) (e.g., velocity
field, temperature) as the output of a NN that takes z and t as
input variables. As such, one can use automatic differentiation
to calculate the exact derivative of the NN representing u with
respect to any of its input variables (e.g., uz, ut). 'is allows the
creation of a PDE in the form of equation (5), where ut is the
time derivative of the output variable. 'e function F on the
right-hand side is represented by a second NN, which takes the
spatial variables and their corresponding u derivatives as input
variables. Equation (5) can be written as a cost function in terms
of a function f described in equation (6). Adding f as a pe-
nalization term to the training cost function of the DL model
would then bind the behavior of the parameters representing
the NNs of u(z, t) and F through the PDE. Note that if the
right-hand side function F(z, u, uz, . . .) in equation (5) is
known, we can directly implement it to the training cost
function. Hence, the optimization cost function of the neural
network can be written as shown in equation (7), as the sum of
the loss function in equation (4), and the square off in equation
(6). Here, λ is the weight value for the penalization function, and
M is the number of points to be tested in the PDE.'ese can be
collocation points, initial conditions, or boundary conditions:

fut −NN z, u, uz, . . .( ) � 0. (6)

Cost �
1

N
∑N
i�1

yi − yi( )2 + λ
1

M
∑M
j�1

f2. (7)
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One of the first implementations of NNs to approximate
PDEs was presented in [34], focused on the numerical chal-
lenges presented by nonlinear PDEs on continuous mechanical
systems. Here, the output of a DNN was used as an approxi-
mation for the solution of the PDE (i.e., u), and an uncon-
strained optimization function was enforced at specific layers
and neurons of the network. 'is architecture is used to solve a
linear Poisson equation and thermal conduction with a non-
linear heat generation problem. Later research showed appli-
cations of DNNs to solve general coupled PDEs based on
Dirichlet and Newman boundary conditions [35]. 'ese first
studies mostly focused on the computational efficiency of using
NNs to solve PDEs when compared to traditional methods such
as finite-element analysis. However, at the time, studies were
limited by computational hardware capabilities. Given the na-
ture of their definition, PINNs have mostly been applied in the
fluid dynamic research community.'e case study presented by
Raissi et al. [29] uses Burger’s equation for three possible ap-
plications: (1) solve a known PDE given initial and boundary
conditions, (2) find parameters that govern a known PDE based
on data from the objective space, and (3) find and solve an
unknown PDE solely based on data from the objective space.

'ere are currently no PINN applications to PHM
frameworks in the reliability community. 'is is mainly due
to the lack of equations that can link a complex system’s
degradation dynamics with its condition monitoring sensor
readings. Nevertheless, most DL-PHM frameworks seek to
relate the monitoring variables with the system’s diagnosis
and prognosis. As such, the PINN approach proposed in
[29] presents an opportunity to seek and find possible
unknown PDEs that can relate sensor measurements to the
system’s degradation process.

3. Proposed Framework

Obtaining models that simultaneously yield an interpretable
health estimator and traditional prognostics metrics is an
ongoing challenge in DL-PHMmodels [2, 9]. An interpretable
model allows the user to trust its prediction, which is critical for
implementing DL-PHMmodels for the health management of
real systems. Training a DNN to represent the degradation
process in a complex system is difficult due to the lack of
mathematical models to describe its physics of degradation.
Moreover, most DL models applied to PHM do not consider
time as an input variable of the network. 'us, information
regarding the degradation dynamics of the system is lost during
the training process if not explicitly stated (as in PBMs). In the
case of RUL estimation, another challenge is presented when
creating labels for supervised models. Here, it is common to
define a point at which the degradation process starts. 'is can
be either at a fixed time before failure [34] or when a specific
performance variable surpasses a predefined threshold value
[35]. Both approaches impose a strict constraint to the RUL
labels by assuming that the machinery under study will con-
tinue to operate in the same condition until its failure. A DL
model trained with these labels will inevitably be biased to-
wards this behavior, making it susceptible to errors when tested
with new data. Nevertheless, we can overcome this uncertainty
by giving interpretability to our model.

Since there are no available equations to directly map the
health state of a complex system to its operational conditions, we
propose a DNN framework to explore the degradation physics of
a system through a latent space representation. 'e supervised
framework is aimed at PHM prediction tasks, where operational
data is available from themonitoring of a system.'e framework
establishes a relationship between a latent variable and a prognosis
output variable through a PDE-like penalization function
(equation (8)). By training the DNN to understand the dynamics
of the degradation process, it is expected that the model will
improve its generalization capabilities. Indeed, adding a PDE-like
penalization to the loss function of the model creates a rela-
tionship between the input features of the model and the de-
rivatives of the output value with respect to its independent
variables.'is effect can be boosted if the framework is given time
as an input feature, rather than implicitly extracting it from a
sequence. For metrics such as the RUL, the penalization function
adds information on the degradation rate by considering tem-
poral derivatives.

Figure 1 illustrates the proposed DNN framework. It yields
RUL estimations through three stages, represented by three
different NNs. 'e first stage maps the operational conditions
(OCs) and the time t to a (possibly multidimensional) latent
variable x. A second NN then takes both t and x to yield the
RUL estimation of the system. A third NN is used to model the
right-hand side of equation (5) F(z, u, uz, . . .), which models
the RUL’s time derivative through a NN. 'is is the so-called
dynamics of the PDE. 'e NN for each stage of the proposed
framework is structured as follows:

(1) x-NN: the network takes the OCs and time as input
variables and it outputs the latent variable x. It is
comprised of 5 hidden layers of 3 units each and two
units as an output layer. 'is accounts for 104
trainable parameters. Hyperbolic tangent (tanh) is
used as the activation function. 'e dimensionality
of the latent variable is a hyperparameter that needs
to be tuned according to the system under study.

(2) RUL-NN: it takes both the latent variable x and time
as input values and outputs the RUL of the system. It
comprises of 5 hidden layers of 10 units each to yield
one output unit with tanh as the activation function.
'e network encompasses 481 trainable parameters.

(3) Dynamics-NN: it takes the latent variable x and the
derivatives dx/dt and dRUL/dx as input values. It
outputs a function N that represents the dynamics of
the system. 'is goes into the PDE-like penalization
function. 'e network is comprised of 5 hidden layers
of 10 units each. One output unit and a rectified linear
unit (ReLU) as the activation function are used. 'is
network also contains 481 trainable parameters.

With automatic differentiation, we can take the time
derivative from the first and second stage of NNs. 'ese are
then combined to form a PDE-like penalization term, as
shown in Figure 1. 'e penalization includes the time de-
rivative from the RUL, which is related to the Dynamics-NN
in a PDE-like form as shown in equation (8), where
d(RUL)/dt is the time derivative of the second stage NN, and
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N is the output from the third stage NN. 'e training cost
function is then defined as shown in equation (9), where
RULi and RULi are the objective and predicted RUL values,
respectively:

f:
d(RUL)

dt
−N x,

dx

dt
,
d(RUL)

dx
( ), (8)

Cost �
1

N
∑N
i�1

RULi − RULi( )2 + λ
1

N
∑N
j�1

f2. (9)

'e penalization function f thus creates a dynamical
relationship between the RUL and the latent variable x,
which in turn is related to the initial operating conditions
and the time at which the RUL is evaluated. 'e framework
is comprised of 1,066 trainable parameters, which is a low
number when compared to other significantly more com-
plex DL architectures for RUL estimation [36]. Having a
model with fewer parameters to train prevents overfitting
and reduces the training time, which can eventually facilitate
its online implementation without the need for specialized
hardware.

'e proposed framework addresses many of the draw-
backs mentioned above in DL applications for PHM. First,
the network takes time as an input variable, along with the
operational conditions of the system. 'e OCs represent the
initial conditions for a PDE, and t corresponds to the point
in the future at which it is desired to obtain the RUL value. In
other words, for t � 0, the network behaves as most DL
methods. 'at is, RUL is predicted based on the current
OCs. Secondly, the use of a latent variable provides multiple
advantages for both the training of the model and the later
interpretation of its results:

(1) Dimensionality reduction: the usage of a latent
variable helps capture and highlight important in-
formation related to the degradation process from
the OCs. 'e dimensions of the latent variable
dictate the number of dimensions that we can use for
visualization purposes. In turn, visualizing a latent
space provides additional tools to make an informed
decision based on the model’s output.

(2) Input variables for Dynamic-NN: the right-hand side
function in equation (6) could take every possible

derivative from the input OC values. 'e use of a
latent variable reduces the number of derivatives fed
into the Dynamics-NN, thus reducing the number of
parameters of the network and its training time.

(3) Eliminate redundancy and noise from the data: due
to the potentially high correlation among monitor-
ing variables, it is common to observe that a lower-
dimensional space can represent a system.'is is the
basic concept behind every data-driven approach for
regression in PHM. Further, DNNs are known to
remove noise levels in the input signals.

Note that out of the three stages, only the RUL-NN
requires labels for the training process, since the latent
variable x comes as a secondary outcome from the back-
propagation training of the RUL-NN. On the other hand, the
Dynamics-NN is trained solely from the penalization PDE
term, which does not require any labels. Furthermore, if a
degradation equation is available, for example, Paris’ Law for
crack propagation, it can be directly replaced for the Dy-
namics-NN, giving our proposed model flexibility according
to the available information on the system under study.

To train models based on the proposed framework, the
following steps must be followed:

(1) Preprocess the dataset. 'e input data to the
framework has two essential elements: sensor mea-
surements and prediction time horizon. Details on
the dataset preparation are presented in Section 4.
Given that this is a supervised framework, objective
labels associated with the input values must also be
provided.

(2) Define and set up the framework (Figure 1) according
to the available data and information on the system
under study. If available, a PBM (e.g., Paris’ Law) can be
included in the penalization function, replacing the
Dynamic-NN. Otherwise, the Dynamic-NN is used to
discover the system’s degradation dynamics. Other
hyperparameters such as the dimensionality of the
latent variable x, the number of neurons and layers of
each NN, and the penalty weight λ need to be selected
as discussed in Section 5.

(3) Train the model based on the chosen framework with
the preprocessed dataset. All NN stages within the

x NN
Dynamics

NN

Outputs

Inputs
Framework stages

Derivatives

x RUL N

t

OC

RUL NN

dx/dt d (RUL)/dx

d (RUL)/dt – N = 0

d (RUL)/dt

Figure 1: Proposed deep learning framework using a latent variable and a PDE-like penalization function.
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framework are trained simultaneously according to
equation (9).

(4) Once the model is trained and depending on the
selected dimensionality of the latent variable x, re-
sults can be visualized by evaluating new input values
and plotting each dimension of x on a different axis.
Here, the output values of the model (e.g., RUL) are
used as a color map.'is visualization allows directly
assessing the relationship between the trained latent
variable and the objective function. As discussed in
Section 5, the latent variable can be used as a health
estimator in the PHM context through a ML
classifier.

4. Case Study: Dataset and Hardware

'e proposed framework is tested using the benchmark
dataset C-MAPSS due to the multiple research reports that
have applied DL networks for its RUL estimation
[6, 20, 24, 37, 38]. A detailed description of this dataset and
its processing can be found in [39, 40]. 'is study’s objective
is not to improve the state-of-the-art results on this dataset
regarding RUL estimation precision, but rather to introduce
a new tool for PHM-DL models. Hence, only the FD001 and
FD004 subdatasets from the C-MAPSS will be covered in
detail. 'e dataset consists of 27 sensor variables for sim-
ulated engine runs. 'e FD001 dataset presents one failure
mode and one operational condition. FD004 on the other
hand presents two different failure modes, and it operates at
six different conditions. 'e information on which failure
mode caused the failure of the engine run is not provided
with the dataset, nor are the conditions at which they were
operating before the failure. Operational sensor readings are
recorded for each cycle during an engine run. Each engine
run starts at a random initial degradation level from which
the engine operates until its failure.

As has been shown in past studies [40], only 14 out of the
27 sensors are statistically significant to model the RUL of
the system, and thus these are the ones used for this study.
Since the proposed framework is based on vanilla DNNs,
there is no need to create time windows for the input data.
However, we need to create a temporal dimension (i.e.,
feature) in order to train the proposed model. As such, the
original dataset needs the following additional processing
steps:

(1) Select all data logs for one engine run, from its initial
starting point until its failure.

(2) For each operational cycle, add a column with an
integer time t from 0 to 30 cycles.

(3) Create a label for the above operation data and time,
which corresponds to the RUL value at time t since
the initial point.

For instance, let us consider Engine 1, which contains a
total of 192 log entries. If cycle number 100 is selected as the
initial point, then, for t � 0, its corresponding label is
RUL � 92; then, for t � 1, its label is RUL � 91; and so on
until t � 30 is reached or until RUL � 1 (i.e., the engine

fails). 'is process is repeated for each log entry of each
engine, which increases the size of the original dataset. For
instance, the FD001 subdataset size increases from 20,631 to
593,061 points. 'e input values are normalized using a
MinMax scaler, which is a common practice when training
DNNs [41]. Models are trained on Python 3.6 with the use of
Tensorflow 2.0 and Keras. Windows is used as the operating
system.'e computer hardware consists of an Intel i7-9700k
CPU, 32GB of RAMmemory, and a 24GB Titan RTX GPU.
'e average training time in this machine is 140 seconds,
while the evaluation time for new data entries is 0.01
seconds.

'e value range of the newly added time feature column
is an additional hyperparameter of the proposed framework.
'is will depend on the specific system under study, and in
this case, it was selected based on the following reasoning.
'e time horizon for RUL estimation needs to be realistic. In
this regard, if a system begins operating from an almost
perfect health state, there would not be an indication of the
degradation process within the monitoring data. Hence, it
would be optimistic to expect the model to accurately es-
timate future RUL values at times close to the end of the
system’s life based on this data. As such, we should not train
the model to yield RUL predictions at times exceeding the
training RUL labels values. Since the RUL labels for the
C-MAPSS range from 1 to 125 cycles, the time dimension
should at most range from 0 to 125 cycles. Based on this
reasoning, we tested the framework with prediction horizons
from 0 to 100 cycles. We observed that the model’s per-
formance decreases significantly for horizons greater than 30
cycles. 'us, we chose this as the upper time limit, which
accounts for almost one-quarter of the training label range.

5. Results and Discussion

We train the proposed framework for the FD001 and FD004
subdataset from C-MAPSS. Models are trained using 75% of
the data randomly selected from the training set, with the
remaining 25% left as a validation set. 'e test sets are
provided separately [40]. NAdam optimizer [42] is used for
the training process. 'e proposed framework comprises
multiple hyperparameters; three of these have the most sig-
nificant impact on the model’s performance after training: the
latent variable dimensionality, the penalty weight λ assigned
to the PDE regularization function, and the number of
training epochs. Figures 2 and 3 illustrate the results for the
sensibility analysis of these three hyperparameters. For each
combination of hyperparameters, 10-fold cross-validation
was performed with random initial parameters. We compare
the average cost function value on the training and validation
set from the cross-validation process in these figures. 'e
minimum cost is indicated with a red dashed horizontal line
for each case.

Figure 2 shows the joint sensibility analysis for the
number of training epochs and the latent variable dimen-
sion. On one hand, most cost values decrease with a higher
number of training epochs for both the training and the
validation set as expected. 'is behavior is shown by both
subdatasets, independent of their complexity. On the other
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hand, we can see that the best results are achieved with a
two-dimensional latent variable on the FD001 set, while the
FD004 set performs better with a three-dimensional latent
variable. 'ese results are consistent with the complexity
difference between the datasets since the FD004 set contains
six operational conditions and two failure modes. 'us, the
model requires a higher latent variable dimensionality to
represent the degradation process. Further, the results
shown in Figure 2 for the FD001 set indicate that models
have similar performance for a latent variable with more
than two dimensions. In the case of the FD004 set, a similar
performance is obtained for two and three dimensions.

Figure 3 presents the joint sensibility analysis for the
PDE penalization weight value and latent variable dimen-
sion. 'e penalization function improves the generalization
capabilities of the model, resulting in similar cost perfor-
mance when evaluating the training and validation sets.
However, the specific value of the weight penalization is the
most difficult hyperparameter to analyze. A higher penal-
ization value results in a more constrained model, and thus,
its performance worsens when evaluating the training set.

For instance, we can observe that, with a low penalization
value, the model presents underfitting (i.e., the validation
cost value is lower than the training) on the FD001 set
regardless of the latent variable dimensionality. Neverthe-
less, a higher penalty value during the training process
would give higher importance to the connection between
the latent variable representation and the RUL of the sys-
tem. 'is would explain the more consistent behavior be-
tween the training and validation set for the more complex
FD004 set. Both datasets have a consistent cost value with
higher penalization weights in the case of a two-dimension
latent variable, particularly the FD004 set, where there is
neither significant underfitting nor overfitting. Hence, a
two-dimensional latent variable is better when considering
the PDE penalization function.

From this hyperparameter analysis, a two-dimensional
latent variable is selected due to its more consistent results.
'is is also a good choice for visualization purposes, given
that one will be able to map all the dimensions in a two-
dimensional latent space representation once the model is
trained. Moreover, models are trained for 150 epochs and a
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Figure 2: Sensibility analysis of the cost function by the number of training epochs. (a) FD001. (b) FD004.
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penalty weight value of 100. Ten different models are trained
for each dataset, each starting from random initial weights
for the three NN stages.

Table 1 presents the results for the average root mean
squared error (RMSE) obtained with the trained models for
each dataset. FD001 models average an RMSE value of 17.14
cycles for its test set, whilemodels for FD004 yield an average of
25.58 cycles. Figure 4 illustrates the training and validation cost
throughout the training process. Here, it can be observed that
both curves present an identical behavior. Also, these converge
to the same cost value and, thus, the trained models have good
generalization capabilities.We can attribute this behavior to the
PDE penalization function added to the model. 'e dynamical
relationship built between the latent variable and the RUL, as
well as the inclusion of the time dimension, provides extra
information on the degradation dynamics to the model. In
turn, themodel can yield consistent predictions for new unseen
data. 'e behavior of the cost function during the training
process is also consistent with the hyperparameters effects
studied in Figures 2 and 3.

Although the obtained RMSE values for the test sets are
not as low as those obtained through other far more complex
architectures, these are within the acceptable range for this
case study [20]. Such complex architectures involve a high
number of trainable parameters without providing inter-
pretability tools for the end-user. For instance, a deep
convolutional neural network (DCNN) for RUL estimation
with over 180k trainable parameters was presented in [20].
'is number increases further when additional layers of
analysis are added to CNNs, such asmultiscale blocks [43] or
bidirectional LSTMs [44]. 'ey require more preprocessing
for their training data and can present overfitting while
requiring specialized hardware for a fast training process.
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Figure 3: Sensibility analysis of the cost function by PDE penalty weight value λ. (a) FD001. (b) FD004.

Table 1: Training and testing RUL RMSE values for models trained
based on the proposed framework.

Training RMSE Test RMSE

FD001 21.96 17.14
FD004 24.72 25.58
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Additionally, the more trainable parameters a model has, the
more training data is needed to prevent overfitting.

'e proposed framework’s most important output is the
latent space representation of the trained models. Indeed,
Figure 5 illustrates the predicted RUL values mapped to their
corresponding estimated latent variable space for both the
training and test sets. Both dimensions from the latent
variable x (i.e., x1, x2) are plotted with their corresponding
RUL values represented as a color map. Figure 5 shows three
different RUL mappings for each subdataset. On the left, the
RUL training labels are mapped to their corresponding
latent space representation. At the center, RUL values
predicted by the trained model evaluated with the training
set (i.e., same input data as the previous case) are mapped to
their corresponding latent space. On the right, similar to the
first figure, an RUL colormap is presented for the latent
space representation of the test set labels.

Results presented in Figure 5 for the training set show
that the trained model smooths the RUL value represen-
tation to the latent space. 'is creates a continuous rela-
tionship between the operational conditions and the RUL of
the system. Given the linear relationship between the RUL
and time, a health index related to the RUL is analogous to
an indicator of the temporal evolution of the system’s
degradation process. Hence, we can consider the latent space
representation in Figure 5 as a health state indicator related
to the system’s underlying degradation process. Moreover,
Figure 5 shows that both subdatasets present different shapes
on their latent space representation. 'is is expected since
both datasets present a different number of failure modes.
Indeed, given that the FD001 set has only one failure mode, a
latent space domain following a straight-line path from low
to high RUL values makes us think this is a good repre-
sentation of the degradation process of this particular sys-
tem. 'is degradation path is also simpler than its FD004
counterpart. In the latter, we see that, from a healthy state
(i.e., high RUL values), the latent space presents a bifurcation
into two degradation paths. Since this dataset comes from a
system with two different failure modes, we believe these

degradation paths can be the model’s interpretation of the
failure modes. Unfortunately, information on which failure
mode caused the system’s failures is not available to confirm
this observation.

In the case of the test set representation from each
subdataset in Figure 5(a), we observe that both the RUL
mapping and the shape of the latent space representation of
the test set are consistent with those obtained for the training
set (center images). 'is reinforces the generalization ca-
pabilities of the models discussed in Figure 4, where we
observe that the training and validation cost curves were
almost identical throughout the training process. 'ese
results from the test sets indicate that the latent space can
indeed be used as an indicator of the system’s health state.
'is interpretability is why including time as an input
variable becomes crucial to our proposed framework. By
including time, it is possible to obtain the temporal deriv-
ative of the RUL (i.e., the RUL dynamics), which defines the
PDE penalization function.'is, as Figure 5 shows, allows us
to embed the degradation process to the evolution of the
RUL values along with the latent space representation. In
both subdatasets, by considering the transition from high
RUL values into lower ones as a temporal evolution of a
health index, we can use the latent space to determine the
health state of the system if it were to be separated by an RUL
threshold.

Indeed, using the training dataset, we define a “start of
degradation” threshold to separate the health state of the
system as either “healthy” or “degraded.” Having two dif-
ferent classes allows us to train machine learning classifi-
cation models based on the results obtained for the latent
space representation. 'is threshold (TH) value needs to be
optimized to provide an accurate classifier and ensure that
the degradation detection occurs with enough anticipation
of the failure. For instance, a TH of 20 cycles considers all
points with RUL ≤ 20 cycles as degraded, while for
RUL > 20 cycles, the system is considered as healthy.
However, 20 cycles before failure would not be reasonable
since it is too close to the failure event. A TH value of 120, on
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Figure 4: Training and validation cost value per number of epochs during the training process for the FD001 (a) and FD004 (b) subdatasets.
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the other hand, would not be informative since all the RUL
labels from the C-MAPSS dataset are commonly defined as
lower or equal to 125 cycles. As such, a sensibility analysis to
select the TH value is needed for different classifiers. Here,
we will focus on six of the most common classifiers in ML
approaches. 'e classifier and TH selection would depend
on the accuracy of the model on both the training and
validation sets, as well as on the specific system under study.

Figure 6 shows the results for the TH and ML classifier
sensibility analysis. All classifiers are trained using the de-
fault parameters provided in the sci-kit learn package for
Python [45].'e analysis is performed over both subdatasets
individually, and results are reported for the training and
validation sets. It can be observed that the classification
performance decreases with higher TH values for the
training and validation sets.

As discussed above, setting a small TH value for the
classifier can be impractical from a PHM perspective.
Hence, we select 50-cycle TH value for being the longest
horizon where classifiers present a 90% accuracy per-
formance while still accounting for 40% of the RUL label
range. Tables 2 and 3 detail the performance metrics for all
classifiers at TH � 50. Here, the best training performance
is obtained with a Nearest Neighbors classifier, which has
the lowest validation accuracy and overfits the training
set. All remaining classifiers present a similar perfor-
mance on the training and validation sets with no over-
fitting. 'is behavior was also observed in Figure 6.
Random forest (RF) stands out among these classifiers due
to its low training time and false positive metric. RF is also
known for providing good visualization representation
that allows us to separate classes visually. As such, we
select RF as the classifier for the health state estimator
through the latent space representation.

Table 4 presents the results after training ten RF clas-
sifiers for each subdataset. Results show a high accuracy for
both subdatasets, with all false negatives and false positives
below 10%.'e FD001 set presents a slight underfitting of its
results, which can be associated with the great number of
training points generated to include the time dimension
during the training process, as discussed in Section 4.

Figure 7 illustrates the trained RF classifier results for
both the training and test sets mapped to the latent space
representation. Observe the classifier clearly separates a
healthy zone (blue) and a degraded zone (red). 'is classifier
is fairly conservative, especially for the FD004 subdataset,
mainly due to the selected threshold. It is important to note
that, for both subdatasets, the mapping of the test set is
consistent with the trained classifier and the RF classifier
provides a transition zone (white) which works as a sepa-
ration boundary between the two defined health states. 'e
trained classifier is not limited to only two classes, and more
health states could be added if they are available or needed.
'ese results show that the latent space representation can
indeed be used as a health indicator and, as such, can work as
a decision variable when planning maintenance policies.

As shown in Figure 5, the shape of the latent variable
representation changes from one subset to another. It is then
logical that if the proposed framework were to be tested for
another system, the visualization and RUL mapping would
also be different from the case study discussed. As such,
training the selected classifier and setting the corresponding
threshold value would vary from system to system. Also,
depending on the PHM framework and implementation,
setting an optimal threshold value may also depend on other
metrics rather than just the models’ efficiency. For instance,
an optimized TH with a classifier accuracy of 90% might be
worth more than having a small TH value (e.g., 5 cycles

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

–2.5

X2

6

7

5

4

3

2

1

0

–1

X2

6

7

5

4

3

2

1

0

–1

X2

6

5

4

3

2

1

0

–1

X2

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

–2.5

X2

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

X2

–2.5 –2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0

X1

–2.5 –2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0

X1

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0

X1

–1 0 1 2 3 4 5

X1

–1 0 1 2 3 4 5

X1

–1 0 1 2 3 4

X1

(a) (b) (c)

120

100

80

60

40

20

R
U

L
 v

al
u

es

120

100

80

60

40

20

R
U

L
 v

al
u

es

FD001 train label FD001 train prediction FD001 test

FD004 train label FD004 train prediction FD004 test

Figure 5: Trained latent variable mapping of RUL training labels (a), RUL training data predictions (b), and RUL testing labels (c).

10 Shock and Vibration



20 30 40 50 60 70 80 90

Threshold in cycles

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

T
ra

in
 a

cc
u

ra
cy

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

V
al

id
at

io
n

 a
cc

u
ra

cy

Nearest neighbors

Linear SVM

Random forest

Neural net

AdaBoost

Logistic regression

20 30 40 50 60 70 80 90

Threshold in cycles

Nearest neighbors

Linear SVM

Random forest

Neural net

AdaBoost

Logistic regression

(a)

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

T
ra

in
 a

cc
u

ra
cy

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

V
al

id
at

io
n

 a
cc

u
ra

cy

20 30 40 50 60 70 80 90

Threshold in cycles

Nearest neighbors

Linear SVM

Random forest

Neural net

AdaBoost

Logistic regression

20 30 40 50 60 70 80 90

Threshold in cycles

Nearest neighbors

Linear SVM

Random forest

Neural net

AdaBoost

Logistic regression

(b)

Figure 6: 'reshold sensibility analysis for six machine learning classifiers for the health state of the system based on the trained latent
variable x. (a) FD001. (b) FD004.

Table 2: Machine learning classifiers performance with TH� 50 for the FD001 subdataset.

ML classifier Set Accuracy False negative False positive F1-score Recall Training time

Nearest neighbors
Train 93.0 4.6 2.4 86.3 82.7

3.57
Validation 88.7 6.7 4.6 78.1 75.0

Linear SVM
Train 90.6 6.2 3.2 81.3 76.8

69.37
Validation 90.7 6.1 3.2 81.6 77.2

Random forest
Train 90.7 6.7 2.6 81.1 74.9

0.81
Validation 90.6 6.7 2.7 81.0 75.1

Neural network
Train 90.6 6.1 3.3 81.3 77.1

10.43
Validation 90.7 6.0 3.3 81.7 77.5

AdaBoost
Train 90.6 6.5 3.0 81.0 75.7

3.80
Validation 90.5 6.5 3.0 81.1 75.9

Logistic regression
Train 90.5 6.0 3.5 81.3 77.6

1.44
Validation 90.6 5.9 3.5 81.6 77.9
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Table 3: Machine learning classifiers performance with TH� 50 for the FD004 subdataset.

ML classifier Set Accuracy False negative False positive F1-score (%) Recall (%) Training time (s)

Nearest neighbors
Train 92.4 4.9 2.7 81.9 77.8

4.02
Validation 87.8 7.2 5.0 71.2 67.7

Linear SVM
Train 89.0 8.3 2.7 71.3 62.3

94.96
Validation 89.1 8.2 2.6 72.1 63.0

Random forest
Train 89.1 7.9 3.0 72.1 64.0

0.98
Validation 89.2 7.9 2.8 72.8 64.5

Neural network
Train 89.0 7.5 3.5 72.6 66.0

9.31
Validation 89.2 7.5 3.3 73.3 66.5

AdaBoost
Train 88.8 7.8 3.5 71.7 64.7

4.82
Validation 88.9 7.8 3.3 72.4 65.1

Logistic regression
Train 89.0 8.0 2.9 71.7 63.4

1.53
Validation 89.2 8.0 2.8 72.6 64.1

Table 4: Classification metrics for random forest models with a 95% confidence interval.

Accuracy (%) False negative (%) False positive (%) F1 score (%) Recall score (%)

FD001
Train 90.7 ± 0.0 6.6 ± 0.2 2.6 ± 0.2 81.1 ± 0.1 74.9 ± 0.8
Test 92.9 ± 91.2 3.1 ± 0.6 4.0 ± 0.6 89.4 ± 1.8 90.6 ± 1.8

FD004
Train 89.1 ± 0.2 7.8 ± 0.2 2.9 ± 0.2 72.3 ± 0.3 64.3 ± 0.9
Test 86.7 ± 0.3 9.1 ± 0.3 4.1 ± 0.4 77.5 ± 0.5 71.5 ± 0.9
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Figure 7: Continued.
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before failure) with a 99% classifier accuracy. An online
implementation of the model, along with the classifier,
would allow a real-time evaluation of the system’s opera-
tional conditions. 'is classifier can be further com-
plemented with the remaining stages of the framework
presented in Figure 1, that is, the PDE dynamics N and the
RUL estimation. 'ese additional outputs provide infor-
mation on the system and can be used to create new metrics,
rather than just base the results on an RUL value. 'us, this
framework creates the opportunity to make better-informed
decisions for the maintenance scheduling of complex
systems.

Recent DL research works using the C-MAPSS dataset as
a case study have focused on feature extraction to improve
models’ performance, supervised health state estimation,
and optimal RMSE values. For instance, Berghout [46] used
a denoising autoencoder as a feature extractor coupled with
an update selection strategy to determine the training se-
quences used in an extreme learning machine (ELM)
prognosis model. Here, only the FD001 subdataset was
trained. Due to the feature extraction process and the ELM
prognosis model, this framework contains a high number of
trainable parameters and its good performance is likely to be
case specific. 'is model does not provide classification nor
visual interpretation. Another example is presented by [30]
where a multitask deep CNN is proposed for simultaneous
health state and RUL estimation. 'is model requires
manually creating health state labels, which introduces bias
to the model, and it does not provide any interpretation of
the model. 'e dual estimation also increases the number of
trainable parameters significantly. Results for these config-
urations and other traditional DL applications to PHM are
compared in Table 5. Up to date, there are no frameworks
that can provide prediction, classification, and visual rep-
resentation at the same time. 'e lower performance on
RUL estimation could then be viewed as a tradeoff between

prognosis and interpretability of the model. Furthermore,
the fewer parameters of our proposed model avoid over-
fitting problems and, as it was discussed, adapting the
framework to other case studies is straightforward. Here, it is
important to remark that the proposed framework can be
adapted to consider a PBM, when available.

6. Conclusions

'is paper presented a framework with the first application
of PINN applied to PHM in complex systems. 'e proposed
framework allows the interpretation of the degradation
dynamics through a latent space representation and, thus, it
is a promising alternative for physics-informed model ap-
plications for complex systems. 'e framework comprises
deep neural networks with a total of 1,066 parameters, which
is considerably smaller than more complex architectures by
at least two orders of magnitude. 'is contributes to low
training and evaluation times while preventing overfitting
and makes it a suitable approach to be deployed both online
and on mobile devices. 'is framework establishes a rela-
tionship between the time and sensor variables with the
degradation of a PDE-like penalization function. We have
shown that the obtained two-dimensional latent space acts

X1

X2

–1 0 1 2 3 4 5

6

4

2

0

(c)

X1

–1 0 1 2 3 4 5

X2

6

4

2

0

(d)

Figure 7: Latent variable classifier decision zones based on a trained random forest model for the FD001 and FD004 subdatasets: degraded
state (red) and healthy state (blue). (a) FD001 train. (b) FD001 test. (c) FD004 train. (d) FD004test.

Table 5: Comparison with the state-of-the-art results for RUL
RMSE values and state of health classification accuracy for the
FD001 and FD004 test sets.

FD001 FD004

Model RMSE Accuracy RMSE Accuracy
ANN 19.62 — 24.35 —
RNN 13.36 — 24.06 —
DOS-ELM [46] 12.29 — — —
MT-CNN [30] 12.48 0.71 19.98 0.84
PDE-PHM 17.14 0.92 25.58 0.86
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as a health indicator of the degradation process of the
system, which also can be visually interpreted for engi-
neering purposes as well as a health state classifier through
an ML model. Additionally, the proposed framework ad-
dresses two major challenges in DL techniques applied to
PHM, namely, the use of time as an input variable and the
interpretation of the operational conditions from an engi-
neering point of view. 'is paper takes a step towards
bridging the gap between statistic-based PHM and physics-
based PHM by providing models that do not need ad hoc
and third-party software to interpret its results and it is
directly linked to the degradation process of the system. 'e
presented framework is flexible because it can integrate
available degradation processes into the training process if
these are available. 'e framework opens many doors to
applying these algorithms to real complex systems, especially
on maintenance and preventive assessments.

Data Availability

For this study, the C-MAPSS dataset was used.'e dataset is
publicly available at https://ti.arc.nasa.gov/tech/dash/
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[5] L. Liao and F. Köttig, “Review of hybrid prognostics ap-
proaches for remaining useful life prediction of engineered
systems, and an application to battery life prediction,” IEEE
Transactions on Reliability, vol. 63, no. 1, pp. 191–207, 2014.

[6] A. Al-Dulaimi, S. Zabihi, A. Asif, and A. Mohammadi, “A
multimodal and hybrid deep neural network model for

remaining useful life estimation,” Computers in Industry,
vol. 108, pp. 186–196, 2019.

[7] L. Liao, W. Jin, and R. Pavel, “Enhanced restricted Boltzmann
machine with prognosability regularization for prognostics
and health assessment,” IEEE Transactions on Industrial
Electronics, vol. 63, no. 11, pp. 7076–7083, 2016.

[8] X. Li, W. Zhang, and Q. Ding, “Deep learning-based
remaining useful life estimation of bearings using multi-scale
feature extraction,” Reliability Engineering System Safety,
vol. 182, pp. 208–218, 2019.

[9] O. Fink, Q. Wang, M. Svensén, P. Dersin, W.-J. Lee, and
M. Ducoffe, “Potential, challenges and future directions for
deep learning in prognostics and health management appli-
cations,” Engineering Applications of Artificial Intelligence,
vol. 92, Article ID 103678, 2020.

[10] J. Ma, S. Xu, Y. Ding et al., “Cycle life test optimization for
different Li-ion power battery formulations using a hybrid
remaining-useful-life prediction method,” Applied Energy,
vol. 262, Article ID 114490, 2020.

[11] Y. Zhou, M. Huang, and M. Pecht, “Remaining useful life
estimation of lithium-ion cells based on k-nearest neighbor
regression with differential evolution optimization,” Journal
of Cleaner Production, vol. 249, Article ID 119409, 2020.

[12] G. Ma, Y. Zhang, C. Cheng, B. Zhou, P. Hu, and Y. Yuan,
“Remaining useful life prediction of lithium-ion batteries
based on false nearest neighbors and a hybrid neural net-
work,” Applied Energy, vol. 253, Article ID 113626, 2019.

[13] X. Qiu, W. Wu, and S. Wang, “Remaining useful life pre-
diction of lithium-ion battery based on improved cuckoo
search particle filter and a novel state of charge estimation
method,” Journal of Power Sources, vol. 450, Article ID
227700, 2020.

[14] Y. Chen, G. Peng, Z. Zhu, and S. Li, “A novel deep learning
method based on attention mechanism for bearing remaining
useful life prediction,”Applied Soft Computing, vol. 86, Article
ID 105919, 2020.

[15] L. Xu, P. Pennacchi, and S. Chatterton, “A newmethod for the
estimation of bearing health state and remaining useful life
based on the moving average cross-correlation of power
spectral density,” Mechanical Systems and Signal Processing,
vol. 139, Article ID 106617, 2020.

[16] J. Zhu, N. Chen, and C. Shen, “A new data-driven transferable
remaining useful life prediction approach for bearing under
different working conditions,”Mechanical Systems and Signal
Processing, vol. 139, Article ID 106602, 2020.

[17] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, “Remaining useful
life estimation of engineered systems using vanilla LSTM neural
networks,” Neurocomputing, vol. 275, pp. 167–179, 2018.

[18] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long short-
term memory network for remaining useful life estimation,”
in Proceedings of the 2017 IEEE International Conference on
Prognostics and Health Management, Dallas, TX, USA, June
2017.

[19] Z. Zhao, B. Bin Liang, X.Wang, andW. Lu, “Remaining useful
life prediction of aircraft engine based on degradation pattern
learning,” Reliability Engineering & System Safety, vol. 164,
no. 457, pp. 74–83, 2017.

[20] X. Li, Q. Ding, and J. Q. Sun, “Remaining useful life esti-
mation in prognostics using deep convolution neural net-
works,” Reliability Engineering and System Safety, vol. 172,
pp. 1–11, 2018.

[21] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust
you?’ Explaining the predictions of any classifier,” in Pro-
ceedings of the 22nd ACM SIGKDD International Conference

14 Shock and Vibration

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/


on Knowledge Discovery and Data Mining, New York, NY,
USA, August 2016.

[22] S. M. Lundberg and S. I. Lee, “A unified approach to inter-
preting model predictions,” in Proceedings of the Advances in
Neural Information Processing System, Long Beach, CA, USA,
December 2017.

[23] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R. Müller,
and W. Samek, “On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation,” PLoS
One, vol. 10, no. 7, Article ID e0, 2015.

[24] H. Miao, B. Li, C. Sun, and J. Liu, “Joint learning of degra-
dation assessment and RUL prediction for aeroengines via
dual-task deep LSTM networks,” IEEE Transactions on In-
dustrial Informatics, vol. 15, no. 9, pp. 5023–5032, 2019.

[25] Y. Yu, C. Hu, X. Si, J. Zheng, and J. Zhang, “Averaged Bi-
LSTM networks for RUL prognostics with non-life-cycle la-
beled dataset,” Neurocomputing, vol. 402, pp. 134–147, 2020.

[26] A. Elsheikh, S. Yacout, and M. S. Ouali, “Bidirectional
handshaking LSTM for remaining useful life prediction,”
Neurocomputing, vol. 323, pp. 148–156, 2019.

[27] L. Bellani, M. Compare, P. Baraldi, and E. Zio, Towards
Developing a Novel Framework for Practical PHM: A Se-
quential Decision Towards Developing a Novel Framework for
Practical PHM: a Sequential Decision Problem solved by Re-
inforcement Learning and Artificial Neural Networks, 2020.

[28] Z. Mahmoodzadeh, K. Wu, E. L. Droguett, and A. Mosleh,
“Condition-based maintenance with reinforcement learning
for dry gas pipeline subject to internal corrosion,” Sensors,
vol. 20, no. 19, pp. 1–31, 2020.

[29] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational
Physics, vol. 378, pp. 686–707, 2019.

[30] T. S. Kim and S. Y. Sohn, “Multitask learning for health
condition identification and remaining useful life prediction:
deep convolutional neural network approach,” Journal of
Intelligent Manufacturing, pp. 1–11, 2020.

[31] L. Bottou, “Large-scale machine learning with stochastic
gradient descent,” in Proceedings of the COMPSTAT’2010,
Paris, France, August 2010.

[32] R. Hecht-Nielsen, “'eory of the backpropagation neural
network,” in Proceedings of the International 1989 Joint
Conference on Neural Networks, Washington, DC, USA, June
1989.

[33] A. Otto, K. Griewank, and A. Griewank, “On automatic
differentiation automatic/algorithmic differentiation view
project abs-linear learning by gradient based methods or
mixed binary linear optimization view project on automatic
diierentiation 1 by on automatic diierentiation,” 1997, https://
arxiv.org/abs/1502.05767.

[34] M. W. M. G. Dissanayake and N. Phan-'ien, “Neural-net-
work-based approximations for solving partial differential
equations,” Communications in Numerical Methods in Engi-
neering, vol. 10, no. 3, pp. 195–201, 1994.

[35] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural
networks for solving ordinary and partial differential equa-
tions,” IEEE Transactions on Neural Networks, vol. 9, no. 5,
pp. 987–1000, 1998.

[36] J. Chen, H. Jing, Y. Chang, and Q. Liu, “Gated recurrent unit
based recurrent neural network for remaining useful life
prediction of nonlinear deterioration process,” Reliability
Engineering & System Safety, vol. 185, pp. 372–382, 2019.

[37] A. Listou Ellefsen, E. Bjørlykhaug, V. Æsøy, S. Ushakov, and
H. Zhang, “Remaining useful life predictions for turbofan
engine degradation using semi-supervised deep architecture,”
Reliablility Engineering and System Safety.vol. 183, pp. 240–251,
2019.

[38] M. Hou, D. Pi, and B. Li, “Similarity-based deep learning
approach for remaining useful life prediction,”Measurement,
vol. 159, Article ID 107788, 2020.

[39] W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, “A new deep
learning model for fault diagnosis with good anti-noise and
domain adaptation ability on raw vibration signals,” Sensors
(Switzerland), vol. 17, no. 2, 2017.

[40] A. Saxena, M. Ieee, K. Goebel, D. Simon, and N. Eklund,
“Damage propagation modeling for aircraft engine run-to-
failure simulation,” in Proceedings of the 2008 International
Conference on Prognostics and Health Management, pp. 1–9,
IEEE, Denver, CO, USA, October 2008.

[41] A. C. Ian Goodfellow, Y. Bengio, and A. Courville, Deep
Learning Book, MIT Press, Cambridge MA USA, 2015.

[42] A. Tato and R. Nkambou, “Improving adam optimizer,” in
Proceedings of the ICLR 2018 Workshop Submission, Van-
couver, Canada, 2018.

[43] H. Li, W. Zhao, Y. Zhang, and E. Zio, “Remaining useful life
prediction using multi-scale deep convolutional neural net-
work,” Applied Soft Computing, vol. 89, Article ID 106113,
2020.

[44] T. Xia, Y. Song, Y. Zheng, E. Pan, and L. Xi, “An ensemble
framework based on convolutional bi-directional LSTM with
multiple time windows for remaining useful life estimation,”
Computers in Industry, vol. 115, Article ID 103182, 2020.

[45] F. Pedregosa, A. Gramfort, V. Michel et al., “Scikit-learn:
machine learning in Python,” Journal of Machine Learning
and Research, vol. 12, 2011.

[46] T. Berghout, L.-H. Mouss, O. Kadri, L. Säıdi, and
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