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ABSTRACT State of health (SOH) estimation and remaining useful life (RUL) prediction can ensure

reliable and safe system operation and reduce unnecessary maintenance costs. In this paper, to improve

the accuracy and reliability of SOH estimation and RUL prediction, a novel method based on second-

order central difference particle filter (SCDPF) is proposed. By optimizing the importance probability

density function, the particle degeneracy phenomenon of particle filter (PF) can be solved. Experiments

from the National Aeronautics and Space Administration (NASA) and the Center for Advanced Life Cycle

Engineering (CALCE) of the University of Maryland are conducted to demonstrate the effectiveness and

satisfactory performance of the proposed SCDPF approach. The maximum error and the root mean square

error (RMSE) of the SCDPF fitting approach are quite small, the minimum values of those are 0.006102 Ah

and 0.001599, which are lower than those of the unscented particle filter (UPF) and particle filter (PF). The

average RUL errors and average PDF width of SCDPFmethod are also smaller, which validates the accuracy

and stability of the proposed method.

INDEX TERMS Second-order central difference particle filter (SCDPF), remaining useful life (RUL), state

of health (SOH), lithium-ion battery, particle filter.

I. INTRODUCTION

Prognostics and health management (PHM) is a discipline

composed of methods and technologies to evaluate system

reliability and safety under actual life cycle conditions to pre-

dict fault progression [1]. SOH and RUL, as key approaches

of PHM, are estimated to reduce the risk and maintenance

costs of battery management system (BMS) [2]. Capacity is

chosen as a main health indicator (HI) of SOH estimation,

since it plays a significant role in SOC estimation. RUL is

defined as the number of cycles remaining from the present

cycle to the end of life (EOL) which can be chosen as 70–80%

of the nominal capacity. A RUL prediction can be described

by the probability distribution function (PDF) of the RUL to

show the uncertainty of battery failure.

Model-based and data-driven methods can both be used to

predict SOH and RUL. Many data-driven methods have been

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiajie Fan .

studied extensively in recent years. Some of these methods

are model-free. Incremental capacity analysis (ICA) [3] and

differential voltage analysis (DVA) [4] are two kinds of data-

driven methods to find mapping from battery features to SOH

predictions. ICA and DVA use the normalized incremental

capacity peak (IC, dQ/dV − V ) and the peak of the differ-

ential voltage curve (DV, dV/dQ − Q), respectively, to esti-

mate the remaining capacity. Artificial neural network (ANN)

[5]–[8], support vector machine (SVM) [9], the Box-Cox

transformation [10] and the Wiener process [11] are data-

driven methods that describe the inherent degradation rela-

tionship and trend of the battery by machine learning. Hybrid

methods that are combinations of ANN, SVM and other data-

driven methods can overcome the limitations of an individual

method by better exploiting all available information [12],

[13]. Some data-driven methods can extract features from

the monitoring data and map them into a degradation model,

such as the Gaussian process regression (GPR) model [14],

Brownian motion model [15], auto-regressive model [16] and

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 37305

https://orcid.org/0000-0002-2459-3694
https://orcid.org/0000-0002-6642-0740
https://orcid.org/0000-0002-3026-4942
https://orcid.org/0000-0002-8110-5378
https://orcid.org/0000-0003-3892-5124
https://orcid.org/0000-0001-5400-737X


Y. Chen et al.: RUL Prediction and SOH Diagnosis of Lithium-Ion Battery Based on SCDPF

so on. Data-driven methods can obtain an accurate prediction

without a deep understanding of electro-chemical principles

and an explicit mathematical model. However, a large amount

of data is needed for data-driven methods, and their compu-

tational complexity is larger.

Model-based methods capture the long-term dependencies

of battery degradation based on mathematical aging models.

They can be used to predict SOH due to their mathematical

simplicity, wide range of validity and good adaptability [17].

A dual exponential model, as mentioned in [18], [19], is most

commonly used to represent the capacity degradation trends.

The single exponential model and second-order polynomial

model [20], which have fewer parameters, can also predict

battery capacity degradation, but these models are not as

accurate as the dual exponential model. A hybrid model

which composed of the Verhulst model and the exponential

model is adopted as the empirical degradation model in [21],

but this model is complicated.

Model-based methods are often combined with advanced

filter techniques, such as the unscented Kalman filter (UKF),

the particle filter (PF) [15], and various improved particle

filter (PF) algorithms [17], to predict the SOH and RUL of

batteries. A particle filter (PF) is a recursive estimator that

can be used in nonlinear and non-Gaussian systems based

on Bayesian and sequential Monte-Carlo methods with a

re-sampling technique. It does not require large amounts of

historical data since the data it receives are sequential, making

it more suitable for online applications. The samples for

the PF are obtained from an importance density function.

Since prior probability density is selected as the importance

density function and differs greatly from posterior probability

density, the samples are not accurate enough. In addition,

with increasing iterations, the diversity of the particles is

decreases. Then, degradation of the filtering algorithm will

be caused. Choosing a reasonable importance density func-

tion and re-sampling can address the particle degeneracy

phenomenon. Recently, EKF, UKF [22], and support vec-

tor regression [23], [24] have been proposed to obtain the

importance probability density function. A support vector

regression-particle filter (SVR-PF) method is proposed in

[24] to improve the standard PF method against the degener-

acy phenomenon. Experimental results show that the SVR-PF

method has better prediction capability than the PF. Monte

Carlo Markov Chain (MCMC) [22], Rao-Blackwellized par-

ticle filter (RBPF) [25], and regularized particle filter (RPF)

[26] can be used in re-sampling to improve the accuracy

of the PF. The Rao-Blackwellized particle filter (RBPF) in

[25] is performed to marginalize the probability distribution

of state-space sampling over a subspace of the probability

distribution of the state. The RBPF is a combination of a PF

and a Kalman filter (KF), which is also called a marginal-

ized PF. Experimental results highlight the effectiveness of

the proposed RBPF method with a maximum relative error

of 6.64%, which is less than the 14.3% error using a PF.

A novel method based on second-order central difference

particle filter (SCDPF) is proposed to improve the accuracy of

SOH estimation and RUL prediction. Experiments and com-

parison analysis between PF, UPF, and the proposed SCDPF

method are conducted to demonstrate the effectiveness and

satisfactory performance of the proposed method.

II. BASIC THEORY

A. PARTICLE FILTER

The particle filter is a recursive estimator based on Bayesian

theory. It uses theMonte Carlo method to draw particles from

a posterior distribution of the system state- space and assigns

a weight to each particle.

A general discrete-time state-space model is needed for the

PF to estimate the posterior PDF of the state vector. We estab-

lish a dual exponential model to describe the degradation of

lithium-ion batteries [18], as shown in (1).

Qk = a · eb·k + c · ed ·k , (1)

where k is the cycle number, Qk is the capacity of the battery

at cycle k, a and b are parameters which related to the internal

impedance, c and d are parameters which related to the aging

rate.

The state-space model for a PF can be written as (2).

x = f (xk ) = xk−1 + ωi

ωi =









ωa 0 0 0

0 ωb 0 0

0 0 ωc 0

0 0 0 ωd









yk = h(xk ) = xk (1) · exk (2)·k + xk (3) · exk (4)·k , (2)

where x = (a, b, c, d), yk is the capacity of the battery at

cycle k, N (0, σ ) is Gaussian noise with zero mean, and σ is

standard deviation.

The PF algorithm is elaborated in Table 1.

B. THE SECOND-ORDER CENTRAL DIFFERENCE PARTICLE

FILTER

The second-order central difference particle filter (SCDPF)

and unscented particle filter (UPF) are optimized methods

of particle filters using the second-order central difference

Kalman filter (SCDKF) and unscented Kalman filter (UKF)

respectively as important density functions to solve the prob-

lem of the particle degeneracy phenomenon of the PF. The

accuracy and stability of the SCDPF and UPF are higher than

those of the PF.

The SCDKF is a method to generate a nonlinear distribu-

tion by selecting a sampling point. It has a higher theoretical

precision than the UKF and is easier to implement. There is

no need for the SCDKF algorithm to calculate the Jacobian

matrix of the function. The complexity and computational

complexity of the algorithm are smaller than those of the

UKF. In addition, even if the system is discontinuous and

nonlinear, or a singular point exists in it, state estimation can

also be performed by SCDKF.

The second-order central difference filter (SCDF) uses the

Stirling interpolation formula to expand the nonlinear model
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TABLE 1. Procedures of the PF.

in the form of a central difference. Let x ∈ Rn be an n-

dimensional vector, y = y(x) is expanded at x using the

Stirling interpolation formula as shown in (3).

y ≈ f (x) + D∇x f (x) +
1

2!
D
2
∇x
f (x), (3)

where D1x and D
2
1x

are first-order and second-order differ-

ence operators, respectively, as shown in (4).

D1x f (x) =
1

λ
[

n
∑

p=1

1xpµpδp] f (x)

D
2
∇x
f (x) =

1

λ2
[

n
∑

p=1

1x2pδ
2
p

+

n
∑

p=1

n
∑

q=1
q6=p

1xp1xq(upδp)(uqδq)] f (x), (4)

where δp is the partial differential operator, µp is the mean

operator, and λ is the given step size, which can be optimally

chosen as λ2 = 3.

The SCDKF is described as follows:

Step 1: Generate first-order and second-order mean differ-

ence matrix:

Four square root decomposition operators can be obtained

by Cholesky decomposition as shown in (5).

Q = Sv × STv , R = Sw × STw

P = Sx × S
T

x , P̂ = Ŝx × ŜTx , (5)

where Q is the process noise covariance matrix, R is the mea-

suring noise covariance matrix, P is the prediction covariance

and P̂ is the estimated covariance. P and P̂ are constantly

corrected during the filtering process.

The first-order and second-order mean difference matrix

for every particle can be defined as in (6) and (7) based on the

interpolation approximation formula (3) and the four square

root decomposition operators obtained by (5).

(S
(1)

xx̂
(k))(i) = {(fi(x̂k−1 + λŝx,j, vk−1)

−fi(x̂k−1 − λŝx,j, vk−1))/2λ}; j = 1 : nx

(S(1)xv (k))
(i) = {(fi(x̂k−1, vk−1 + λsv,j)

−fi(x̂k−1, vk−1 − λsv,j))/2λ}; j = 1 : nx

(S
(1)
yx (k))

(i) = {(hi(xk + λsx,j,wk )

−hi(xk − λsx,j,wk ))/2λ}; j = 1 : nx

(S(1)yw (k))
(i) = {(hi(xk ,wk + λsw,j)

−hi(xk ,wk − λsw,j))/2λ}; j = 1 : nv, (6)

(S
(2)

xx̂
(k))(i) = {

(λ2 − 1)1/2

2λ2
(fi(x̂k−1 + λŝx,j, vk−1)

+ fi(x̂k−1 − λŝx,j, vk−1) − 2fi(x̂k−1, vk−1))};

j = 1 : nx

(S(2)xv (k))
(i) = {

(λ2 − 1)1/2

2λ2
(fi(x̂k−1, vk−1 + λsv,j)

+ fi(x̂k−1, vk−1 − λsv,j) − 2fi(x̂k−1, vk−1))};

j = 1 : nx

(S
(2)
yx (k))

(i) = {
(λ2 − 1)1/2

2λ2
(hi(xk + λsx,j,wk )

+ hi(xk − λsx,j,wk ) − 2hi(xk ,wk ))};

j = 1 : nx

(S(2)yw (k))
(i) = {

(λ2 − 1)1/2

2λ2
(hi(xk ,wk + λsw,j)

+ hi(xk ,wk − λsw,j) − 2hi(xk ,wk ))};

j = 1 : nv, (7)

where ŝx,j, sx,j, sv,j, and sw,j represent column j of Ŝx , Sx , Sv,

and Sw; x̂k−1 and xk−1 are the system state estimation and

prediction at cycle k− 1, respectively; nx is the dimension of

the state vector; and nv is the dimension of the measurement

noise vector.

Step 2: State forecast:

The one-step predictions of the particles are obtained

by (8).

x
(i)
k =

λ2 − nx − nv

λ2
fi(x̂k−1, vk−1)

+
1

2λ2

nv
∑

p=1

[fi(x̂k−1, vk−1+λsv,p)+fi(x̂k−1, vk−1−λsv,p)]

+
1

2λ2

nx
∑

p=1

[fi(x̂k−1+λŝx,p, vk−1)+fi(x̂k−1−λŝx,p, vk−1)].

(8)
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To obtain the Cholesky factor of the prediction state error

mean square matrix, the compound matrix Sx(k) is needed as

shown in (9).

S
(i)
x (k) = [(S

(1)

xx̂
(k))(i) (S(1)xv (k))

(i) (S
(1)
yx (k))

(i) (S(1)yw (k))
(i)].

(9)

QR decomposition is used to transform the rectangular

matrix Sx(k) into a triangularized square Cholesky factor,

which can be calculated by (10).
{

[Q,R] = qr(S
(i)
x (k)T )

S
(i)
x (k) = R.

(10)

We update the prediction error covariance matrix Pk by

(11).

P
(i)
k = S

(i)
x (k)S

(i)
x (k)T . (11)

The predictive mean square error matrix Sy(k) can be

calculated using (12).

S
(i)
y (k)= [(S

(1)
yx (k))

(i) (S(1)yw (k))
(i) (S

(2)
yx (k) )

(i) (S(2)yw (k))
(i)].

(12)

According to (13), the Cholesky factor Sy(k) can be

obtained by the House-holder transform of the compound

matrix in a similar way to Sx(k).
{

[Q,R] = qr(S
(i)
y (k)T )

S
(i)
y (k) = R.

(13)

Step 3: State update:

We calculate the predictive measurement capacity yk by

(14).

y
(i)
k =

λ2 − nx − nw

λ2
h(xk ,wk )

+
1

2λ2

nx
∑

p=1

[h(xk − λsx,p,wk ) + h(xk + λsx,p,wk )]

+
1

2λ2

nw
∑

p=1

[h(xk ,wk + λsw,p) + h(xk ,wk − λsw,p)].

(14)

The cross prediction error mean square matrix Pxy(k) can

be defined as in (15).

P(i)xy(k) = S
(i)
x (k)[(S

(1)
yx (k))

(i)]T . (15)

The Kalman optimal gain Kk can be obtained according to

(16).

K
(i)
k = P(i)xy(k)[S

(i)
y (k) × S(i)y (k)T ]−1. (16)

We update the state estimation x̂k based on the filter state

equation (17).

x̂
(i)
k = x

(i)
k + K

(i)
k (yk − y

(i)
k ), (17)

where yk is the actual capacity value.

FIGURE 1. A flow chart of SCDPF method.

We calculate the Cholesky factor Ŝx(k), in the same way as

Sx(k) and Sy(k), by (18).










Ŝ
(i)
x (k) = [S̄

(i)
x (k) − K

(i)
k (S

(1)
yx (k))

(i) K
(i)
k (S

(1)
yw (k))

(i)

K
(i)
k (S

(2)
yx (k))

(i) K
(i)
k (S

(2)
yw (k))

(i)]

[Q,R] = qr(Ŝ
(i)
x (k)T ); Ŝ

(i)
x (k) = R.

(18)

We update the covariance estimation P̂k using (19).

P̂
(i)
k = Ŝ(i)x (k)Ŝ(i)x (k)T . (19)

The state estimation x̂k obtained by the SCDKF method is

used in importance sampling as shown in (20).

x
(i)
k ∼ N (x̂

(i)
k ; P̂

(i)
k ). (20)

A complete flow chart is shown in Figure 1 to describe the

SCDPF method.

III. EXPERIMENTAL VALIDATION

In this section, two different datasets were used to validate

the developed approach. The datasets of type A (A12, A5)

were collected from the Center for Advanced Life Cycle

Engineering (CALCE) of the University ofMaryland and had

a rated capacity of 0.9 Ah. By the Arbin BT2000 Battery Test

system, the tests were conducted under room temperature.

The EOL threshold for capacity fade was set to 80% of the

rated capacity [25].

The other datasets of type B (B5, B6) were obtained from

theNASAPrognostic Center of Excellence (PCOE). The tests

were conducted with a battery prognostics test bed at room

temperature, and the batteries were subjected to different
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FIGURE 2. The measured and fitted capacity.

conditions, such as charging and discharging. The tests were

stopped when EOL was reached [27]. The rated capacity of

the two batteries was 2 Ah. The EOL thresholds for datasets

B5 and B6 were set to 70% of their initial capacity [22].

Based on the two datasets, the number of particles for the

PF method was 500. For the UPF and the proposed SCDPF

method, the number of particles was set as 200.

A. CAPACITY ESTIMATION

To compare the accuracy of different methods, the two

datasets are used for simulation. The fitted capacity results

FIGURE 3. Errors of capacity fitting.

of the B0005, B0006, A12, and A5 batteries obtained by the

PF, UPF, and SCDPF methods are shown in Figure 2. The

comparisons of fitted errors are shown in Figure 3.

The capacity comparison between fitted andmeasured data

clearly shows that the conformance is adequate. Apparently,

the SCDPF method ensures a better performance with less

error compared with the UPF and PF methods, especially for

B0005 and B0006. The UPF method is better than the PF

method because the error is lower.
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TABLE 2. Fitted errors of four cells.

FIGURE 4. SOH and RUL prediction for dataset B0005.

The fitted errors of the four cells are shown in Table 2.

The maximum error and the root mean square error (RMSE)

of B0005 obtained by the SCDPF fitting approach are

0.01115 Ah and 0.001353, while those obtained by the UPF

are 0.01176 Ah and 0.001557, and those obtained by the

PF are 0.01232 Ah and 0.003001. Similar results are found

FIGURE 5. Capacity and RUL prediction for dataset B0006.

for batteries B0006, A12, and A5. It can be concluded that

the proposed SCDPF fitting approach has a relatively high

accuracy as the errors are fewer than those of the other two

methods.

B. VERIFICATION OF SOH AND RUL PREDICTION

In this section, the degradation data of cells are utilized

to realize the SOH and RUL predictions by using the PF,

UPF, and SCDPF methods. SOH and RUL prediction for

dataset B0005 with different methods at 78 cycles are shown

in Figure 4. The prediction results obtained by the SCDPF

method are closer to the true capacity degradation, while the

results of the PF method are not as accurate.The maximum

value of the RUL PDF for dataset B0005 based on the pro-

posed SCDPF method is also closer to the real RUL. The

SOH and RUL predictions for dataset B0006 at 58 cycles

are shown in Figure 5. The prediction results and maximum

value of the RUL PDF obtained by the SCDPF method are

closer to the true value than those obtained by the PF andUPF,
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FIGURE 6. SOH and RUL prediction for dataset A12.

which indicates that the prediction accuracy of the proposed

SCDPF method is higher. What have to be noticed is that the

prediction results and RUL PDF for B0005 obtained by the

PF are closer to the true capacity compared to that obtained

by the UPF.

Figure 6 and Figure 7 show the SOH and RUL predictions

for datasets A12 andA5 using the PF, UPF, and SCDPFmeth-

ods at cycles 170 and 143, respectively. Similar to datasets

B0005 and B0006, the accuracy of the prediction results

and the RUL PDF obtained by the proposed SCDPF method

is slightly higher than that obtained by the UPF and PF.

In contrast to datasets B0005 and B0006, all prediction results

and the RUL PDF obtained by the UPF are closer to the true

capacity than those obtained by the PF.

Table 3 lists the RUL prediction results of B0005 and

B0006 obtained by the three methods. Each method was run

6 times. The average RUL errors of the SCDPF method for

B0005 and B0006 are smaller than that of the UPF and PF

methods. The errors of the PF for B0005 vary from 8 to

35 and those of the UPF vary from 8 to 35, while those of the

FIGURE 7. SOH and RUL prediction for dataset A5.

SCDPF vary from 9 to 11, which means that the stability of

the SCDPF is higher. For the other three cells, the conclusions

are similar. Concerning to the uncertainty assessment, it is

obvious that the intervals of the proposed SCDPF method

have smaller PDF width than those of the PF method for

B0005. The PDFwidth of the UPFmethod is almost the same

as that of the SCDPF method. In addition, the interval of the

SCDPF method is closer to the true RUL than that of the PF

method. For B0006, the PDF width of the SCDPF method is

smaller than that of the PF method but higher than that of the

UPF method. Notably, some of the intervals obtained by the

proposed SCDPF method can bracket the true RUL precisely,

while most of those obtained by the two other methods can

not. In general, for B0005 and B0006, the precision and

stability of the proposed SCDPFmethod are higher than those

of the other two methods.

The RUL prediction results of A12 and A5 obtained by

the PF, UPF, and SCDPF methods are shown in Table 4. The

average RUL errors and average PDF width of the SCDPF
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TABLE 3. RUL prediction results of B0005 and B0006 for 6 runs.

TABLE 4. RUL prediction results of A12 and A5 for 6 runs.

method for A12 and A5 are both smaller than those of the

UPF and PFmethods, which can lead to the same conclusions

as discussed for B0005 and B0006.

IV. CONCLUSION

In this work, a method based on a second-order central dif-

ference particle filter (SCDPF) is proposed to predict the

SOH and RUL of lithium-ion batteries. Based on a dual

exponential model, a second-order central difference Kalman

filter is used to obtain the importance probability density

function to solve the problem of the degeneracy phenomenon

in a PF. As an improvement of the particle filter algorithm,

the SCDPF method can perform better than traditional meth-

ods. To validate the effectiveness and stability of the proposed

method, datasets from NASA and CALCE are applied for

SOH and RUL predictions.

The capacity comparison between the fitted and measured

data shows that the fitted data obtained by the PF, UPF, and

SCDPF methods can all follow the actual capacity value very

well, but the SCDPF method has better filtering precision.

The maximum error and the root mean square error (RMSE)

of the SCDPF fitting approach are quite small, and they are

less than those of theUPF and PFmethods. For SOH andRUL

predictions, the results obtained by the SCDPF method are

closer to the true capacity and RUL, which indicates that the

accuracy is higher. Concerning the uncertainty assessment,

RUL prediction results for 6 runs obtained by the three meth-

ods are made. The average RUL errors and PDF width of the

SCDPF method are smaller than those of the other methods,

confirming that the proposed method is more accurate and

stable.
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