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ABSTRACT A remaining useful life (RUL) prediction method for an external gear pump is proposed

by Bayesian regularized radial basis function neural network (Trainbr-RBFNN). The variational mode

decomposition (VMD) algorithm has been used to denoise the vibration data of accelerated degradation

test, followed by which, using the Hilbert modulation the reconstructed signal has been demodulated. After

which, compared with the ensemble empirical mode decomposition (EEMD) algorithm and the modified

ensemble empirical mode decomposition (MEEMD) algorithm. Subsequently, factor analysis (FA) has been

selected to realize the fusion of various characteristic parameters, after which, the external gear pump’s

degradation evaluation index established and analyzed. Finally, the degradation evaluation index has been

used to train the Trainbr-RBFNN model, and achieve gear pump degradation evaluation model for RUL

prediction. Experiment results evidence that the RUL of the external gear pump can be accurately evaluated

with the method used.

INDEX TERMS External gear pump, RUL, Trainbr-RBFNN, VMD, parameter fusion.

I. INTRODUCTION

As a typical hydraulic pump, gear pump is widely used in the

fields of mobile machine, ship and aerospace, and its service

life and performance have a significant effect on the normal

operation of mechanical equipment. Various factors, such

as maintenance status and working environment, and others

easily affects the gear pump’s performance status. Thus, it is

of great significance to study the life prediction technology of

hydraulic pump for fault prediction and health management

of equipment [1]–[3].

Performance degradation-based method of life prediction

can derive the product’s hidden life information without

observing the occurrence of failure. In fact, it has emerged

as a high reliability and long-life product reliability evalu-

ation and life prediction development trend [4]. Under the

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Li .

condition of accelerated test, it is the current research focus

to establish a proper model to accurately predict the RUL of

in-service parts. RUL prediction models of various hydraulic

pumps can be roughly divided into physical model, statisti-

cal and random process model, machine learning algorithm

model, etc.

In terms of physical models, Ma et al. [5] combined with

the evaluationmethod of degradationmodel parameters under

Weibull distribution, selected high temperature and small

flow as the performance degradation parameters of the pis-

ton pump, carried out reliability evaluation and RUL under

Weibull distribution. Using pressure and speed as accelera-

tion stress together, Huang et al. [6] conducted an accelerated

degradation test on the piston pump, extracted high tempera-

ture and small flow signals as degradation characteristics, and

established a prediction method for the remaining life of the

piston pump. Based on the dynamic randomness of the per-

formance degradation trajectory of the hydraulic pump, the
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Wiener process in the random process can be used to describe

the performance degradation process of the hydraulic pump.

According to Wang et al. [1] the return oil flow character-

izes the internal wear state of the axial piston pump. Based

on Wiener process, the performance degradation model of

piston pump is established. With gear pump as the research

object Liu et al. [7] used the Wiener process with random

effect and established the gear pump’s volumetric efficiency

and total efficiency degradation process model. Based on

binary Wiener process, a small sample reliable life prediction

method is proposed.

The machine learning algorithm model has powerful data

processing ability and good robustness, and it has strong

adaptability to the degradation trajectory of the research

object, so it is widely used. Through oil state detection, the

hydraulic pump’s life characteristic information was obtained

by He et al. [8] Thereby, based on the improved gray neural

network, they established a prediction model of gray support

vector machine. Jiao et al. [9] built a airborne fuel pump

life test platform, extracted the average pressure signal as

the performance degradation characteristics, and proposed

a combined RUL prediction method based on adaptive dif-

ferential evaluation grey wolf optimization-support vector

machine (ADEGWO-SVM). According to the degradation

characteristics of the plunger pump, Li et al. [10] proposed

a method to extract the degradation characteristics of the

hydraulic pump based on the relative entropy, and predicted

the remaining life of the plunger pump.

Thus, the current research is usually based on a sin-

gle characteristic parameter obtained from the time-domain,

frequency-domain or time-frequency-domain to predict the

RUL of the hydraulic pump. It can only reflect the degrada-

tion trend of the hydraulic pump to a certain extent, but cannot

predict the performance degradation trend of the hydraulic

pump under the working environment affected by various

factors.

In line with the above-cited concerns, based on Trainbr-

RBFNN – which belongs to feed-forward neural network –

a RUL prediction method of gear pump is proposed. Each

characteristic parameter obtained from the time-domain,

frequency-domain and time-frequency-domain was fused to

construct degradation index. The degenerate fusion index was

used to train the Trainbr-RBFNN, and a gear pump degrada-

tion model was constructed. Through the degradation model,

the gear pump flow is effectively predicted, and the RUL

prediction of the gear pump is completed.

In the rest of the paper: Section 2: The algorithm used in

this paper is introduced. Section 3: The characterization of

the degradation performance of the external gear pump is

selected and in noise reduction the superiority of the varia-

tional mode decomposition algorithm is compared and ana-

lyzed. Section 4: The degradation performance indicators are

analyzed and with multiple feature parameters degradation

fusion indicators were analyzed and constructed. Section 5:

The Trainbr-RBFNN algorithm is elaborated and by the RUL

prediction of the external gear pump the superiority of the

algorithm is verified. Section 6: The paper is brought to a

conclusion.

II. PRELIMINARIES

In this section, the VMD method, the RBFNN prediction

method, and the Bayesian regularization algorithm (Trainbr)

principle is introduced.

A. VARIATIONAL MODE DECOMPOSITION

According to VMD, the intrinsic mode function (IMF) is

defined as the amplitude-modulated-frequency-modulated

signal, as shown below:

uk (t) = Ak (t) cos (ϕk (t)) (1)

where, Ak (t) is the instantaneous amplitude of uk (t), ϕk (t)

is a non-decreasing function, the instantaneous frequency of

uk (t) is ωk (t), and ωk (t) := ϕ′k (t).

VMD establishes the following constraint variational

model:




min
{uk },{ωk }

{∑
k

∥∥∥∂t
[(

δ (t)+
j

π t

)
∗ uk (t)

]
e−jωk t

∥∥∥
2

2

}

s.t.
∑
k

uk = f
(2)

where, uk is themodal function, and {uk} := {u1, · · · , uk},ωk
is the frequency of each center, and {ωk} := {ω1, · · · , ωk}, k

is the number of modes to be decomposed, δ (t) is the Dirac

function.

It is essential change the constrained variational problem

into a non-constrained variational problem, when solving the

variational problem. As such, the Lagrange multiplication

operator λ (t) and the second penalty factor α are introduced

into it. This section gives the extended Lagrangian expres-

sion.

L ({uk} , {ωk} , λ)

: = α
∑

k

∥∥∥∥∂t
[(

δ (t)+
j

π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥
2

2

+

∥∥∥∥∥f (t)−
∑

k

uk (t)

∥∥∥∥∥

2

2

+

〈
λ (t) , f (t)−

∑

k

uk (t)

〉

(3)

where α is the second penalty factor.

The alternate direction method of multipliers is used to

solve the above variational problem, and the saddle point of

the extended Lagrangian expression is obtained by iterative

optimization of un+1k , ωn+1
k , λn+1. The iteration steps are as

follows:

(1) Initialize
{
û1k
}
,
{
ω1
k

}
, λ̂1, n← 0.

(2) n← n+ 1, execute the entire loop.

(3) Update uk :

ûn+1k (ω)←

f̂ (ω)−
∑
i<k

ûn+1i (ω)−
∑
i>k

ûni (ω)+
λ̂n(ω)
2

1+ 2α
(
ω − ωn

k

)2
(4)
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FIGURE 1. RBF neural network topology diagram.

(4) Update ωk

ωn+1
k ←

∫∞
0 ω

∣∣∣ûn+1k (ω)

∣∣∣
2
dω

∫∞
0

∣∣∣ûn+1k (ω)

∣∣∣
2
dω

(5)

(5) Update λ̂

λ̂n+1 (ω)← λ̂n (ω)+ τ

(
f̂ (ω)−

∑

k

ûn+1k (ω)

)
(6)

By repeating the above steps until the following for-

mulas 6 are satisfied, K modal components can be

obtained.

∑

k

∥∥∥̂un+1k − ûnk

∥∥∥
2

2

/∥∥̂unk
∥∥2
2

< ε (7)

where, ε and τ are the tolerance range and Lagrangian

multiplier update parameter respectively, ε = 10−7 and

τ = 0.

B. RADIAL BASIS FUNCTION NEURAL NETWORK

Radial basis function (RBF) neural network is a three-layer

forward network, which can approximate any continuous

nonlinear network with any accuracy. It has been widely

used in speech recognition, function approximation, pattern

recognition, image processing and fault diagnosis [13]. The

input layer is the first layer which consists of signal source

nodes. The second layer is the hidden layer and their number

depends on the solutions needed. The third layer is the output

layer, which is the response to the input mode. Fig. 1 presents

the RBF neural network topology.

In the figure, x is the input vector, and x =

(x1, x2, · · · , xn)
T ∈ Rn, W is the output weight matrix, and

W ∈ Rh×m, y is network output, and y =
(
y1,y2,··· ,ym

)
, c is the

center of network hidden layer node, and c =
(
c1,c2,··· ,ch

)
,6

indicates that the neuron in the output layer adopts the linear

activation function.

In this paper, a Gaussian function that is easy to program

and calculate is used as the activation function of the RBF

neural network. The output of the network is as follows:

yj =

h∑

i=1

Wij exp

(
−

1

2σ 2
‖xk − ci‖

2

)
(8)

where, σ is the variance between the expected output and the

actual output of the sample, and the formula is as follows:

σ =
1

n

m∑

j=1

∥∥dj − yjci
∥∥2 (9)

where, i represents the number of hidden layer nodes, and

i = 1, 2, · · · , h, j is the number of network outputs, and

j = 1, 2, · · · ,m, k represents the number of network inputs,

and k = 1, 2, · · · , n, d represents the expected output of the

sample.

C. BAYESIAN REGULARIZATION ALGORITHM

In the training process of the neural network, Trainbr mini-

mizes the error of the performance function by introducing a

correction function. The correction function is as follows:

f (w) = VEw + βEd (10)

where, f (w) is the modified performance function, V and β

are the regularization parameters, Ew is the mean square error

of the network ownership value, and Ed is the mean square

error of the network output result.

Trainbr can adjust the size of V and β adaptively, so as

to optimize the network weight. Under the Bayesian rule,

when the learning set is determined, the posterior probability

density function of the weight is as follows:

p (ω |D,V , β,M ) =
p (D |ω, β,M ) p (ω |V ,M )

p (D |V , β,M )
(11)

where, ω is the weight vector, D is the learning set data, M

is the adopted neural network model, p (D |V , β,M ) is the

standardization factor, to ensure that the overall probability

is 1, p (ω |V ,M ) is the prior probability density function

of the weight vector, and p (D |ω, β,M ) is the probability

density function output when the weight is given.

Assuming that the noise and weight vector in the sample

data are Gaussian distribution, the following formula holds.




p (D |ω, β,M ) =
exp (−βEd )

Zn (β)

p (ω |V ,M ) =
exp (−VEw)

Zm (V )

(12)

where, Zn (β) =
(
π
/
β
)n/2, and Zm (V ) =

(
π
/
V
)m/2.

Take formula (12) into formula (11), which can be written

as follows:

p (ω |D,V , β,M ) =
e−(VEw+βEd )

/
(Zn (β)Zm (V ))

p (D |V , β,M )

=
e−f (ω)

Z (V , β)
(13)

where, Z (V , β) = p (D |V , β,M )
/
(Zn (β)Zm (V )).
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FIGURE 2. Test system schematic diagram.

In the Bayesian model, the posterior probability den-

sity function p (ω |D,V , β,M ) of the optimal weight vector

should be the largest. In addition, the performance function

f (ω) should be the minimum when Z (V , β) is determined.

The optimal solution of v and β at the minimum point ω0 of

f (ω) is obtained as follows:




V =
γ

2Ew (ω0)

β =
m− γ

2Ed (ω0)

(14)

where, γ is the number of effective parameters of neural

network, and m is the total number of parameters of neural

network.

III. CONSTRUCTION OF TEST BENCH AND DATA

COLLECTION AND PROCESSING

The step-stress acceleration test is conducted by accelerated

life test(ALT)bench on four Hefei Changyuan gear pumps

CBW-F304 of the same type. Throughout the ALT, in order

to monitor and collect changes in the output flow, vibration of

the gear pump, torque and speed, various sensors are installed

in the test. Fig. 2 shows the principle of the gear pump ALT

bench.

The main purpose of the ALT is to collect vibration signal,

torque speed signal and flow signal to predict the life of the

gear pump. In the vertical direction, horizontal direction and

axial direction of the gear pump, acceleration sensors are

installed to collect vibration signals. The experimental device

is shown in Fig. 3:

In this experiment, the external gear pump is loaded with

step-stress. The minimum pressure is 23 MPa, and the max-

imum pressure is 27 MPa. According to the industry stan-

dard Hydraulic gear pump JBT7014.2-2018, under the rated

working condition, the volume efficiency is less than 82%,

which is considered as failure. Using quantitative truncation

method, when one of the four pumps reaches the specified

amount of degradation for two consecutive measurements,

the stress is raised to the next stress stage, as shown in Table 1:

FIGURE 3. Test device physical map.

TABLE 1. Quantitative truncation method.

The ALT is to collect data every 10 minutes. The specific

test process is as follows:

(1) Pressure of the collection branch to be adjusted

to 20 Mpa and the test pressure to 23 Mpa;

(2) The system to be switched to the collection branch and

the initial flow of the gear pump recorded;

(3) During the experiment, the system has been working

under the accelerated stress. Every tenminutes, the sys-

tem will automatically switch to the acquisition branch

for data acquisition.

(4) This experiment uses a quantitative truncation method.

When the flow of the external gear pump drops to the

specified degradation amount, the stress is increased to

the next stage. In the final stress stage, when the flow

reaches the specified degradation amount, the test is

terminated.

During the entire ALT cycle of the gear pump, the vibration

test data obtained in the early stage, the middle stage and the

later stage of ALT are selected for analysis and processing.

Fig. 4 shows that change trend of gear pump vibration signal

in time-domain.

During different ALT periods, the change in trend of the

vibration signal in the frequency-domain of the gear pump is

shown in Fig. 5.

The vibration signal of gear pump contains a lot of life

characteristic information. No matter what kind of fault the

gear pump is, it can be seen from the vibration of pump

shaft and pump shell. It can be seen from time-domain and

frequency-domain that the amplitude and frequency of vibra-

tion signal of gear pump change with the operation of ALT,

which reflects the performance degradation trend of the gear

pump, so vibration signal can be chosen as the characteriza-

tion of the degradation performance of external gear pump.

VOLUME 8, 2020 107501
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FIGURE 4. Time-domain plot of vibration signals at different test
periods:(a) Early test, (b) Mid test, and (c) Late test.

FIGURE 5. Frequency-domain diagram of vibration signals at different
test periods:(a) Early test, (b) Mid test, and (c) Late test.

In this paper, the VMD method is selected to reduce the

noise of vibration signal, and the envelope demodulation of

the reconstructed signal is carried out. A comparative analysis

of simulation signals was used to illustrate the superiority

of the VMD algorithm relative to the EEMD and MEEMD

algorithms. The simulation signal x (t) is composed of two

cosine signals and a 2db white noise signal, wherein the

expression of the cosine signal is as follows:

x1 (t) = cos (2π × 2t) (15)

x2 (t) =
1

4
cos(2π × 24t) (16)

The following figure illustrates the simulation signal com-

position process:

In order to extract the fault information, in addition to

filtering and reducing the noise of the measured signal, the

envelope signal must be obtained through Hilbert transform

in order to extract the fault information in the low-frequency

signal from the high-frequency signal. The EEMD, MEEMD

and VMD algorithms are used to perform noise reduction

analysis on the simulation signals. Figs. 7-9 show the steps to

obtain IMF components of the simulation signals under the

three algorithms:

FIGURE 6. Schematic diagram of simulation signal composition:
(a) Cosine signal 1, (b) Cosine signal 2, (c) noise signal, and (d) Simulation
signal.

FIGURE 7. Decomposition results of EEMD method: (a) Component of
IMF, and (b) Spectrum of IMF.

Figs. 7-8 shows that the frequency components of the first

four IMF components of the simulation signal are still com-

plex after noise reduction by the EEMD algorithm. Although

the high-frequency signal of the fifth IMF component is

reduced, the mode aliasing phenomenon appears, and the

noise reduction effect is not obvious. After the noise reduction

process of theMEEMD algorithm, the frequency components

of the first IMF component are complex, and the second and

third IMF components also exhibit modal aliasing.

Fig. 9 shows that VMD has a better decomposition effect

as (i) the fluctuation trend of the first modal component signal

basically conforms to the original simulated signal; (ii) there

is no modal aliasing problem for each modal component.

After the simulation signal is modally decomposed by

EEMD, MEEMD and VMD methods, the effective infor-

mation contained in the signal is decomposed into various

107502 VOLUME 8, 2020
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FIGURE 8. Decomposition results of MEEMD method: (a) Component of
IMF, and (b) Spectrum of IMF.

FIGURE 9. Decomposition results of VMD method: (a) Component of IMF,
and (b) Spectrum of IMF.

IMF components. If there is unreal information in the IMF

component, it will cause a negative impact on the signal

reconstruction, so screening out the useful IMF component

is the premise of signal reconstruction. To filter out the

useful component and the false component effectively the

correlation coefficient between each IMF component and

the original signal is calculated using correlation coefficient

method.

Formula (17) presents the calculation process of the corre-

lation coefficient:

R =

∞∑
n=0

x (n) y (n)

√
∞∑
n=0

x2 (n)
∞∑
n=0

y2 (n)

(17)

where, x (n) and y (n) are the two sequences for solving the

correlation coefficient.

This method is an important method to judge whether the

IMF component is effective or not. Its threshold value is set

to 10% of the maximum value in the correlation coefficient

sequence. The correlation between the IMF component and

the original signal is proportionate to the correlation coeffi-

cient. According to formula (17), the correlation coefficient

FIGURE 10. Signal reconstruction diagram after decomposition by EEMD,
MEEMD and VMD: (a) Simulation signal, (b) EEMD Reconstructed signal,
(c) MEEMD Reconstructed signal, AND (d) VMD Reconstructed signal.

TABLE 2. Calculation results of SNR and RMSE.

R of each IMF component relative to the simulation signal

is calculated, and the effective component is screened out

according to the correlation coefficient R. Finally, the effec-

tive components of the three methods are selected for signal

reconstruction, as shown in Fig. 10.

It can be seen from Fig. 10 that in the reconstructed wave-

form of simulated signal processed by EEMD and MEEMD

methods, the frequency component is still relatively com-

plex and the noise reduction effect is not good. After noise

reduction by the VMDmethod, the resulting waveform of the

reconstructed signal is clearer and the noise reduction effect

is better.

Also, the signal to noise ratio (SNR) and the root mean

square error (RMSE) is used to further evaluate the effect

of three noise reduction methods. Based on the SNR and the

RMSE, Table 2 shows the calculation results of the three noise

reduction methods.

It can be seen from Table 2 that after denoising the signal

based on the VMD method, the SNR obtained is the largest

and the RMSE is the smallest, indicating that the VMD

method has the best noise reduction effect.

In view of the signal modulation phenomenon of the vibra-

tion signal of the gear pump measured in the experiment,

this paper uses the Hilbert transform method to perform

envelope demodulation on the signal after noise reduction and

reconstruction. After the vibration signal undergoes Hilbert

transform, the negative frequency component of the analyt-

ical signal is zero, and only the analytical signal containing

the positive frequency component is obtained, and the size

VOLUME 8, 2020 107503
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FIGURE 11. Vibration data of the gear pump at a certain time: (a) X axis
amplitude, (b) Y axis amplitude, AND (c) Z axis amplitude.

of the signal becomes twice the original. In this way, the

real signal of fault information can be demodulated from the

actual signal.

IV. CONSTRUCTION OF DEGRADATION INDEX BASED ON

MULTI FEATURE PARAMETER FUSION

This paper focuses on one of the four tested gear pumps to

analyze its vibration data using the No. 2 gear pump as an

example. Obtain the vibration data in three directions of x-

axis, y-axis, and z-axis at a certain moment, as shown in Fig.

11.

As can be seen from Fig. 11, in the vibration data of the

gear pump in three directions, the amplitude in the z-axis

direction is the largest. In addition, in the ALT, the wear of the

end face of the gear pump is the most serious, so the vibration

data in the z-axis direction is selected for the extraction and

analysis of characteristic parameters.

As the earliest and most commonly used feature extraction

method, time domain analysis has a wide range of appli-

cations in fault diagnosis and life prediction of mechanical

equipment. The measured vibration signal is processed first

to obtain the envelope demodulation signal in the degradation

process. Following which, features of the envelope demod-

ulation signal are extracted through the analysis of time-

domain. The maximum, minimum, peak-to-peak, and mean

values over the ALT cyclical trends are shown in Fig. 12.

It can be seen from the figure that in the whole ALT cycle

of gear pump, the maximum value, minimum value and peak-

to-peak value only fluctuate slightly in the local range, which

can not reflect the performance degradation trend of gear

pump and can not be used for the RUL prediction of gear

pump. It fails to reflect the degradation trend of gear pump

performance as the overall change trend is still fixed in a

small range, even though the mean value fluctuates greatly

in a certain time point.

Over the entire ALT cycle, the trend of variance, margin,

crest factor, and kurtosis are presented in Fig. 13.

The kurtosis is a dimensionless parameter, which is partic-

ularly sensitive to shock signals, and is particularly suitable

for surface damage. The kurtosis index, in the middle and

FIGURE 12. Time-domain characteristic parameters: (a) Maximum,
(b) Minimum, (c) Peak-to-peak, AND (d) Mean.

FIGURE 13. Time-domain characteristic parameters: (a) Variance,
(b) Margin, (c) Crest factor, AND (d) Kurtosis.

FIGURE 14. Time-domain characteristic parameters: (a) Root mean
square value, AND (b) Pulse index.

late stages of the ALT, has a slight upward trend and clearly

indicates the failure and performance degradation of gear

pump.

Over the entire ALT period, the trend of the RMS value and

pulse index is seen in Fig. 14.

In the middle and later period of gear pump working,

the value of RMS has a slight upward trend. Thus, indi-

cating a large vibration in the middle and later period for

the gear pump with aggravated performance degradation,

which reflects the performance degradation trend of gear

pump.

107504 VOLUME 8, 2020
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FIGURE 15. Frequency-domain characteristic parameters: (a) Frequency
standard deviation, (b) Mean square frequency, (c) Frequency center, AND
(d) Frequency-domain amplitude average.

FIGURE 16. Energy diagram of envelope signal.

This paper, as such, selects the kurtosis and RMS as the

degradation performance index of the gear pump.

The characteristic index of frequency domain is analyzed

by fast Fourier transform. Over the entire ALT period, the

trend of the frequency standard deviation, the mean square

frequency, the frequency center, and the average value of the

frequency-domain are presented in Fig. 15.

The four characteristic parameters of frequency-domain

have a slight upward trend over the ALT cycle. Thus, suggest-

ing that during the test, the gear pump performance gradually

degenerates with more and more severe vibrations.

This paper chooses a method combining VMD and Hilbert

transform to process the nonlinear vibration signal of gear

pump. After the signal is subjected to VMD noise reduction

processing, the first IMF obtained is the effective component.

The envelope demodulation of the effective component is

carried out, and the energy diagram of the envelope signal is

shown in Fig. 16. It can be seen from the figure that when the

gear pump deteriorates seriously in the later stage, the energy

value of envelope signal will rise.

Thus, a high dimension matrix can be formed by combin-

ing the six characteristic parameters of gear pump (i.e. kur-

tosis, RMS, frequency standard deviation, mean square fre-

quency, frequency-domain amplitude average and the energy

of the first IMF) with the torque and speed of gear pump.

Before the RUL prediction of the gear pump, the FA

method is needed to feature fusion and dimension reduction

TABLE 3. No. 2 pump.

FIGURE 17. No. 2 pump: (a) Output flow change trend, AND
(b) Degradation fusion index.

of the high dimension matrix, and a low latitude matrix

containing the life information of the gear pump is obtained,

which forms a new feature vector. The contribution rate indi-

cates the percentage of the gear pump feature information

contained in the feature vector to the original high dimension

Matrix information. Typically, the cumulative contribution

rate of factor analysis reaches 85%, which can meet the use

requirements.

The six characteristic parameters of No. 2 gear pump in

time-domain, frequency-domain and time-frequency-domain

are selected and fused with torque and speed to get the

eigenvector. Table 3 presents the cumulative contribution rate

of each feature vector.

It can be seen from Table 3 that the cumulative contribution

rate of the first feature vector has reached 96%, which can

characterize the degraded trend of the gear and achieve the

experimental purpose. Therefore, the first feature vector is

selected as the gear pump degraded fusion index. Fig. 17

presents the degradation fusion index and flow change trend

of No. 2 gear pump.

In the flow rate trend graph, there are two horizontal dashed

lines. The first dotted line is the cutoff line of the failure

threshold of gear pump. According to the industry standard

Hydraulic gear pump JBT7014.2-2018, when the pressure of

gear pump is within 10-25mpa, the volumetric efficiency is

lower than 82%, and the parts are worn or damaged, it is

considered as failure. The purpose of setting this dotted line is

to determine the failure time of gear pump. The second dotted

line is the cut-off line when the volumetric efficiency of gear
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FIGURE 18. Prediction results of degradation fusion index of No. 2 pump.

FIGURE 19. Pump No. 2 prediction error.

pump reaches 75%. The purpose of setting this dotted line is

to further verify the accuracy of Trainbr-RBFNN algorithm

when the failure threshold is reached.

For the No. 2 gear pump, Holt two-parameter exponential

smoothing method is used for the degradation fusion index

prediction. Fig. 18 shows the prediction results.

From the middle and later period of the test, i.e. 600 hours,

the degradation fusion index is predicted, and the prediction

results are shown in the blue box in Fig. 18. The prediction

results can be used for RUL prediction as they are largely in

line with the actual trend. The error between the forecast and

the actual trend is seen in Fig. 19.

It can be seen from Fig. 19 that the prediction error of

the degraded fusion index of the No. 2 tested gear pump

is very small, and it is basically maintained at about 1%.

Thus, Holt two-parameter exponential smoothingmethod can

provide accurate degradation fusion index predictions as well

as smoothen the degradation trajectory.

V. LIFE PREDICTION OF EXTERNAL GEAR PUMP

It is essential to train the network model, before using

Trainbr-RBFNN for the gear pumps’ RUL prediction. The

training set data of the Trainbr-RBFNN model is the output

flow and degradation fusion index between the 0h and 650h of

the four gear pumps.While, the test set data is the degradation

fusion index between 650h and 1000h. However, before the

model training and prediction, the training set data and the test

set data need to be normalized. The purpose of normalization

processing is to make the training set data and the test set

FIGURE 20. Comparison of actual flow value of No. 2 pump and predicted
value of RBFNN.

FIGURE 21. Comparison of actual flow value of No. 2 pump and ANFIS
predicted value.

FIGURE 22. Comparison of actual flow value of No. 2 pump with
Trainbr-BP predicted value.

data have the same order of magnitude, so as to eliminate the

influence of dimension.

In order to verify the accuracy of the algorithm in this

paper, the prediction results of this algorithm are compared

with the prediction results of RBFNN algorithm, adaptive-

network-based fuzzy inference system (ANFIS) algorithm

and Trainbr back propagation (BP) algorithm respectively.

The comparison results are shown in Figs. 20-23. The solid

black line in these figures is the fitted line between the actual

flow value and the predicted flow value. In addition, there are

two horizontal dashes in each figure, which have the same

meaning as the dashes in Figure 17.

According to Figs. 20-23 shows that compared with the

actual values, the fitting effect of the predicted values of the

gear pump flow through the Trainbr-RBFNN algorithm is

better than the other three methods. As shown in Table 4,

the mean square error of the Trainbr-RBFNN algorithm is
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FIGURE 23. Comparison of the actual flow value of No. 2 pump and the
predicted value of Trainbr-RBFNN.

TABLE 4. Mean square error of four algorithms.

the smallest among the four prediction algorithms. Thus, it is

safely inferred that the prediction accuracy of the method is

the highest.

Compared with other life distribution models, Weibull

distribution has the advantages of being suitable for small

sample sampling, and has strong adaptability to various types

of test data [36]. The life of hydraulic pump depends on the

weak link, so it is suitable to use Weibull distribution as the

life distribution model.

When studying the Weibull distribution, in order to

improve its universality, generally make γ = 0. At this time,

the three-parameter Weibull distribution is converted into a

two-parameter Weibull distribution, which greatly reduces

the difficulty of parameter solving and improves the appli-

cability. According to a large number of practical experience,

and combined with the characteristics of external gear pump,

this paper uses two parameter Weibull distribution model to

process the failure data of step-stress ALT, and its distribution

function is as follows:

F (t) = 1− exp

[
−

(
t

η

)m]
(18)

where, m is the shape parameter, η is the scale parameter,

which also represents the characteristic life of the product.

In addition, the probability density function under the two

parameter Weibull distribution is shown in formula (19), and

the mean time to failure (MTTF) is shown in formula (20).

f (t) =
m

η

(
t

η

)m−1
e
−
(
t
η

)m
(19)

MTTF =

∫ ∞

−∞

tf (t) = ηŴ

(
1+

1

m

)
(20)

It can be seen from the above formula that the problem of

average life and characteristic life of gear pump can be solved

by solving parameters m and η of Weibull distribution.

TABLE 5. Reliability parameter index.

The basic idea of ALT is to extrapolate the life charac-

teristics under normal stress by using the life characteristics

under high stress level. The key to realizing this basic idea is

to establish the relationship between life characteristics and

stress level. The relationship is called the acceleration model.

The Arrhenius model and the inverse power lawmodel are the

most commonly used single-stress acceleration models, and

their linearized form can be uniformly written as follows:

ln ξ = a+ bφ (s) (21)

where, ξ is the life characteristic, and φ (s) is the known

function of the stress level s.

When the life of the product follows the Weibull distribu-

tion, the characteristic life η is commonly used as the life

feature, so its acceleration model is as follows:

ln ηi = a+ bϕ (si) (22)

where, a and b are the estimated parameters, φ (si) is a func-

tion of the stress level, i indicates different levels of stress.

The parameters of the Weibull distribution model are esti-

mated by the maximum likelihood estimation method, and

then the reliability of the hydraulic pump is evaluated. The

reliability parameters of the external gear pump of this sample

were obtained through calculation. Table 5 gives the parame-

ters under usual stress:

It can be seen from the above table that the RUL of the

external gear pump predicted by this paper is similar to the

actual RUL. The relative error is about 1.5%. It shows that

the prediction method of RUL of external gear pump based

on Trainbr-RBFNN has high accuracy.

VI. CONCLUSIONS

(1) A signal denoising method based on VMD-Hilbert is pro-

posed. In addition, based on the test signal and the traditional

noise reduction decompositionmethods EEMDandMEEMD

are compared, the results show that the VMD-Hilbert method

has better noise reduction effect.

(2) The degradation index of multi-feature parameter

fusion is constructed. The characteristic parameters of the

time-domain, frequency-domain and time-frequency-domain

are used to extract and analyze the degradation performance

index of vibration signal. The multi-feature parameters are

fused and dimensionally reduced using the FA method.

Finally, for increasing the robustness and smoothness of

degradation fusion index, the Holt two-parameter exponential

smoothing method is proposed. Through this method, the

accurate prediction of the degradation fusion index of the

external gear pump is realized.
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(3) In this paper, the output flow of the external gear pump

serves as the basis for failure judgment, and a RUL prediction

method of the external gear pump based on Trainbr-RBFNN

is proposed. Trainbr-RBFNN was trained based on the flow

rate and degradation fusion index of gear pump. The degra-

dation assessment model of gear pump was established, and

the failure time of the gear pump under accelerated stress

is effectively predicted. In addition, according to the life

distribution model and acceleration model of the gear pump,

the failure time under usual stress was deduced, and the RUL

prediction of the external gear pump is completed.
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