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Aiming at reducing the production downtime and maintenance cost, prognostics and health management (PHM) of rotating
machinery o�en includes the remaining useful life (RUL) prediction of bearings. In this paper, amethod combining the generalized
Weibull failure rate function (WFRF) and radial basis function (RBF) neural network is developed to dealwith theRULprediction of
bearings. A novel indicator, namely, the power value on the sensitive frequency band (SFB), is proposed to track bearing degradation
process. GeneralizedWFRF is used to �t the degradation indicator series to reduce the eect of noise and avoid areas of �uctuation
in the time domain. RBF neural network is employed to predict the RUL of bearings with times and �tted power values at present
and previous inspections as input. Meanwhile, the life percentage is selected as output. 
e performance of the proposed method
is validated by an accelerated bearing run-to-failure experiment, and the results demonstrate the advantage of this method in
achieving more accurate RUL prediction.

1. Introduction

Prognostics and health management (PHM) has received
extensive attention in recent years for its eectiveness in
improving reliability and reducing costs [1, 2]. PHM gener-
ally combines condition monitoring, fault diagnostics, fault
prognostics, and decision support [3]. Remaining useful life
(RUL) prediction aims at assessing the performance degra-
dation of equipment and detecting the impending failure
[4]. 
erefore, accurate RUL prediction is regarded as one
of the most central components in performing PHM, since
necessarymaintenance actions are implemented based on the
RUL prediction result [5].

Bearing is the basic component of rotating machinery
and the health condition of it plays an important role in the
machinery. In order to predict the RUL of bearings, many
kinds of measurements are considered, including acoustic,
temperature, oil analysis, and pressure. Among them, vibra-
tion is most commonly used because it is easy to measure
and analyze. Besides, it can re�ect the status of bearings
roundly and timely [6]. It mainly takes two steps to realize
accurate RUL prediction of bearings in vibration-based
methods. Firstly, an appropriate degradation indicator should

be selected from various features. 
is step is the premise
of RUL prediction and the selection result is crucial to
the prediction accuracy. Secondly, an optimal prediction
model should be developed. For the former step, there are
three conventional feature extractionmethods including time
domain, frequency domain, and time-frequency domain.
Time domain methods are directly based on the time
waveform to obtain the factors such as root mean square
(RMS), kurtosis, and peak. Most frequency domain methods
utilize fast Fourier transformation (FFT) to convert time
domain signal into frequency domain. 
us it is easy to
identify the frequency components and recognize the fault
characteristic frequency. Time-frequency domain methods
investigate signal in both time and frequency domain, and
the change of frequencies with time is described clearly.
Typical time-frequency domain methods are short time
Fourier transformation (STFT), Wavelet analysis, Wigner-
Ville distribution, and Hilbert Huang transformation. A�er
feature extraction, the degradation indicator is selected from
them by certain standard. Various indicators have been uti-
lized to depict the degradation process in previous research.
Mahamad et al. [7] selected RMS and kurtosis obtained from
time waveform, while Huang et al. [8] utilized the minimum
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quantisation error (MQE) index produced by three time
features and three frequency features. Ocak et al. [9] and
Pan et al. [10] decomposed the signals into wavelet packets
and used the node energies of decomposition tree to indicate
bearing degradation. Zhang et al. [11] �rstly decomposed the
preprocessed signals and then selected the peak values of
FFT for decomposed signals to judge the degradation of the
monitored machine. In order to extract the most relevant
features to the degradation process, Liao and Lee [12] and
Lu et al. [13] used principal component analysis (PCA) to
eliminate the super�uous and less-relevant features.

A�er the selection of degradation indicator, a prediction
model should be established to perform the RUL prediction.

ere are mainly two categories of prediction methods:
model-basedmethods and data-drivenmethods. An accurate
physical model and a correct fault propagation model are
essential to a model-based method. Liu and Mahadevan
[14] proposed a uni�ed multiaxial fatigue damage model for
rolling contact fatigue, while Xu et al. [15] developed an
improved Paris model to predict residual fatigue life of
bearings online. Jin et al. [16] built a degradation model for
lubricant loss in bearing to predict the RUL of an individual
momentum wheel bearing. If precise models are obtained,
the model-based methods can provide satisfying prediction
results. However, due to the complex structure, it is hard to
build the physical-based models. In contrast, the data-driven
methods are practical and easy to be operated, since they
predict the RULonly based on the conditionmonitoring data.
Moreover, the prediction result can be updated with new
inspection data available. Yan and Lee [17] utilized logistic
regression to achieve performance degradation assessment.
Pham and Yang [18] developed a liner autoregressive moving
average (ARMA) model and a nonlinear generalized autore-
gressive conditional heteroscedasticity (GARCH) model to
explain the fault condition of machine. Fei and He [19]
applied multiple-kernel relevance vector machine (MkRVM)
as an intelligent system to predict the state of bearings. Dong
et al. [20] employed the support vector machine (SVM) to
track the degradation process of bearings andutilizedMarkov
model to improve the prediction accuracy. Arti�cial neural
network (ANN) has also been widely used to RUL prediction
due to the well performance of function approximation.
Tian [21] proposed an ANN to predict the RUL of pump
bearings, with ages and velocity measurements as inputs and
the life percentage as output. Wu et al. [22] and Huang et al.
[8] developed a back-propagation (BP) neural network for
estimating the failure time of bearings. Lee et al. [23] utilized
an Elman neural network for health condition prediction. In
order to achieve more accurate prediction, Shao and Nezu
[24] applied dierent neural networks to dierent running
stages of bearings. Gebraeel et al. [25] proposed two classes of
neural network models to perform the RUL prediction, and
the result testi�ed the advantages.


is paper proposes a hybrid method for RUL predic-
tion utilizing the generalized Weibull failure rate function
(WFRF) and radial basis function (RBF) neural network.
e
proposed method diers from other methods which have
been used in past literature in adopting a novel indicator
to capture the performance degradation of bearings. A new

concept named sensitive frequency band (SFB) is de�ned and
the power value on the SFB is selected as the degradation
indicator. 
e SFB power value series along the lifetime is
calculated and �tted by the generalized WFRF, then the
�tted measurements are fed into RBF neural network. 
e
remainder of this paper is organized as follows. Section 2
presents the dierent steps of the proposed method. In this
section, the reason of degradation indicator selection is given
and the basic principles of generalized WFRF and RBF
neural network are detailed. Experimental setup is shown in
Section 3 and the datasets used for validation are described.
Section 4 is dedicated to evaluating the proposed method
with the experimental data. Finally, some conclusions are
drawn in Section 5.

2. Description of the Proposed Approach

As mentioned above, it takes several steps to implement
the proposed method. In this section, the procedure of the
proposed method is discussed and the relevant theoretical
bases are introduced in detail.

2.1. Indicator Selection. An appropriate indicator that can
capture the evolution of the bearing’s degradation is vital
to perform RUL prediction [8]. A good indicator should
be sensitive to initial degradation and be consistent with
degradation process [30]. As a bearing fatigue occurs, a spall
develops on the surface of the race and the defective
frequency is excited. During the process of the bearing’s
degradation, the amplitude of this frequency is proportional
to the spall size [31]. In other words, the amplitude of the
defective frequency is themost intuitive and accurate reaction
of the bearing’s degradation process. In view of this, the
average amplitude of the defective frequency and its �rst six
harmonics is selected as indicator in [25] to predict the RUL
of bearings. However, there exist several problems. Firstly, the
diagnostics will be performed many times from beginning to
initial failure occurrence, in order to identify the fault pattern
and determine the defective frequency. It is meaningless and
time-consuming when the bearing is normal for a long time.
Secondly, it is not easy to calculate the defective frequency
at the stage of incipient failure because of the heavy noise
and the weak signature. Finally, there is always a frequency
modulation phenomenon due to the bearing slackness [8],
resulting in dramatic changes of amplitudes on modulated
frequency band rather than defective frequency. To overcome
these problems, the power value on the SFB is developed as a
novel degradation indicator.

SFB is de�ned as a frequency band on which the FFT
spectrums along the bearing degradation process are signi�-
cantly dierent. It is an isolation of the frequencies associated
with bearing defects from overall frequencies. As an example,
Figure 1 presents a plot of FFT spectrums for a bearing
at dierent stages of its life cycle. It is obvious that the
amplitudes of frequency lines on [3000Hz, 5000Hz] increase
more dramatically than other frequency bands with time
until the bearing failure.

From the physical interpretation of the SFB power value
we can see this indicator is robust to failure categories.
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Figure 1: Evolution of the FFT spectrum.

Comparing with several statistical features usually adopted
in previous studies, such as RMS and kurtosis, the SFB
power value is superior. 
e disadvantage of the statistical
features lies in that they depict vibration signals from overall
range, which introduces insensitive factors to the degradation
process.

In conclusion, the power value on the SFB is typically a
good indicator which is used to predict the RUL of bearing in
this work.

2.2. �e Generalized Weibull Failure Rate Function. 
e
generalized WFRF is derived from Weibull distribution and
failure rate function. Weibull distribution is one of the
most commonly used models in reliability assessment for a
mechanical component. It is �exible to represent dierent life
distributions with dierent parameters. Failure rate function
is themeasurementwhich indicates the failure probability of a
certain unit at a given time [21]. De�ned by three parameters,
the WFRF is mathematically represented as [32]

� (�) = �� (� − �� )�−1 , (1)

where �(�) is the failure rate of equipment at time �, � is the
scale parameter denoting characteristic life, � is the shape
parameter representing Weibull slope, and � is the position
parameter. It is obvious in a degradation process that �(�)
increases from 0 to 1 as time goes. 
erefore, � is usually
greater than 1 [33]. 2-parameter WFRF, which is widely used
in bearing life prognosis, is derived by setting � = 0.


e generalized WFRF is the updated version of WFRF.

e equation of the generalized WFRF is as follows [21, 32].

�̂ (�) = 
 + � ��� ��−1, (2)

where �̂(�) is the �tted measurement value and � is the age of
the equipment.
 and� are introduced to adapt the equation
to any situation.

2.3. Radial Basis Function Neural Network. RBF neural net-
work as a feedforward network [34] is shown in Figure 2.
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Figure 2: Structure of RBF neural network.

It consists of three layers: an input layer with � neurons,
a hidden layer with  neurons, and an output layer with �
neurons.
e input values are transferred from the input layer
to the hidden layer. 
e basis functions in the hidden layer
will give out a response to the inputs and generate the outputs
in the neurons of the output layer. 
e response is nonzero
only when the input falls within a limited region of the input
space. Hence RBF neural network is also regarded as a local
range network [35, 36].


e transfer function of the hidden layer is a Gaussian
function. 
e output value of the �th neuron in the hidden
layer is expressed as [34]

�� (�) = exp(−����� − ������22�2� ) , � = 1, 2, . . . , , (3)

where �� and �� are the central and width parameters of the�th Gaussian function, respectively.
In RBF neural network, the hidden layer realizes the non-

linear mapping of � → �(�) while the output layer realizes
the linear mapping of �(�) → �. 
e projection between
input � and output � can be expressed as [37]

�� = �∑
�=1

����� (�) , � = 1, 2, . . . , �, (4)

where ��� is the connection weight from hidden layer to out-
put layer.

Although both RBF and BP neural networks can approx-
imate any nonlinear function, RBF neural network has the
advantage of a fast converging time without local minimum,
since it only performs linear adjustment of the weights.

2.4. RUL Prediction Method. 
e framework of the proposed
method is presented in Figure 3.

Firstly, SFB is determined by comparing FFT spectrums
along the bearing degradation process. Secondly, the power
value on the SFB is calculated for each FFT spectrum. As
an example shown in Figure 4, although the trend of the
power value is roughly increasing, there are large �uctuations
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Figure 3: Procedure of the proposed method.

appearing especially a�er the occurrence of an initial defect.

is may be because of the degradation mechanism that
the spall is rounded a�er grinding for many times [10].
However, it is obvious that the health condition of a bearing
deteriorating with time is a monotonic process [38]. For the
sake of consistency with degradation process, the generalized
WFRF is applied to �t the obtained power value series and
four parameters of the generalized WFRF, namely, 
, �, �,
and �, are derived.


erea�er, RBF neural network is used as an intelligent
system to predict the RUL of a bearing with the �tted meas-
urements. In this case, four parameters including ��, ��−1, �̂�,
and �̂�−1 are selected as the inputs of the RBF neural network.�� and ��−1 are the ages at current and previous inspections,
respectively, while �̂� and �̂�−1 are the �tted SFB power values
at �� and ��−1. 
ese four measurements are selected as inputs
because they are crucial to represent the health condition
of bearings. On the one hand, the �tted SFB power values
at current and previous inspections can not only import
the degradation status into RBF neural network but also
introduce the change information of the measurements. On
the other hand, we choose the �tted measurements at two
inspections instead of more because it can give the ANN
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Figure 4: 
e SFB power value series.

better generalization capability. As it comes to the output, the
life percentage is preferred. 
e failure occurs when the life
percentage reaches 100%. We denote the life percentage as� (0 ≤ � ≤ 1) at the time inspection of �. 
en the RUL
of the bearing �̃ is derived by

�̃ = �� − �. (5)

3. Experimental Setup


e vibration signals used in this paper are provided by
Center for IntelligentMaintenance Systems (IMS), University
of Cincinnati [26]. Figure 5 presents the experimental setup
of IMS.

As it is shown in Figure 5, four Rexnord ZA-2115 double
row bearings were installed on the sha� which was driven by
an ACmotor via rub belts.
e rotation speed of the sha� was
kept constant at 2000 rpm. 
rough a spring mechanism, a
radial load of 6000 lbs was exerted on the sha� and bearings.
One PCB 353B33 High Sensitivity Quartz ICP accelerometer
for each bearing was installed on the bearing housing to
collect the vibration signal.With the sampling rate of 20KHz,
a set of data consisting of 20480 points was collected for
one second every 10 minutes. Lubricant was driven by an oil
circulation system to lubricate the test rig. 
e bearing
degradation process was indicated by the debris adhered to
a magnetic plug installed in the oil feedback pipe. 
e test
would stop when the accumulated debris arrived to a preset
amount. More detailed information about this experiment
can be found in [39].

In this research, two vibration datasets are applied for the
validation of the proposed RUL prediction method. Dataset
2 Bearing 1 of 984 vibration signals with an outer race failure
is selected as an example to illustrate the proposed method
in detail, while Dataset 1 Bearing 3 of 2156 vibration signals
with an inner race defect is adopted to perform a comparative
analysis. Figure 6 shows the failure bearing components a�er
run-to-failure experiment [4].
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Figure 5: 
e experimental setup of IMS [26].
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Figure 6: Photo of bearing components a�er experiment: (a) inner race defect in Dataset 1 Bearing 3 and (b) outer race defect in Dataset 2
Bearing 1 [4].

4. Results and Discussion


e development of FFT spectrum for Dataset 2 Bearing
1 is shown in Figure 1. Intuitively, we can observe that the
spectrum evolves gradually at the beginning and dramatically
at the end. In order to identify the SFB mathematically,

we compute the accumulated amplitude dierence of FFT
spectrums on each frequency line as follows.

�di� (!) = �∑
�=2

####�� (!) − ��−1 (!)#### , (6)
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Figure 7: �di� (!) and 
($) of Dataset 2 Bearing 1.
where ��(!) is the amplitude of the !th frequency line on the%th FFT spectrum and & is the number of FFT spectrums
which is equal to 984. It is clear that �di� (!) can represent
the variation of each frequency line throughout the lifetime.
Based on �di� (!) we de�ne an indicator 
($), which is


($) = �∑
	=1

�di� (!) . (7)

It is the summation of �di� (!), which stands for the total
dierence from the 1st frequency line to the $th frequency
line. If the dierences of the corresponding frequency line
amplitudes along with lifetime are small, the change of 
($)
will be smooth. If such dierences are large, the value of
($)
will increase rapidly. We would like to choose the frequency
band as the SFB, onwhich the slope of
($) is relatively larger.

In Figure 7, �di� (!) and 
($) are depicted. It is easy to
identify that the slope of
($) is relatively larger from3000Hz
to 5000Hz. In other words, the amplitudes of frequency lines
evolve dramatically on this frequency band. Hence the SFB in
this case is selected as [3000Hz, 5000Hz].

It should be noted that the amplitudes on the SFB hardly
appear to be dierent until the degradation process of bearing
reaches to certain degree. For Dataset 2 Bearing 1, the
amplitudes on [3000Hz, 5000Hz] do not increase abruptly
until the life percentage comes to nearly 60%. Nevertheless,
this matter does not become a barrier to the proposed
prediction method. In comparison to the early stage of the
bearing’s lifetime, what counts more in the RUL prediction is
the accurate prediction late in its life, because this directly
aects whether and when to replace the bearing [21].

To depict the advantage of the proposed degradation
indicator, we draw a comparison among the SFB power value
and several most used features for diagnosis and prognosis of
bearings de�ned, respectively, in Table 1.

In order to describe the signal from multiangles, the
average amplitude of the defective frequency and its �rst six
harmonics (AADFSH) is picked as the frequency domain
feature [8, 25]. Furthermore, as it was proposed in [40],

Table 1: Original time domain features.

Feature Formula

RMS √ 1�

∑
�=1

��2
Kurtosis

1�

∑
�=1

(�� − �)4�4
Skewness

1�

∑
�=1

(�� − �)3�3
Peak-Peak max(��) − min(��)
Variance

1� − 1

∑
�=1

(�� − �)2
�� is the vibration signal series; � and � are the mean value and the variance
of the series, respectively.

the vibration signal was decomposed by empirical mode
decomposition (EMD) and the �rst three intrinsic mode
function (IMF) energy datasets were selected. Together with
the �ve time domain features presented inTable 1, the original
feature setwas constructed.
enPCAwas conducted and the
�rst principal component was chosen as an ultimate indica-
tor.

To evaluate the foregoing features and select the most
sensitive indicator, three goodness metrics, namely, correla-
tion (Corr), monotonicity (Mon), and robustness (Rob) are
utilized [41]. Before then, each of the feature series is decom-
posed into two parts.

fea (�) = fea (�) + fea� (�) , (8)

where fea(�) is the degradation feature value at time �, fea(�)
is the trend value, and fea�(�) is the residual value.


e feature goodnessmetrics are computed by the follow-
ing equations [32, 41–43]:
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Table 2: Metrics comparison of features.

Feature Corr Mon Rob Cri Time

RMS 0.6287 0.0010 0.9849 0.5000 91.4562

Kurtosis 0.4895 0.0051 0.9763 0.4963 93.2149

Skewness 0.5202 0.0051 0.5195 0.2185 93.4770

Peak-Peak 0.5049 0.0132 0.9464 0.6382 91.5909

Variance 0.3965 0.0010 0.9716 0.3654 91.7569

AADFSH 0.2602 0.0051 0.6445 0.1579 92.7336

PC1 0.5174 0.0031 0.7609 0.3348 2570.6297

SFB 0.4888 0.0275 0.9593 0.9076 93.7524

Corr = #####∑��=1 (fea (�) − fea) (� − �)#####
√∑��=1 (fea (�) − fea)2∑��=1 (� − �)2 ,

Mon = ########number of positive (di (fea (�)))& − 1
− number of negative (di (fea (�)))& − 1

######## ,
Rob = 1&

�∑
�=1

exp(− ######## fea (�)fea (�)
########) ,

(9)

where & = 984 denotes the number of observations during

the lifetime, fea and � are the corresponding means of fea
and �, and di(fea(�)) is the dierence between two successive
points.

Corr is the measurement of linearity between feature
and time. Mon evaluates the consistency of feature variation
tendency and Rob re�ects the tolerance of the feature to
outliers. From the equations, we can see that all three good-
ness metrics are fallen into the range [0, 1] and are positively
correlated with performance of features. In order to consider
three metrics comprehensively, a weighted linear combina-
tion is proposed in [41] as the degradation indicator selection
criteria:

Cri = �1Corr + �2Mon + �3Rob, (10)

where �1 = 0.2, �2 = 0.5, and �3 = 0.3 are the weights of
the metrics, respectively, and determined by the contribution
to the degradation process [41]. However, this fusion method
by directly formulating on the metrics brings great distortion
and thus leads to false selection of degradation indicator
because the scales of these three metrics are not at the same
level. See Figure 8. To eliminate this inequality, each of the
metric dataset is normalized through �̃ = (� − �min)/(�max −�min) before the criteria are computed.


e feature datasets obtained above are processed by (9)-
(10), and the results of threemetrics and criteria are tabulated
in Table 2.


e characteristic frequency of outer race defect of Data-
set 2 Bearing 1 used in AADFSH is determined in [44].

From Table 2, we can see the SFB power value has
the largest Mon, which indicates that the tendency of this
feature is closest to the degradation process. Moreover, the
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Table 3: Estimated generalized WFRF parameters.


 � � �
SFB power 0.0083 1.32< − 9 220 16.09

computing time of each feature dataset is also obtained. In

this paper, a computer equipped with an Intel� XeonR E5-
1620 processor CPU @ 3.60GHz, 16Gb RAM, and the 64-bit
Windows 7 operating system (OS) was utilized. 
e feature
PC1 took considerably more time than other features because
EMDwas conducted 984 times which required high comput-
ing burdens. 
is makes PC1 unsuitable for online prognos-
tics. With the largest Cri and relatively less running time, the
SFB power value is the most sensitive feature and selected as
degradation indicator in this paper.

Figure 4 presents the SFB power value series of Dataset
2 Bearing 1, in which 1 data point denotes 10 minutes and
this stipulation is valid throughout this paper.
egeneralized
WFRF is adopted to �t the measurement line. Table 3 shows
the results of the estimated parameters computed by nonlin-
ear least squaresmethod. To evaluate the �tting performance,
Figure 9 shows the actual SFB power value series and the
�tted series. It is obvious that the �tted series gives a better
indication of the bearing degradation.
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According to the vibration signals of Dataset 2 Bearing
1, there are 984 inspections throughout the lifetime. Due to
two �tted measurements at current and previous inspections
combining as one input of RBF neural network, 983 pairs of
data are obtained. In order to verify the eectiveness of the
proposed method, we segment these 983 datasets into two
categories: a training set and a test set. 500 pairs of data are
chosen randomly from 983 pairs as training set and 100 pairs
are selected arbitrarily from the remaining 483 pairs as test
set.
en RBF neural network is trained utilizing the training
set. During the training process, the inherent con�gure of the
RBF neural network is adjusted to minimize the mean square
error (MSE) between the network outputs and the actual life
percentages.

MSE = 1?
�∑
�=1

(LP� − LP�)2 , (11)

where ? is the number of data, LP� is the network output,
and LP� is the actual life percentage.

As the training process completed, the test set is fed into
the trained network to testify its performance. 
e training
and test performance is illustrated in Figures 10(a) and 10(b).

e actual life percentage values are represented by “+”, and
the predicted life percentage values are denoted by “blue
circle”. 
e MSE for the test set in this paper is 2.45< − 15,
which is smaller than both training and validationMSE in [7].
From Figure 10, we can see that the actual percentage values
and the predicted values coincide almost at each selected
data point, which indicates the good performance of the RBF
neural network.


e proposed method has been compared with other
methods in previous research.
e performance of prediction
can be simply calculated as

Accuracy = (1 − |ActRUL − PreRUL|
ActRUL

) × 100%, (12)

Table 4: Comparison between the current work and published
work.

References Data
Reference
accuracy

Proposed
accuracy

[27]
Dataset 2
Bearing 1

95.9% 99.28%

[28]
Dataset 1
Bearing 3

98.47% 99.42%

[29]
Dataset 1
Bearing 3

99.02% 99.28%

where ActRUL is the actual RUL and PreRUL is the predicted
RUL.

Adopting the same run-to-failure datasets collected from
IMS, the results are shown in Table 4. In order to compare the
performance fairly, the same failure threshold is utilized in
the corresponding reference.

It is clear that the accuracy of the proposed method is
higher, which indicates a good performance of this method
in predicting the RUL of bearings.

5. Conclusion

Accurate RUL prediction of bearing is crucial to perform
PHM of rotating machinery for preventing fatal failure and
reducing maintenance cost. Most literature concentrating on
RUL prediction mainly adopts two steps: indicator selection
and life prediction model construction. 
is paper proposes
a novel degradation indicator, namely, the SFB power value; it
is the direct re�ection of bearing health condition.
e advan-
tage of this indicator is veri�ed by comparing with several
commonly used features. Subsequently, the SFB power value
series along the lifetime is �tted with the generalized WFRF
to keep consistent with the degradation process. RBF neural
network is utilized to perform bearing RUL prediction with
the ages and the �tted power values at present and previous
inspections as inputs and the life percentage as output.

In the experimental veri�cation, three prognostic meth-
ods were compared with the proposed method. 
e results
showed that the proposed method provided a more accurate
prediction, which demonstrated the eectiveness and supe-
riority of this method in predicting the RUL of bearings.
Moreover, the proposed method is suitable for practical
application and industrial �eld, because the novel indicator
in this paper is easy to obtain and robust to fault categories.
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