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ABSTRACT Accurate remaining useful life (RUL) prediction has a great significance to improve the
reliability and safety for key equipment. However, it often occur imperfect or even no prior degradation
information in practical application for the existing RUL predictionmethods, which could produce prediction
error. To solve this issue, this paper proposes a two-step RUL prediction method based on Wiener processes
with reasonably fusing the failure time data and field degradation data. First, we obtain some interesting
natures of parameters estimation based on the basic linear Wiener process. These natures explain the
relationship between the parameters estimation results and the feature of degradation data, i.e. item sample
numbers, detection time and detect frequency, and give the basis regarding how to reasonably fuse the failure
time data and field degradation data. Second, under the Bayesian framework, we further propose a two-step
method by fusing the failure time data and field degradation data with considering the random effects based
on the proposed natures of parameters estimation. In this method, we propose an EM algorithm to estimate
the mean and variance drift parameter of Wiener processes by the failure time data. Next, we generalize
this two-step RUL prediction method to the nonlinear Wiener process. Last, we use two case studies to
demonstrate the usefulness and superiority of the proposed method.

INDEX TERMS Remaining useful life prediction, wiener processes, fusing, failure time data, field
degradation data, random effects, Bayesian framework.

I. INTRODUCTION
Engineering practice shows that prognostics and health man-
agement (PHM) can reduce maintenance costs, improve the
reliability and safety, and reduce the risk of failure events [1].
This is essential important for some areas with requirement
of high safety and high reliability, such as electric vehicles,
military and aerospace [2]–[5]. PHM mainly includes two
parts: one is prognostics, i.e. remaining useful life (RUL)
prediction, predicting the time when the health condition
of equipment first crossing the failure threshold; the other
is health management, i.e. making the optimal maintenance
decision based on the prognostic information to achieve the
lowest maintenance costs and minimum failure risk, which
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approving it for publication was Zhaojun Li .

TABLE 1. Acronym.

mainly includes determining the optimal maintenance time,
formulating the order strategy of spare parts and providing
the scheme for prolonging life [6]–[8].
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TABLE 2. Notations.

As the precondition of healthmanagement, RUL prediction
is a key issue in PHM. A typical characteristic of RUL
prediction is that it can make full use of condition moni-
toring (CM) data representing degradation to determine the
remaining useful life time before failure at the current time
[9]. CM data mainly includes historical degradation data of
congeneric units and the field degradation information of
the assessed unit. Usually, the historical degradation data
of congeneric units is used to estimate the fixed parameters
and prior information of random parameters of the degrada-
tion [10]. Then, the random parameters are updated based on
the field degradation information of the assessed unit under
the Bayesian framework. This Bayesian mechanism estab-
lished a linkage between the past and current degradation data
of the congeneric units.

A representative work regarding this strategy under
Bayesian framework is first presented by Gebraeel et al. [11]
for the regression-based model. Following Gebraeel et al.
[11], some related issues and many variants and applications
have been studied and reported [12]–[14]. Also, this strat-
egy under Bayesian framework has been applied in Wiener
processes based degradation model, which is a very popu-
lar model for modeling the degradation modeling and has
been widely used to model the degradation process in sys-
tems [15], such as lithium-ion batteries [16], [17], LCDs
(Liquid crystal display) [18], gyroscopes [19], bearings [20],
etc. Si et al. [21] did a lot of interesting works in this

research area for the degradation process with three sources
of variance, e.g. linear Wiener process, nonlinear Wiener
process [22], and the validity of these methods has also been
verified by many simulation examples and case studies. This
Bayesian mechanism has also been applied to the generalized
Wiener process [23], Wiener process with skew-normal ran-
dom effects [24], bivariate Wiener degradation process [25],
nonlinear Wiener process [26], [27], additive Wiener pro-
cess [28], AdaptiveWiener process [29],Wiener process with
imperfect inspections [30], Wiener process with measure-
ment error [10], etc. Under the Bayesian framework, the
RUL estimation results include the degradation information
of congeneric units and the field assessed unit.

However, it often occur imperfect prior information, such
as inaccurate or absence of prior degradation information,
in practical application of RUL prediction, which could
result in RUL prediction error [31]–[33]. In the existing
study, there are mainly two ways to solve this problem. The
first way is combining the Bayesian updating and expec-
tation maximization (EM) algorithm, which was first pre-
sented by Wang et al. [34] for fitting an adapted Brownian
motion-based model with a drifting parameter. Then, this
updating mechanism has been generalized to the degradation
model based on the basicWiener process [31], [32], nonlinear
process [35], [36], degradation process with three sources of
variance [37], [38]. Based on the EM algorithm, the RUL
estimation results could overcome the influences of imperfect
prior information. However, why the EM algorithm obtains
better results than the traditional Bayesian method is still
unclear. Recently, Tang et al. [39] proved an interesting rule
that the estimation results based on the EM algorithm is equal
to the classic MLE method for the single assessed unit based
on the linear Wiener process with measurement error. The
reason is that the EM algorithm itself is used to find the max-
imum likelihood estimation of unknown parameters. Based
on this rule, Tang et al. [39] presented a heuristic parameter
updating algorithm to reasonably integrate the prior infor-
mation and field information. However, the iteration interval
length and iteration times are subjectively determined, which
needs further studies.

The second way is to deal with imperfect prior information
by fusing the failure time data of congeneric units. To deal
with the case in absence of prior degradation information,
Gebraeel et al. [33] proposed a RUL prediction method by
fitting the failure time data to a Bernstein distribution for
obtaining prior distributions of regression-based degradation
model. This mechanism has also been generalized to the
Wiener process based model. Lehmann [40] derived the like-
lihood function for the joint observation of failure times and
degradation data at discrete times. Wang et al. [41] proposed
a Bayesian evaluation method to integrate the accelerated
degradation testing (ADT) data with the failure time data
based on a joint likelihood function. Zhang et al. [42] estab-
lished a likelihood function by integrating bivariate degra-
dation data with lifetime data. Similar works can be found
in [43]–[46], and references therein.

VOLUME 8, 2020 11965



S. Tang et al.: RUL Prediction With Fusing Failure Time Data and Field Degradation Data With Random Effects

About the above works regarding fusing failure time data
based on Wiener process, there are mainly three limitations.
The first limitation is that the random effects are not con-
sidered in the degradation modeling based on Wiener pro-
cess. That is, the drift parameter is considered as a fixed
value. However, the drift parameter is usually modeled as a
random parameter to represent unit-to-unit variance. Ignor-
ing the random effects could increase the RUL estimation
error [21]. The second limitation is how to offline estimate
the parameters when considering that the random effects
are unclear. For the regression-based degradation model, the
failure time data are used to estimate the prior information of
drift parameter [33]. However, compared with the regression-
based degradation model, there is one more parameter
(i.e. diffusion parameter) for theWiener process basedmodel.
This increases the difficulty of parameters estimation. The
third limitation is lack of studies focus on nonlinear degra-
dation process when fusing the failure time data. Nonlinear
is a typical feature in degradation modeling and RUL esti-
mation, which should be considered for the nonlinear degra-
dation process [19]. To the best of our knowledge, current
studies regarding fusing failure time data are all aimed at
the linear degradation process, even for the regression-based
degradation model [33].

From the above review over related works, it can be
observed that the RUL prediction under imperfect prior infor-
mation has not been researched thoroughly. Therefore, this
paper attempts to reasonably fuse failure time data and field
degradation data with random effects. First, we propose some
interesting natures of parameters estimation based on the
basic linear Wiener process. This contribution is important,
and has not been reported before. Second, we present a
RUL prediction method for the degradation model with ran-
dom effects by these natures of parameters estimation. This
method first applies field degradation data to estimate the
fixed parameters that represent common characteristics of
the model, and then use history failure time data to estimate
the prior distributions of drift parameter that represent person-
ality features based on the EM algorithm. This contribution is
the first time that the random effects are considered in fusing
failure time data and field degradation data. Next, we gener-
alize this fusing method with consider random effects to the
nonlinear degradation model, which is the third contribution
of this paper. Last, we use two case studies to demonstrate the
effectiveness and usefulness of the proposed RUL prediction
method, which can not only overcome the imperfect prior
degradation information, but also can effectively improve the
accuracy of RUL prediction compared with the traditional
Bayesian method.

The remainders of the paper are presented as follow.
Section II analyzes the natures of the parameters estima-
tion for the linear Wiener process based degradation model.
Section III develops a two-step RUL prediction method
with fusing failure time data and field degradation data
to overcome the imperfect prior degradation information.
In section IV, two real-world examples are carried out to

illustrate the usefulness and superiority of the presented
method.

II. NATURES OF PARAMETERS ESTIMATION FOR THE
WIENER PROCESS BASED DEGRADATION MODEL
The Wiener process is a type of diffusion process driven by
Brownian motion with a drift coefficient, which can provide
a good description of a system’s dynamic characteristics due
to their non-monotonic property, infinite divisibility property,
and physical interpretations. For the RUL prediction based
on Wiener process, how to estimate the prior parameters
estimation is a key issue. Therefore, the natures of parame-
ters estimation based on the basic linear Wiener process are
discussed in this section.

The degradation process based on the basic linear Wiener
process can be expressed as follows:

X (t) = x0 + λt + σBB(t) (1)

where x0 is the initial state, λ is the drift coefficient, which
characterizes the degradation rate of equipment, σB is the dif-
fusion coefficient, and B(t) is the standard Brownian motion
representing the dynamic characteristics and uncertainty of
the degradation process. Without loss of generality, we set
x0 = 0. In order to distinguish the individual difference, drift
coefficient λ is regarded as a random variable and follows
normal distribution, i.e. λ ∼ N (µλ, σ 2

λ ). Therefore, the prior
model parameters are2={µλ, σ 2

λ , σ
2
B}.

Before researching the natures of parameters estimation
based on the basic linear Wiener process, we first give the
following lemma.
Lemma 1: Define x0:k = {x0, x1, x2, ..., xk} are the field

degradation data of the time t0, t1, t2, ...tk for a specific item,
the unbiased estimation of λ̂ and σ̂ 2

B can be obtained as
follows.

λ̂ = xk/tk (2)

σ̂ 2
B =

1
k − 1

∑k

i=1

1
1ti

(1xi −1tixk/tk)2 (3)

where

E(λ̂) = λ, E(σ̂ 2
B) = σ

2
B (4)

For more details about Lemma 1, refer to Theorem 1 and
Theorem 2 in [47]. Lemma 1 gives the unbiased estimation of
λ̂ and σ̂ 2

B , however, the estimation accuracy is not discussed.
To demonstrate the nature regarding estimation accuracy of λ̂
and σ̂ 2

B , we give the following Theorem.
Theorem 1: For the unbiased estimation of λ̂ and σ̂ 2

B given
in (2) and (3), the variance of estimation of λ̂ and σ̂ 2

B can be
obtained as follows.

D(λ̂) = σ 2
B/tk (5)

D(σ̂ 2
B) =

2σ 4
B

k − 1
(6)

Proof: Based on model (1) and the nature of Wiener
process, it can be obtained that 1xi obeys a normal distribu-
tion, i.e. 1xi ∼ N (λ1ti, σ 2

B1ti), and xk also obeys a normal
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distribution, i.e. xk ∼ N (λtk , σ 2
B tk ). Therefore xk/tk obeys a

normal distribution as follow:

xk/tk ∼ N (λ, σ 2
B/tk ) (7)

Then, the variance of λ̂ can be obtained as follow:

D(λ̂) = σ 2
B/tk (8)

Since 1xi ∼ N (λ1ti, σ 2
B1ti), we can obtain that∑k

i=1

(1xi −1tixk/tk )2

σ 2
B1ti

∼ χ2(k − 1) (9)

where χ2 denotes the Chi-square distribution. Thereby,
the variance of (8) can be obtained as follows.

D

(∑k

i=1

(1xi −1tixk/tk )2

σ 2
B1ti

)
= 2(k − 1) (10)

Based on (10), we can obtain the variance of σ̂ 2
B as follows.

D(σ̂ 2
B) = D

(
1

k − 1

∑k

i=1

(1xi −1tixk/tk )2

1ti

)
= D

(
σ 2
B

k − 1

∑k

i=1

(1xi −1tixk/tk )2

σ 2
B1ti

)

=
2σ 4

B

k − 1
(11)

This completes the proof.
Remark 1: The (5) from Theorem 1 shows that the esti-

mation accuracy of λ for a single unit is mainly effected by
the length of detection time, i.e. the bigger the tk , the more
accurate estimation of λ. Additionally, it shows from (6)
that the estimation accuracy of σ 2

B is mainly effected by the
detected number of the field degradation data x0:k , i.e. the
bigger the k , the more accurate estimation of σ 2

B .
Theorem 1 is deduced for only one item. However, in a

general way, offline parameters estimation is implemented
with considering random effects, i.e. for a certain items.
In order to analyze the nature of parameters estimation with
considering the random effects, we first use a two-step max-
imum likelihood estimation (MLE) method presented in [39]
to estimate the parameters for the basic linearWiener process.
Without loss of generality, the degradation of all items are
detected at the same time t0, t1, ...tm. Suppose that there are
nitems with the same type and the detected degradation data
at time t0, t1, ...tm of the ith item is xi = {x0,i, x1.i, ..., xm,i},
then all the historical degradation data can be expressed as
X = {x1, x2, ..., xN }. Based on this two step MLE method,
we first give the log-likelihood function of λ1, λ2, ..., λn, σ 2

B
as follows [16]

lnL(λ1, λ2, ..., λn, σ 2
B |X)

= −
mN
2

(
ln 2π + ln σ 2

B

)
−
N
2

∑m

j=1
ln1tj −

1

2σ 2
B

∑N

i=1

∑m

j=1

×
1
1tj

(
1xj,i − λj1tj

)2 (12)

where 1xj,i = xj,i − xj−1,i,1tj = tj − tj−1.

Then, 8 = {µλ, σ 2
λ , σ

2
B} can be estimated by two steps as

follows.

µ̂λ =
1
N

∑N

i=1

xm,i
tm

(13)

σ̂ 2
λ =

1
N − 1

∑N

i=1

(
xm,i
tm
− µ̂λ

)2

(14)

σ̂ 2
B =

1
N (m− 1)

∑N

i=1

∑m

j=1

(
1xj,i −1tj,ixm,i/tm

)
(15)

Note that the estimation of σ 2
λ and σ

2
B are under the framework

of unbiased estimation, which is different from the results
in [48]. However, the estimation of σ 2

B is consistent with the
results in [47].

Then, we can obtain the following theorem.
Theorem 2: For the degradation model based on linear

Wiener process described in (1), when using the two step
MLEmethod to estimate the unknown parameters, the expec-
tation and variance for µ̂λ, σ̂ 2

λ and σ̂ 2
B can be obtained as

follows:

E(µ̂λ) = µλ, D(µ̂λ) =
1
N
(σ 2
λ +

σ 2
B

tk
) (16)

E(σ̂ 2
λ ) = σ

2
λ +

σ 2
B

tk
, D(σ̂ 2

λ ) =
2

N − 1

(
σ 2
λ +

σ 2
B

tk

)2

(17)

E(σ̂ 2
B) = σ

2
B, D(σ̂ 2

B) =
2N
m− 1

σ 4
B (18)

Proof: Based on the nature of Wiener process in
model (1), for the ith item, xm,i obeys a normal distribution,
i.e. xm,i ∼ N (µλtm,i, σ 2

λ t
2
m + σ

2
B tm). Then, xm,i/tm also obeys

a normal distribution, i.e. xm,i/tm ∼ N (µλ, σ 2
λ + σ

2
B/tm).

Therefore, µ̂λ obeys a normal distribution as follow:

µ̂λ =
1
N

∑N

i=1

xm,i
tm
∼ N

(
µλ,

1
N

(
σ 2
λ +

σ 2
B

tm

))
(19)

According to (19), the expectation and variance for µ̂λ can
be obtained as follows:

E(µ̂λ) = µλ (20)

D(µ̂λ) =
1
N

(
σ 2
λ +

σ 2
B

tm

)
(21)

Since xm,i/tm ∼ N (µλ, σ 2
λ + σ

2
B/tm), we obtain that:

∑N

i=1

(
xm,i/tm − µ̂λ

)2
σ 2
λ + σ

2
B/tm

∼ χ2(N − 1) (22)

where χ2 denotes the Chi-square distribution. Thereby,
the expectation and variance for (22) can be obtained as
follows:

E

[∑N

i=1

(
xm,i/tm − µ̂λ

)2
σ 2
λ + σ

2
B/tm

]
= N − 1 (23)

D

(∑N

i=1

(
xm,i/tm − µ̂λ

)2
σ 2
λ + σ

2
B/tm

)
= 2(N − 1) (24)
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Therefore, the expectation and variance for σ̂ 2
λ can be

obtained as follow:

E(σ̂ 2
λ ) = E

(
1

N − 1

∑N

i=1

(
xm,i/tm − µ̂λ

)2)
= E

(
σ 2
λ + σ

2
B/tm

N − 1

∑N

i=1

(
xm,i/tm − µ̂λ

)
)2

σ 2
λ + σ

2
B/tm

)

= σ 2
λ +

σ 2
B

tm
(25)

D(σ̂ 2
λ ) = D

(
1

N − 1

∑N

i=1

(
xm,i/tm − µ̂λ

)2)
= D

(
σ 2
λ + σ

2
B/tm

N − 1

∑N

i=1

(
xm,i/tm − µ̂λ

)2
σ 2
λ + σ

2
B/tm

)

=
2

N − 1

(
σ 2
λ +

σ 2
B

tm

)2

(26)

From Theorem 1, we can obtain (18) after some simplifi-
cation.

This completes the proof.
Remark 2: From above two theorems, the following

conclusions can be obtained:
(1) It shows from (16) and (17) that the accuracy of esti-

mation for µλ and σ 2
λ is mainly effected by the number of

item samples and the length of the longest detection time
tm. That is, the more samples N or the longer tm, the more
accurate to the estimation of µλ and σ 2

λ . If the detection time
tm is not considered, the estimation of µλ and σ 2

λ is mainly
affected by the number of item samples. For the case that the
prior degradation data is scarce, the failure time data could
also increase the estimation accuracy of µλ and σ 2

λ . In other
words, adding the failure time data into degradation modeling
could increase the estimation accuracy of µλ and σ 2

λ .
(2) It can be observed from (18) that the accuracy of

estimation for σ 2
B is proportional to detection time k − 1, but

inversely proportional to the number of item samples. In other
words, adding the failure time data into degradation modeling
could decrease the estimation accuracy of σ 2

B .
(3) Based on the above conclusions, we can use the failure

time data to estimate the prior information of drift parame-
ter, and the field degradation data to estimate the diffusion
parameter. This mechanism could effectively improve the
RUL prediction accuracy when the prior information is scare
or inaccurate, as discussed in Section III.

III. RUL PREDICTION METHOD WITH FUSING FAILURE
TIME DATA AND FIELD DEGRADATION DATA
In practical use, it often occurs the situation with imperfect
prior degradation information for the existing RUL prediction
methods, such as inaccurate or even no prior degradation
information at all. Therefore, traditional Bayesian methods
have certain limitations for RUL prediction. To solve this
problem, this section proposes a RUL prediction method
with reasonably fusing failure time data and field degradation
information based on the natures proposed in Section II.

FIGURE 1. The RUL prediction algorithm flow with fusing failure time
data and field degradation data.

The flow chart of this method is shown in Fig. 1 and the main
steps are as follows:
Step 1: According to the field degradation data of the

accessed item, the MLE for fixed parameters that represent
common characteristics can be obtained. Then, the failure
time data are used to estimate the prior distribution of random
parameters by using the MLE or EM algorithm. That is,
transforming the failure time data into prior distribution of λ.
Step 2: Online updating the posterior distribution of the

random variable under the Bayesian framework, and then
predicting the RUL.

During the implementation of this method, once a new
field degradation data is detected, it needs to carry out the
algorithm proposed in Fig. 1 again. Therefore, the estimation
accuracy of the fixed parameters and prior information of ran-
dom parameter can be improved with updating of field degra-
dation data. In following, the RUL prediction methods with
fusing failure time data and field degradation information are
respectively developed for the degradation models based on
linear Wiener processes and non-linear Wiener processes.

A. RUL PREDICTION BASED ON LINEAR WIENER
PROCESS
1) PRIOR PARAMETERS ESTIMATION
For the degradation model based on linear Wiener process,
as show in (1), a two-step prior parameters estimation method
based on EM algorithm is proposed. The prior parameters
based on linearWiener process are2 = {µλ, σ 2

λ , σ
2
B}. Define

that x0:k = {x0, x1, x2, ..., xk} are the field degradation data
of the time t1, t2, ...tk for one equipment. There are two steps
for this method as described follows:

Step 1: Estimating the fixed parameter based on the field
degradation data.
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The log-likelihood function of the x0:k with respect to σ 2
B

and λ can be written as follow:

lnL(λ, σ 2
B |x0:k ) = −

k
2

(
ln 2π + ln σ 2

B

)
−

1
2

∑k

j=1
ln1tj

−
1

2σ 2
B

∑k

j=1

1
1tj

(
1xj − λ1tj

)2 (27)

Maximizing (27), the fixed parameter σB can be obtained
as follow:

σ̂ 2
B =

1
k − 1

∑k

j=1

1
1tj

(1xj −1tjxk/tk )2 (28)

Step 2: Transforming the failure time data into prior distribu-
tion of λ by using the EM algorithm.
Before estimating the prior distribution of λ, the following

theorem is given firstly.
Theorem 3: Define that Tv is the failure time that the

degradation first crosses through the failure threshold w of
a specific item. Given the prior distribution of the λ, the pos-
terior distribution of λ conditional on failure time Tv follows
the normal distribution according to Bayesian theory. That is:

λ|Tv ∼ N (µλ,v, σ 2
λ,v) (29)

µλ,v =
wσ 2

λ + µλσ̂
2
B

Tvσ 2
λ + σ̂

2
B

, σ 2
λ,v =

σ 2
λ σ̂

2
B

Tvσ 2
λ + σ̂

2
B

(30)

Proof: Given the drift parameter λv of a specific item,
according to the nature of Wiener process, the failure time
Tv obeys inverse Gaussian distribution, and the likelihood
function of Tv can be written as follow:

L(Tv|λv) =
w√

2πT 3
v σ̂

2
B

exp

(
−
(w− λvTv)2

2Tvσ̂ 2
B

)
(31)

Given the prior distribution of λ, i.e. λ ∼ N (µλ, σ 2
λ ),

the posterior distribution of λ conditional on Tv can be cal-
culated as follow:

p(λ|Tv) ∝ p(Tv|λ)p(λ)

∝ exp

[
−
(w− λTv)2

2σ̂ 2
BTv

−
1

2σ 2
λ

(λ− µλ)2
]

∝ exp

[
−
1
2

(
Tv
σ̂ 2
B

+
1

σ 2
λ

)
λ2 +

(
w

σ̂ 2
B

+
µλ

σ 2
λ

)
λ

]

∝ exp

(
−
(λ− µλ,v)2

2σ 2
λ,v

)
(32)

This completes the proof.
From theorem 3, the prior distribution of λ can be

obtained by using the EM algorithm. Define that T1:m =

{T1,T2, ...,Tm} are the failure time data that the degradation
first crosses through the failure threshold w of congeneric
items. Then, the log-likelihood function of the failure time

T1:m and drift parameters λ with respect to µλ and σ 2
λ can be

written as follow:

lnL(µλ, σ 2
λ |T1:m,λ)

= −
m ln 2π

2
+ m lnw−

m
2
ln σ̂ 2

B

−
3
2

∑m

v=1
lnTv −

∑m

v=1

(w− λvTv)2

2σ̂ 2
BTv

−
m
2
ln σ 2

λ

−
1

2σ 2
λ

∑m

v=1
(λv − µλ)2 (33)

Let 2̂(i)
= {µ̂

(i)
λ , σ̂

2(i)
λ } are the parameters estimation results

based on EM algorithm in the i-th step, then the (i+1)-th step
of EM algorithm can be divided into E-step and M-step as
follows:
E-step: Calculating the expectation for (33) as follows:

L(2|T1:m, 2̂
(i))

= E
λ|T1:m,2̂(i) [lnL(2|T1:m)]

= −
m ln 2π

2
+ m lnw−

m
2
ln σ̂ 2

B −
3
2

∑m

v=1
lnTv

−

∑m

v=1

(w− λvTv)2 + σ 2
λT

2
v

2σ̂ 2
BTv

−
m
2
ln σ 2

λ

−
1

2σ 2
λ

∑m

v=1

[
(λλ,v − µλ)2 + σ 2

λ,v

]
(34)

where µλ,v and σ 2
λ,v are the posterior distribution of λ condi-

tional on T1:m and 2̂(i).
M-step: The 2̂(i+1) can be obtained by maximizing (34).

That is:

2̂(i+1)
= argmax

2

L(2|2̂(i)) (35)

Taking the partial derivatives of µλ and σ 2
λ for (34) and

setting them to zero, gives the MLE for µλ and σ 2
λ in the

(i+1)-th step as follows:

µ̂λ =
1
m

∑m

v=1
µλ,v,

σ̂ 2
λ =

1
m− 1

∑m

v=1

[
(µλ,v − µ̂λ)2 + σ 2

λ,v

]
(36)

Note that the estimation of σ 2
λ is under the framework of

unbiased estimation.

2) RUL PREDICTION
Given the prior distribution of λ, the posterior distribution of λ
conditional on x1:k also follows normal distribution according
to Bayesian theory [32]. That is:

λ|x1:k ∼ N (µλ,k , σ 2
λ,k ) (37)

where:

µλ,k =
xk σ̂ 2

λ + µ̂λσ̂
2
B

tk σ̂ 2
λ + σ̂

2
B

, σ 2
λ,k =

σ̂ 2
B σ̂

2
λ

tk σ̂ 2
λ + σ̂

2
B

(38)
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After detecting the field degradation data x1:k , the degra-
dation process when t > tk can be written as follow:

X (t|x1:k ) = xk + (λ|x1:k )(t − tk )+ σ̂BB(t − tk )

= xk + (λ|x1:k )lk + σ̂BB(lk ) (39)

Then the RUL at time tk can be transformed into the time
when the degradation process {X (lk+tk ), lk ≥ 0} first crosses
the failure threshold wk = w − xk . And the corresponding
RUL can be written as follow:

Lk = inf{lk : X (lk + tk ) ≥ w|x1:k} (40)

Therefore, the probability density function (PDF) of the
RUL can be written as follow [32]:

fLk |x1:k ,w (lk |x1:k ,w)

=
wk√

2π l2k (σ
2
λ,k l

2
k + σ̂

2
B lk )

exp

(
−

(wk−µλ,k lk )2

2(σ 2
λ,k l

2
k + σ̂

2
B lk )

)
(41)

B. RUL PREDICTION BASED ON NONLINEAR WIENER
PROCESS
1) DEGRADATION MODELING AND PRIOR PARAMETERS
ESTIMATION
The degradation model based on nonlinear Wiener process
can be expressed as follow [10], [19], [35]:

X (t) = x0 + λ3(t; θ )+ σBB(t) (42)

where x0 is the initial state, λ3(t; θ ) is the nonlinear drift part,
and σB is the diffusion coefficient. The diffusion coefficient
σB and nonlinear coefficient θ are fixed coefficients, repre-
senting the common characteristics of the degradation pro-
cess. The drift coefficient λ is a random variable to describe
the individual difference among different equipment, which
follows normal distribution, i.e. λ ∼ N (µλ, σ 2

λ ). Therefore,
the prior parameters of the model based on nonlinear Wiener
process are � = {µλ, σ 2

λ , θ , σB}.
Compared with the linear model, the difference is that the

close-form posterior distribution of the drift coefficient of
the nonlinear model could not be obtained under the given
failure time Tv. That is, Theorem 3 does not apply to the
nonlinear model. Therefore, it is difficult to directly esti-
mate the prior distribution of drift coefficients by using EM
algorithm. To solve this problem, a two-step MLE method is
developed for estimating the prior parameter for the nonlinear
degradation model, and the specific steps of the two-step
MLE method are given as follows.

Step 1: Estimating the fixed parameter
Given that x0:k = {x0, x1, x2, ..., xk} are the field degrada-

tion data of an equipment, then the log-likelihood function of
x0:k with respect to λ, σ 2

B and θ can be written as follow:

lnL(λ, θ , σ 2
B | x0:k )

= −
k
2
(ln 2π + ln σ 2

B)−
1
2

∑k

i=1
ln1ti

−
1

2σ 2
B

∑k

i=1

1
1ti

(1xi − λ (3(ti; θ )−3(ti−1; θ )))2

(43)

Taking the partial derivatives of λ and σ 2
B for (43) and

setting them to zero, the restricted estimation for λ and σ 2
B

limited by θ can be obtained as follows:

λ̂(θ )

=

∑k
i=1 (1xi (3(ti; θ )−3(ti−1; θ )) /1ti)∑k
i=1

(
(3(ti; θ )−3(ti−1; θ ))2 /1ti

) (44)

σ̂ 2
B(θ )

=
1
k

∑k

i=1

(
1
1ti

(
1xi−λ̂(θ ) (3(ti; θ )−3(ti−1; θ ))

)2)
(45)

Bring (44) and (45) into (43), and simplifying, gives the
log-likelihood function for b in terms of the estimated λ̂ and
σ̂ 2
B as follow:

lnL(θ | x0:k )=−
k
2

(
ln 2π + ln σ̂ 2

B(θ )
)
−

1
2

∑k

i=1
1ti−

k
2
(46)

The estimation of θ̂ can be obtained by maximizing (46).
Then the MLE for λ̂ and σ̂ 2

B can be obtained by bring θ̂
into (44) and (45).

Step 2: Estimating the prior distribution of the drift param-
eter based on the failure time data.

Define the drift coefficient λv of one specific item, accord-
ing to the nature of nonlinear Wiener process, the failure time
Tv obeys the inverse Gaussian distribution, and the likelihood
function of Tv can be written as follow:

L(Tv|λv) =
w− λv

(
3(Tv; θ̂ )−3′(Tv; θ̂ )Tv

)
√
2πT 3

v σ̂
2
B

× exp

(
−
(w− λv3(Tv; θ̂ ))2

2Tvσ̂ 2
B

)
(47)

According to (47), the log-likelihood function of the failure
time Tv with respect to λv can be written as follow:

lnL(Tv|λv)

= ln
(
w− λv

(
3(Tv; θ̂ )−3′(Tv; θ̂ )Tv

))
−

1
2
ln 2π −

3
2
lnTv −

1
2
lnσ̂ 2

B −

(
w− λv3(Tv; θ̂ )

)2
2σ̂ 2

BTv
(48)

The MLE for λ̂v can be obtained by maximizing (48).
Given that T1:m = {T1,T2, ...,Tm} are the failure time data of
the nonlinear model, then the MLE for λ̂ = {λ̂1, λ̂2, ..., λ̂m}
can be obtained by (48). Therefore, the prior distribution of λ
can be calculated as follows:

µ̂λ =
1
m

∑m

v=1
λ̂v, σ̂ 2

λ =
1

m− 1

∑m

v=1
(λ̂v − µ̂λ)2

(49)

Note that the estimation of is σ̂ 2
λ set to be unbiased.
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2) RUL PREDICTION
Given the prior distribution of λ, i.e. λ ∼ N (µλ, σ 2

λ ), the
posterior distribution of λ conditional on x1:k also obeys a
normal distribution according to Bayesian theory [10], that
is:

λ |x1:k ∼ N (µλ,k , σ 2
λ,k ) (50)

where:

µλ,k =
Bk σ̂ 2

λ + µ̂λσ̂
2
B

Ak σ̂ 2
λ + σ̂

2
B

, σ 2
λ,k =

σ̂ 2
B σ̂

2
λ

Ak σ̂ 2
λ + σ̂

2
B

(51)

Ak =
∑k

i=1

(
3(ti; θ̂ )−3(ti−1; θ̂ )

)2
ti − ti−1

(52)

Bk =
∑k

i=1

(
3(ti; θ̂ )−3(ti−1; θ̂ )

)
(xi − xi−1)

ti − ti−1
(53)

After detecting the field degradation data x1:k , the degra-
dation process when t > tk can be written as follow:

X (t|x1:k )

= xk + (λ|x1:k )
(
3(t; θ̂ )−3(tk ; θ̂ )

)
+ σBB(t − tk )

= xk + (λ|x1:k )
(
3(lk + tk ; θ̂ )−3(tk ; θ̂ )

)
+ σBB(lk )

(54)

Then, the RUL at time tk can be defined as follow:

Lk = inf{lk : X (lk + tk ) ≥ w|x1:k} (55)

Therefore, the PDF of the RUL can be written as fol-
lows [10]:

fLk |x1:k ,w (lk |x1:k ,w)

≈
1√

2π l2k
(
σ 2
λ,kϕ(lk )

2 + σ̂ 2
B lk
)

× exp

[
−

(
w− µλ,kϕ(lk )

)2
2
(
σ̂ 2
λϕ(lk )

2 + σ̂ 2
B lk
)]

×

[
w− xk − µλ,kβ(lk )−

w− xk − µλ,kϕ(lk )

σ 2
λ,kϕ(lk )

2 + σ̂ 2
B lk

× σ 2
λ,kβ(lk )ϕ(lk )

]
(56)

where:

β(lk ) = 3(lk + tk ; θ̂ )−3(tk ; θ̂ )−3′(lk + tk ; θ̂ )lk (57)

ϕ(lk ) = 3(lk + tk ; θ̂ )−3(tk ; θ̂ ) (58)

IV. EXPERIMENT
In this section, the experiments are carried out to illustrate
the usefulness and superiority of the presented method in
this paper. Firstly, we use Monte Carlo algorithm to simulate
lasers’ degradation data to demonstrate the validity of the
Remark 1 and Remark 2 in section II. Then, two practical case
studies are provided to illustrate the effectiveness and superi-
ority of the RUL prediction method proposed in section III.

A. SIMULATION EXPERIMENTS
In this subsection, we use the prior parameters of the lasers,
i.e. 2={µλ = 2.04 × 10−3, σ 2

λ = 4.33 × 10−4, σ 2
B=1.08 ×

10−2}, to simulate lasers’ degradation data. More details
about the parameters estimation process can be found in [10].

1) EXPERIMENT FOR REMARK 1
In this experiment, λ = 2.04 × 10−3, σ 2

B = 1.08 × 10−2

are used to simulate the degradation data of one laser as show
in figure 2.Without losing generality, let tk = 2000,1tk = 1.

FIGURE 2. The simulation degradation data of one laser.

Then, the MLE for prior parameters can be obtained as
show in Fig. 3, where the estimated parameters are updated
in real-time with the change of tk . Fig. 3(a) indicates that

FIGURE 3. Parameters estimation of one laser: (a) λ and (b) σ2
B.
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the longer for the detection time tk , the more accurate to
the estimation of λ. And it shows from Fig. 3(b) that the
more degraded data x0:k are detected, the more accurate to
the estimation of σ 2

B .

2) EXPERIMENTS FOR REMARK 2
In this experiment, we set µλ = 2.04 × 10−3, σ 2

λ = 4.33 ×
10−4 and σ 2

B = 1.08× 10−2 to simulate the degradation data
for N lasers with random effects, as show in Fig. 4. Without
losing generality, here we setN = 10, tk = 2000,1tk = 100.

FIGURE 4. The simulation degradation data of 10 lasers.

Then, the MLE for µλ and σ 2
λ can be obtained as show

in Fig. 5, where the estimated results are real-time updated
with the change of tk . From Fig. 5, it can be observed
that when the number of samples is constant, the longer tk ,
the more accurate to the estimation of µλ and σ 2

λ .
In addition, let N = 5, 10, 20, 40, 80, tk = 300,

1tk = 1. The degradation laser data of different N samples
are simulated respectively. Then, the MLE for µλ and σ 2

λ of
different N samples are obtained as show in Fig. 6. It can be
observed that for the same detection time tk , themore samples
N , the more accurate to the estimation of µλ and σ 2

λ .

B. THE PRACTICAL CASE STUDY
In this subsection, two practical case studies are used to
demonstrate the effectiveness and superiority of the proposed
RUL prediction methods based on linear Wiener process
and nonlinear Wiener process, respectively. For simplicity,
the method proposed in this paper is referred to as M1,
the method based on traditional Bayesian method is referred
to as M2. The traditional Bayesian method for the nonlinear
method can be referred to [10], [26], where the linear degrada-
tion is a special case. In order to better illustrate the estimated
accuracy, the relative error (RE) and the mean square error
(MSE) are defined as follows:

RE = RULes − RULreal (59)

MSE =
∫
∞

0
(RULes−RULreal)2fRULes|x1:k

× (RULes|x1:k )dRULes (60)

FIGURE 5. The prior distribution estimation of the random coefficient λ:
(a) µλ and (b) σ2

λ
.

FIGURE 6. The prior distribution estimation of the random coefficient λ
with different samples (N = 5, 10, 20, 40, 80): (a) µλ and (b) σ2

λ
.

1) RUL PREDICTION BASED ON LINEAR WIENER PROCESS
UNDER ACCURATE PRIOR INFORMATION
For the RUL prediction based on linear Wiener process,
the degradation data of lasers published by Meeker and
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Escobar [49] are used to demonstrate the effectiveness and
superiority of the proposed method, as show in Fig. 7.

FIGURE 7. The degradation data of all lasers.

It can be observed from Fig. 7 that the linearity is obvious
and the uncertainty is relatively small for all lasers. Therefore,
it can be considered as the linear degradation process under
accurate prior information. As most laser data do not cross
the failure threshold which is usually set 10, here we set 6 as
the failure threshold for an illustrative purpose. And, the laser
data that plotted with red color is chosen as an accessed
item with a final detected degradation data of 6.88 for a
comparative study, and the rest lasers that plotted with blue
color are used to estimate the prior parameters. The prior
degradation parameters estimated by the MLE method [48]
based on the traditional method are µλ = 2.04× 10−3, σ 2

λ =

1.88 × 10−7 and σ 2
B = 1.17 × 10−4. Unlike the traditional

Bayesian method, the degradation data of congeneric items
are used to estimate the failure time of each item, which
are used as the prior failure time data information for the
method presented in this paper. The specific failure time data
are 2193.8, 2586.2, 3908.8, 3162.1, 2179.8, 3347.3, 3846.2,
3045.7 1965.6, 3234.5, 3045.7, 2966.6, 3488.4 and 3625.6,
respectively.

In the following, we plot the RUL distributions of the two
methods and the actual RUL at some different time points,
as shown in Fig. 8. It can be seen that the RUL distribution
calculated by the twomethods can both cover the actual RUL.

FIGURE 8. The PDF of RUL predicted by M1 and M2 under accurate prior
information.

However, the RUL distribution of the proposed method is
more concentrated on the actual RUL and more narrow than
the traditional Bayesmethod, which indicates that ourmethod
has higher accuracy.

In addition, we further calculate the REs and MSEs at
all different time points, as shown in Fig. 9 and Fig. 10,
respectively. From Fig. 9, it can be observed that the REs of
M1 at all different time are near but lower than M2. From
Fig. 10, it shows that the MSEs of M1 at all different times
are lower than M2.

FIGURE 9. The RE by M1 and M2 under accurate prior information.

FIGURE 10. The MSE by M1 and M2 under accurate prior information.

To further illustrate the differences between these two
methods, we plot the estimation of the modeling parameters
that change over time, as shown in Fig. 11. From Fig. 11,
we observe that the estimation of µλ and σ 2

λ are consistent
with that based on the Bayesian method, which demonstrate
the validity of our method regarding fusing the failure time
data into the prior information of the drift parameter. Addi-
tionally, as the estimation of σ 2

B is relatively small compared
with the value based on the Bayesian method, the estimation
PDF of RUL of our method is sharper and more concen-
trated on the mean of the estimated RUL. The reason is that
the estimation of σ 2

B by our method is determined by the
field degradation data. However, the estimation of σ 2

B by the
Bayesian method is determined by congeneric items, which
has no concern with the field data. This is a flaw of the
traditional Bayesian method, as the estimation accuracy of σ 2

B
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FIGURE 11. The prior parameters estimation by M1 and M2 at different
time points: (a) µλ, (b) σ2

λ
and (c) σ2

B.

is mainly determined by the detection time. This flaw doesn’t
cause too much error for the degradation data with accurate
prior information. However, this estimation error increases
when the prior information is imperfect, as illustrated in the
following.

2) RUL PREDICTION BASED ON LINEAR WIENER PROCESS
UNDER IMPERFECT PRIOR INFORMATION
Without losing of generality, in this experiment we use the
Monte Carlo method to simulated degradation data under
imperfect prior information by increasing the value of σ 2

B ,
as show in Fig. 12. Here, we set σ 2

B = 3.6× 10−3.

FIGURE 12. The simulated laser data under imperfect prior information.

Here, the laser data that plotted with red color is cho-
sen to compare these two methods, and the other lasers
that plotted with blue color are used to estimate the prior
parameters. The failure time data for the proposed method
are 3515.3, 2729.4, 1930.0, 2654.1, 2966.0, 3171.0, 2565.0,
3204.2, 3669.2, 2253.7, 3741.9, 3737.2, 7676.8 and 3861.2,
respectively. Then, we calculate the estimated RUL, and plot
the PDF of RUL at some different time points in Fig. 13. It can

FIGURE 13. The PDF of RUL predicted by M1 and M2 under imperfect
prior information.

be observed that the mode and expectation of M1 is closer to
the actual RUL thanM2, and the distribution interval byM1 is
smaller than M2. This results indicates the superiority of the
proposed method.

Then, we calculate the REs and MSEs at all different
time points, as shown in Fig. 14 and Fig. 15, respectively.
It can be obviously seen that the proposed method has a
higher accuracy than traditional Bayesian method for RUL
prediction under the imperfect prior information.

FIGURE 14. The RE by M1 and M2 under imperfect prior information.

FIGURE 15. The MSE by M1 and M2 under imperfect prior information.

We further plot the estimation of the modeling parameters
that change over time, as shown in Fig. 16. We observe that
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FIGURE 16. The prior parameters estimation by M1 and M2 at different
time points: (a) µλ, (b) σ2

λ
and (c) σ2

B.

the estimation of µλ and σ 2
λ are consistent with that based

on the Bayesian method, which is consistent with the results
under the accurate prior information. However, the estimation
of σ 2

B by the Bayesian method is over estimated, which could
result in big error for RUL prediction. This over estimation
could cause the estimation of RUL distribution to be closer
to zero and wider. For example, at the time of 2250 hours,
the confidence interval of the RUL distribution is about
2000 hours based on the Bayesian method, which is greater
than 1500 hours of our proposed method. Additionally, under
the concept of first hitting time, the RUL distribution of
the Bayesian method is closer to zero, which is to be right
in Fig. 13. This estimation error could lead to premature
maintenance, thus reducing the utilization rate of equipment
and increasing the total cost of product operation.

3) RUL PREDICTION BASED ON NONLINEAR WIENER
PROCESS
In this subsection, we apply the degradation data published
by NASA to illustrate the RUL prediction based on non-
linear Wiener process, as show in Fig. 17. The degradation
data shown in Fig. 17 is affected by the relaxation effect,
which could be occurred during some long rest time, which
could lead to capacity regenerated phenomenon and recovery
process [50]. Therefore, in this experiment we apply the
degradation data after eliminating the relaxation effect for an
illustrate purpose. For more details about how to eliminate
the relaxation effect, see [39], [50] and references therein.
The degradation data with eliminating the relaxation effect
are shown in Fig. 18.

We set 70% capacity as the failure threshold of lithium-ion
batteries, and let 3(t; θ ) = tb. B0005 battery is chosen to
compare the two methods and the other batteries are used to
estimate the prior parameters. Firstly, we calculate the prior
parameters based on the degradation data of B0006, B0007,

FIGURE 17. The degradation data of lithium-ion batteries based on cycle
time.

and B00018 are as follows: µλ = 8.31× 10−3, σ 2
λ = 8.82×

10−6, σ 2
B = 2.04 × 10−4 and b = 0.977. The failure times

of B0006, B0007, and B00018 batteries are 69.5, 110.3 and
51 respectively, which can be used as the prior failure time
data of the proposed method.

In the following, we calculate the RUL distributions of
M1 and M2, as shown in Fig. 18. It can be seen that the
RUL distribution calculated by these two methods can cover
the actual RUL. Nevertheless, the RUL distribution of the
proposed method is more concentrated on the actual RUL and
more narrow than traditional Bayesian method, which shows
that our proposed prediction method has higher accuracy.

FIGURE 18. The degradation data with eliminating the relaxation effect.

We further calculate the REs and MSEs at some different
time points, as shown in Fig. 19 and Fig. 20, respectively.
The results show that the REs and MSEs of M1 at all the time
points are much lower thanM2. This indicates the superiority
of our proposed method.

To further illustrate the differences between these two
methods, we plot the estimation of the modeling parameters
that change over time, as shown in Fig. 21. From Fig. 21,
we can observe that the estimation of σ 2

B by M2 is much
bigger than M1. As discussed above, this over estimation
could cause the estimation of RUL distribution to be closer to
zero and wider, which could lead to premature maintenance.
The reason why M1 and M2 could obtain different results is
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FIGURE 19. The PDF of RUL prediction by M1 and M2 based on the
degradation data of lithium-ion batteries

FIGURE 20. The RE by M1 and M2 with accurate prior information.

FIGURE 21. The MSE by M1 and M2 with accurate prior information.

due to imperfect prior information, which can be explained
as follows.

As can be seen from Fig. 22, the degradation data of
N0006 and N0018 batteries have obvious linear degradation
characteristics, which is the reason why the estimated value
of the nonlinear coefficient b is 0.977. This estimation is
much smaller than the estimated b̂ of N0005, which is 1.436.
In addition, the diffusion coefficient σ 2

B of N0005 itself is
smaller. These two reasons lead to the overestimate of σ 2

B
based on the Bayesian method.

From the above works of the RUL prediction based on
linear Wiener process and nonlinear Wiener process, we can
observe that when the prior information is accurate, M1 and
M2 obtain similar results. However, under the imperfect prior

FIGURE 22. The prior estimation by M1 and M2 at different time points:
(a) µλ, (b) log (σ2

λ
) (c) σ2

B, (d) b.

information, M1 obtains better results than M2. The reason
for this phenomenon can be summarized as follows. Under
the imperfect prior information, the estimation of the diffu-
sion coefficient σ 2

B could be overestimated. However, the esti-
mation accuracy of σ 2

B is determined by the detection times.
And thus, for the assessed item with many detection times,
using the imperfect prior information could result in predic-
tion error. In this case, using the field degradation information
could ensure the prediction accuracy. Additionally, fusing the
failure time data could obtain the similar estimation of µλ
and σ 2

λ with the traditional Bayesian method. This implies
the effectiveness regarding the fusing method on the failure
time data. For the reason why M2 obtains a lower prediction
accuracy can be explained as follows. Under the Bayesian
framework, the estimation of σ 2

B is not updated with the field
degradation data. This leads to prediction error, especially for
the case under the imperfect prior information.

V. CONCLUSION
RUL prediction is great important in PHM. In this paper,
a novel online RUL prediction method based on Wiener
process is proposed by fusing the failure time data and field
degradation information. Experiments are carried out to illus-
trate the usefulness and superiority of the presented method,
and the results show better accuracy comparing with the
traditional Bayesian method. From above works, the main
contributions can be summarized as follows:

(1) Based on the basic linear Wiener process, this paper
studies the relationship between the parameters estimation
and the feature of degradation data, i.e. item sample numbers,
detection time and detect frequency. These natures of param-
eters estimation are interesting, and give the basis regarding
how to reasonably fuse the failure time data and field degra-
dation data.
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(2) Based on the proposed natures of parameters estima-
tion, we propose a novel two-stepmethod by fusing the failure
time data and field degradation data with considering the ran-
dom effects for the linear Wiener process. The EM algorithm
is used to estimate the mean and variance drift parameter.
We also generalize this mechanism to the nonlinear Wiener
process. The proposed method could overcome the effect of
imperfect prior information.
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