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Abstract: This study prognoses the remaining useful life of a turbofan engine using a deep

learning model, which is essential for the health management of an engine. The proposed

deep learning model affords a significantly improved accuracy by organizing networks with

a one-dimensional convolutional neural network, long short-term memory, and bidirectional

long short-term memory. In particular, this paper investigates two practical and crucial issues

in applying the deep learning model for system prognosis. The first is the requirement of numerous

sensors for different components, i.e., the curse of dimensionality. Second, the deep neural

network cannot identify the problematic component of the turbofan engine due to its “black box”

property. This study thus employs dimensionality reduction and Shapley additive explanation (SHAP)

techniques. Dimensionality reduction in the model reduces the complexity and prevents overfitting,

while maintaining high accuracy. SHAP analyzes and visualizes the black box to identify the sensors.

The experimental results demonstrate the high accuracy and efficiency of the proposed model with

dimensionality reduction and show that SHAP enhances the explainability in a conventional deep

learning model for system prognosis.

Keywords: deep neural network; dimensionality reduction; explainable artificial intelligence; feature

selection; prognostics and health monitoring; turbofan engine

1. Introduction

The safety of turbofan engines in aircrafts should be pursued as the top priority. Owing to

advances in materials and control technology, aircraft breakdowns due to defective components

have been decreased and the management of turbofan engine malfunctions has become crucial for

passenger safety. Successful maintenance of the turbofan engine helps ensure the aircraft’s reliability;

hence, many advances have been made in terms of the maintenance and management of turbofan

engines. In the early days, corrective maintenance, the concept of repairing in failure, was a commonly

used maintenance strategy [1]. Since then, owing to the accumulation of operational experience,

the approach has mainly developed into precautionary maintenance for equipment prone to failure.

It has recently been expanded into condition-based maintenance (CBM), which involves performing

maintenance at the optimal time, thereby apprehending the equipment’s condition. Through CBM,

decision-makers can manage equipment economically and reliably in a way that minimizes the sum of

repair and failure prevention costs. To properly perform CBM, it must be preceded by Prognostics

and Health Management (PHM), which helps understand the current equipment status. PHM is
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a series of procedures that predict how long a piece of equipment can be used by obtaining and

diagnosing equipment status information. Through PHM, optimal operation and maintenance plans

can be established. The most important aim of performing PHM is to accurately predict the remaining

useful life (RUL), which is the period from the current point before equipment failure [2]. Additionally,

fault diagnosis and prognosis performance can be evaluated through Prognostic Horizon (PH),

α-λ Performance, Relative Accuracy (RA), and Convergence Rate [3].

Three methods can be used for RUL prognoses: a physics-based approach, data-driven approach,

and hybrid approach [4]. A physics-based approach can be used when a degradation model, such as

fatigue crack growth, is available and significantly accurate [5,6]. However, considerable amounts of

prior knowledge or measurement data are required, and the effect of noise must be considered. If there

is no degradation model, the degradation characteristics can be predicted using a data-driven approach,

which uses measurement data. If there is sufficient historical data, polynomials’ coefficients can be

inferred to determine the correlation and causal relationship, and essential system information such as

the RUL can be obtained. However, because it is not an accurate physics model, it has a disadvantage

in that its accuracy is low. Lastly, the hybrid approach combines a physical-based approach and a

data-based approach [7,8]. The prediction accuracy of the hybrid approach is improved by combining

the polynomial advantages obtained from the data-driven method with the low error afforded by the

physics-based method’s degradation model.

The data-driven method is mainly used to prognose the RUL of a turbofan engine. A turbofan

engine comprises a compressor, a combustor, a turbine, and components that require numerous

components. Various sensor data, such as the temperature, pressure, and speed of complex components,

are collected to understand the condition of the turbofan engine. Owing to the complexity of the

structure and the variety of sensors, a single degradation model cannot be used as a physics-based

method to determine the turbofan engine’s condition. Recently, artificial neural networks (ANNs),

especially deep neural networks (DNNs), have been used to predict RUL with high accuracy for

nonlinear and complex systems. A DNN is an ANN that includes many hidden layers between the

input layer and the output layer. In recent years, research has focused on obtaining better prediction

results through various algorithms. To predict the turbofan engine’s RUL, among the machine learning

algorithms, multilayer perceptron, support vector regression, and relevance vector regression are

compared with the recent convolutional neural network (CNN) algorithm. In this case, the CNN

algorithm showed higher accuracy [9], and higher accuracy was obtained by constructing a deep

CNN model with five CNN layers [10]. Meanwhile, in a recurrent neural network (RNN), the long

short-term memory (LSTM) algorithm was used to solve the gradient descent problem in which the

learning effect decreased as the layer deepened during training [11]. The learning effect was improved

using the bidirectional LSTM (Bi-LSTM) algorithm, which improved the performance by exchanging

information in both directions of the input and output [12,13]. In addition, the RUL of the turbofan

engine was predicted through a standard deep belief network (DBN) [14] and a semi-supervised

deep architecture [15]. It was also shown that the accuracy improved when RUL was predicted by

combining the CNN and LSTM algorithms [16–18].

The RUL prognosis of a turbofan engine has two aspects that need to be considered, apart from

improving accuracy. First, several sensors are required to accurately predict the condition. As described

above, a turbofan engine acquires several data from various sensors, such as the temperature, pressure,

and speed data from the compressor, combustor, and turbine. This is because the data from all

components are required to accurately diagnose the overall state of the turbofan engine. In this study,

National Aeronautics and Space Administration (NASA) Commercial Modular Aero-Propulsion

System Simulation (C-MAPSS) dataset’s 21 sensors were used [19]. However, in real turbofan engines,

data are collected from hundreds of sensors. Excessive sensor data makes predictions difficult due

to the amount and complexity of the data. Moreover, there is also a problem in terms of missing

values or noise. The higher the data level, the greater the amount of information to be obtained;

however, preprocessing is also needed to solve the “curse of dimensionality”. To mitigate the data
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level problem, the dimensionality reduction technique can be used. Dimensionality reduction involves

transforming data from a high-dimension to low-dimension while maintaining critical characteristics

of the original data. There are two methods of dimensionality reduction: feature selection and

feature projection. Feature selection simplifies the model by removing redundant data or less-relevant

variables. The simplification of the model simplifies the analysis, reduces training time, and prevents

overfitting. Feature selection includes correlation analysis or regularization [20,21]. On the other hand,

feature projection uses all the data to create a new combination of features. Combining original features

into new features can include the existing characteristics while changing to a lower dimension than

the original dimension. Methods such as principal component analysis or autoencoders are examples

of this approach [22,23]. Good learning effects can be expected when using dimensionality reduction

through feature extraction, while reducing computational costs and the amount of learning data.

In the prognosis of the RUL of a turbofan engine, there exists a lack of analysis of the prediction

results. Most RUL predictions have the same problem. When considering the importance of monitoring

the turbofan engine condition, it is fatal not to know which part has caused the engine to run out of life

in maintaining the equipment. Many data-driven approaches have a limitation in that they lack the

analysis of prediction results. In particular, when using a DNN, due to the “black box” problem, it is

impossible to know how information is processed in the hidden layer. Decision-makers and domain

experts cannot use predictive techniques correctly without an adequate explanation of the results.

Recently, research on explainable artificial intelligence (AI) has been conducted to confirm the processes

occurring inside the black box. Three approaches can be applied for explainable AI. The first is to extract

features that can be explained through the trained model (model-specific explainability). The second

is that the model itself can be explained as a decision tree (transparent model). The third method

analyzes the cause by manipulating the input and viewing the output, without depending on the

model (model agnostic explainability) [24]. Using these three approaches, it is possible to understand

and determine the features that significantly affect the results when using a DNN. Accuracy and

explainability have a trade-off in explainable AI. The ANN, especially DNN, has high accuracy in terms

of predictions; however, its explanation is deficient because of the hidden layer. Therefore, to offer a

prognosis of the RUL of a turbofan engine, it is essential to analyze the black box inside while using a

DNN with high accuracy.

The proposed deep neural network accurately prognoses the RUL of a turbofan engine by

organizing the 1D CNN, LSTM, and Bi-LSTM algorithms. The network combines the algorithms with

different characteristics well and uses techniques to prevent overfitting, thereby affording higher

accuracy than recently proposed approaches. Training and verification are performed using the

C-MAPSS dataset by NASA. The NASA C-MAPSS sensor data have different correlations and are

affected by noise. The dimensionality reduction technique is applied to reduce the complexity caused

by several variables and improve accuracy. The accuracy achieved was compared by changing the

input features using correlation analysis and regularization, which are feature selection techniques.

In addition, Shapley additive explanation (SHAP) is adopted to identify variables that significantly

influence the prediction results. SHAP’s visualization allows decision-makers to intuitively identify

critical features that affect a turbofan engine’s RUL.

The remainder of this paper is organized as follows. Section 2 describes the 1D CNN, LSTM,

and Bi-LSTM algorithms and network architecture techniques for improving accuracy by constructing a

DNN. In addition, correlation analysis and regularization among the dimensionality reduction

techniques, considering the turbofan engine’s characteristics, and the SHAP algorithm among

explainable AI techniques for analyzing the prognosis results are described. Section 3 describes

the experimental study and results, and the paper is concluded in Section 4.
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2. Proposed Methodology

2.1. Deep-Stacked Convolutional Bi-LSTM Model

In this study, a deep-stacked convolutional Bi-LSTM model was constructed to provide a

prognosis of a turbofan engine’s RUL. All three algorithms of CNN, LSTM, and Bi-LSTM were used.

Each algorithm has different characteristics and advantages, and a deep-stacked model is constructed by

appropriately combining the three algorithms. In addition, a residual network and dropout technique

were used to prevent overfitting and increase accuracy.

2.1.1. One-Dimensional CNN (1D CNN)

A CNN was initially developed to exploit 2D or 3D spatial feature information [25]. Inspired by

the biological visual recognition process, CNNs are widely used in speech recognition, natural language

processing, and image or video recognition [26]. The two main characteristics of a CNN are spatial

shared weight and spatial pooling through convolution. The weight sharing structure reduces the

complexity of the model and the number of weights. Raw input data are convoluted through several

filters to generate features required for creating a feature map. The filter slides vertically and horizontally

to extract data and determines the extent and precision of the information extracted by adjusting

the filter size and stride size. Feature maps exploit essential local features through a pooling layer.

The pooling layer can be applied to high-level problems such as image processing by extracting

important local information from each feature map. However, some useful information is also filtered

out; therefore, the accuracy may be lower than that of the RNN technique. The 1D CNN filter moves in

a single direction, unlike the 2D CNN filter used for image processing. The 1D CNN has a relatively

shallow architecture and can be used for time-series analyses of sensor data. In particular, the processing

speed is faster than that of the 2D CNN, and the computational efficiency can be improved. The 1D

CNN layer is expressed as
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feature map j in the layer (l + 1). Layer l defines the input sensor data and σ is a nonlinear sigmoid

function. The time t moves horizontally. The 1D CNN process is shown in Figure 1a.
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term dependency because it incorporates a “memory” control block and a standard 

Figure 1. (a) Representation of one-dimensional convolutional neural network; (b) Long Short-Term

Memory; (c) Bidirectional LSTM.

2.1.2. LSTM

LSTM is a more complex form of RNN. Existing RNNs have been used to process time-series

data [27]; however, the RNN has a gradient descent problem in the training process. When the

number of time steps is large, the initial weights are no longer constant, resulting in a decrease in
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learning ability. An advanced modified version of the RNN, called LSTM, was proposed to solve

this problem [28]. The LSTM consists of an input gate, an output gate, a forget gate, and a memory

block. It features long-term dependency because it incorporates a “memory” control block and a

standard repeating layer. While the conventional RNN completely redefines cell states, LSTM can

carefully remove or add information to cell states through gates. On determining that the information

added to the cell is important, the system’s output performs one or more time steps on the memory

contents. If the information is not essential, the system may determine to reset the memory unit’s

contents by opening the forgetting gate. These three gates offer higher performance than general

RNNs because even a multi-layered network can access previous information during training. As it

has a vital feature of long-term dependency, LSTM has high accuracy in solving time-series sensor

data prediction and natural language processing problems such as speech recognition and language

translation. The structure of the LSTM network is shown in Figure 1b, and the equations are as follows:

it = σ
(

Wix
t + Riy

t−1 + pi ⊙ ct−1 + bi

)

(2)

f t = σ
(

W f xt + R f yt−1 + p f ⊙ ct−1 + b f

)

(3)

ot = σ
(

Woxt + Royt−1 + po ⊙ ct−1 + bo

)

(4)

ct =zt ⊙ it + ct−1 ⊙ f t (5)

yt = h
(

ct
)

⊙ ot (6)

where xt, it, f t, ot, ct, and zt are input vectors at time t, input gate, forget gate, output gate, memory cell

and block input, respectively. W, R, p, and b are the input weight, recurrent weight, peephole weight,

and bias weight, respectively. The notation ⊙ denotes point-wise multiplication between two vectors,

while σ and h are nonlinear activation functions. In LSTM, the cell state is divided into two parts:

the long-term state c(t) and the short-term state h(t). The cell state is regulated through three control

gates along the state path: an input gate, a forgetting gate, and an output gate. The input gate i(t)

controls the addition of information from the current output to the current long-term state c(t), and the

forgetting gate f(t) determine whether information from the previous long-term state c(t−1) should

be removed. The output gate o(t) controls the formation of the current short-term state h(t) using the

information of the current long-term state c(t).

2.1.3. Bi-LSTM

Traditional RNNs are suitable for processing sequential data but are trained only in the forward

path. Bidirectional learning trains on both forward and reverse paths and uses the output for prediction

as well. The LSTM can determine the storage and forgetting of information through the memory

cell, and by deeply configuring this LSTM layer, it is possible to capture nonlinear characteristics.

Bidirectional LSTM is an application of bidirectional learning to LSTM. If the vanilla LSTM only

uses information going from the past to the future for learning, Bi-LSTM uses the information by

independently calculating both the forward path and the reverse path. The output, which results

from the flow of information, is also used for learning so that features are better extracted and have

higher accuracy than the existing LSTM [29]. A Bi-LSTM network iterates layers from t = 1 to T in the

forward direction and t = T to 1 in the reverse direction and updates the output. The formulation of

the bidirectional LSTM layer can be defined as follows:

yt =σ(
→

h t

⊕ ←

h t) (7)

2.1.4. Residual Network and Dropout Technique

In a DNN model, configuring the model through multiple layers is very important to improve

performance. In theory, as the number of layers increases, the model extracts better features from
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the input data, but this can cause gradient descent problems. The residual network uses a method

of connecting the previous layer’s output to the next layer’s output by skipping the layer block [30].

As the network gets deeper, the model learns feature information of a higher level; hence, information

that has not been extracted before can be learned by combining the output of the previous layer and the

output of the next layer. The residual network improves performance by merely adding connections

using skipping layers without increasing network complexity. Using the residual network to construct

a DNN for extracting time-series data features makes it easier to optimize and improve accuracy.

Dropout is a representative technique that can prevent overfitting at a low cost. The dropout

technique temporarily deletes the connection between the input and output, including the unit in the

network. This effect can be achieved by multiplying the output value of one unit by 0, and the same effect

as learning multiple networks can be achieved by using the dropout technique. When several parameters

are used in a DNN, overfitting may occur because of the units’ co-adaptation. Dropout networks

require a longer time to learn on the same architecture but can significantly improve performance by

preventing overfitting [31]. In particular, the dropout technique is not specific to a domain as a general

technique. It improves the performance of neural networks in various applications such as speech

recognition and image classification.

2.2. Dimensionality Reduction and Explainable Artificial Intelligence

In this section, we present some solutions to the problems that need to be solved for the practical

application of the RUL prognosis. First, dimensionality reduction can mitigate the problem of excessive

sensors. This study applies correlation analysis and regularization, which are feature selections among

the dimensionality reduction techniques. Feature selection and feature projection methods exist

for dimensionality reduction. However, feature selection, which is a method that does not damage

the original sensor index, is more suitable for analyses of the predicted results, as discussed later.

Second, to analyze the predicted result, among the explainable AI techniques, the SHAP technique is

applied. The SHAP method analyzes the cause through the output without being dependent on the

model and is suitable for DNNs with high accuracy. In addition, intuitive information can be provided

to decision-makers through visualization of the analysis results.

2.2.1. Correlation Analysis and Regularization

Feature selection differs from feature projection in that it maintains the index of the original sensor

and performs during the preprocessing or pre-learning stage. By selecting the optimal subset, it is

possible to reduce unnecessary computation and improve the accuracy of the model. There are three

methods of feature selection: filter, wrapper, and embedded methods. The filter method is a method

of selecting a feature before the learning algorithm. Pearson’s correlation coefficient analysis is a

representative filter method for determining removal from a dataset based on the degree of correlation.

The wrapper method detects the interaction between variables and evaluates the subset by finding the

ideal combination of features through cross-validation. However, there is a risk of overfitting when the

computational amount is large, and the number of features is small. The embedded method selects

the optimal feature in the learning process of the model. Representatively, there is Ridge regression

and least absolute shrinkage and selection operator (LASSO) techniques. In this study, the wrapper

method that has the risk of overfitting is excluded to facilitate the deep learning model’s practical

application. The effect on accuracy improvement is analyzed by applying the filter method and the

embedded method. Through this technique, the complexity of sensor data can be reduced without

complicated procedures. Pearson correlation analysis analyzes the bivariate correlation between two

variables and is expressed as follows:

r =

∑n
i=1

(

Xi −X
)(

Yi −Y
)

√

∑n
i=1

(

Xi −X
)2
√

∑n
i=1

(

Yi −Y
)2

(8)
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The Pearson correlation coefficient r represents the correlation between two variables X and

Y as a value between +1 and −1, and 0 indicates that there is no relationship. n is the number of

samples, Xi and Yi are the two sample points, and X and Y are the averages. Here, as the correlation

coefficient between X and Y approaches 1, it implies that when one increases, the other tends to

increase as well. The correlation matrix heat map expresses the correlation coefficient in terms of

numbers and colors [32]. Figure 2 shows the correlation matrix heat map of the C-MAPSS dataset.

Among the many input variables, one should focus on the correlation between sensor data from s1 to

s21. Positive correlations are indicated by green, negative correlations are indicated by red, and no

correlation is indicated by white. When the row and column numbers are the same, the correlation

coefficient is always one because it is the correlation coefficient for itself; thus, the diagonal line’s upper

right portion is omitted for convenience. In the correlation analysis, the high correlation between X and

Y indicates their tendency to increase or decrease together. However, Y does not necessarily increase as

X increases.

’

’

’

Figure 2. Correlation matrix heat map of the Commercial Modular Aero-Propulsion System Simulation

(C-MAPSS) dataset.

Regularization is one of the methods used to solve overfitting [33]. There are several sets of

weights for predicting data in the network, and the more complex the model, the more likely it is to



Sensors 2020, 20, 6626 8 of 19

overfit. Therefore, to mitigate overfitting, the network’s complexity is limited so that the weight has

a small value. It is called weight regulation, and there are three types of weight regulation. The first

is LASSO (L1 regularization), which yields a regulation proportional to the weight’s absolute value.

The second is Ridge (L2 regularization), which is proportional to the square of the weight. The last one

is the Elastic Net, which is a combination of LASSO and Ridge. The formula for each regulation to add

a penalty to the network’s loss function is as follows:

LASSO penalty =
1

n

n
∑

i=1

{

L(yi, ŷi) +
λ

2
|w|
}

(9)

Ridge penalty =
1

n

n
∑

i=1

{

L(yi, ŷi) +
λ

2
|w|2
}

(10)

Elastic Net penalty =
1

n

n
∑

i=1

{

L(yi, ŷi) +
λ

2
|w|+

λ

2
|w|2
}

(11)

where n is the size of the data, L(yi, ŷi) is the existing loss function, λ is the regularization constant,

and w is the weight. As λ approaches zero, the effect of regularization decreases. LASSO adds a penalty

proportional to the weight’s absolute value, and Ridge adds a penalty proportional to the square of the

weight. Elastic Net has the feature of adding all penalties imposed by LASSO and Ridge. LASSO has

the characteristic of reducing the feature with little influence to 0, removing it, and selecting only the

significant influencing features. Ridge makes the feature with little influence close to zero but does

not converge it to zero. Therefore, the variance between features is reduced. Elastic Net performs the

function of reducing both the number and variance of features.

2.2.2. Explainable Artificial Intelligence (xAI)

Explainable AI emerged due to the lack of self-explanation, unlike the development of complex

systems or artificial intelligence models. In the US Defense Advanced Research Projects Agency,

a project called “Explainable Artificial Intelligence” aims at exploring the application of AI such that

humans can understand the results of the solution [34]. Machine learning and artificial intelligence

have an inherent “black box,” making it difficult to explain why AI makes specific decisions. To solve

this problem, explainable AI should be separately applied, and there are three methods to do so.

The first is to use a self-explanatory model. Models such as regression trees can be used for the

self-explanatory approach [20]. The second is to extract features that can be explained through a

trained deep learning model. The third one is to analyze the cause by evaluating the learning outcome

regardless of the model, such as the local interpretable model-agnostic explanations (LIME) or the

SHAP algorithm [35–37]. Unlike in the past, developments in computing power have made it easier to

apply xAI, as the problem of interpretation has been solved. However, AI itself has a trade-off between

accuracy and explanatory potential. Some models are easy to interpret for results, but such models are

usually less accurate. Therefore, to give a prognosis for the turbofan engine’s RUL, it should be noted

that it is essential to simultaneously explain the prediction results while achieving high prediction

accuracy with a DNN. Decision-makers can develop long-term plans for maintenance or equipment

replacement when simultaneously provided with reliable high prediction accuracy and interpretation

of predictions. This study applies AI that can be explained in a model-independent method applicable

to DNNs.

SHAP is a model agnostic explainable AI algorithm [38]. The Shapley value is a numerical

indication of how much each participant contributed to creating the overall outcome. Each participant’s

contribution can be expressed by measuring the increase or decrease in performance when that

participant is excluded. SHAP uses Shapley values ∅i(v) to add based on the independence between

features. It has the disadvantage that it requires a significant amount of time to derive the result because
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it calculates and visualizes each variable’s direction and size by simulating missing features. However,

even when the model is complex and there are many variables, it is a significant advantage to show

each variable’s influence over an intuitive figure. The SHAP formula is expressed as follows:

∅i(v) =
∑

S∈N{i}

|S|!(n− |S| − 1)!

n!
(v(S∪ {i}) − v(S)) (12)

where ∅i, n, S, v(S), and v(S∪ {i}) are Shapley values for the i-th data, all participants, all sets except the

i-th feature in the whole group, the contribution coefficient of the remaining subset except for the i-th

feature, and the total contribution including the i-th feature, respectively. Shapley value decomposes

the model’s output into each feature’s contribution and can also be expressed as a negative number.

This case can be interpreted as indicating that the characteristics have a negative effect on the expected

outcome through learning. SHAP results are displayed as intuitive figures, such as force plots or

decision plots.

2.3. Proposed Deep Convolutional Bi-LSTM Network Model

The proposed deep-stacked convolutional Bi-LSTM model with dimensionality reduction and

explainable artificial intelligence is shown in Figure 3. In this study, a DNN was constructed using the

CNN, LSTM, and Bi-LSTM algorithms. The three CNN layers extract spatial characteristics, the three

LSTM layers extract temporal characteristics, and the two Bi-LSTM layers extract spatial and temporal

characteristics through a bidirectional pass. In addition, the residual network and dropout technique

were adapted to achieve accuracy and optimization. Moreover, to solve the practical problem regarding

the prognosis of a turbofan engine’s RUL, correlation analysis, and regularization among dimensionality

reduction techniques, and SHAP among explainable artificial intelligence techniques, were applied.

∅𝑖(𝑣) =  ∑ |𝑆|! (𝑛 − |𝑆| − 1)!𝑛! (𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆))𝑆∈𝑁{𝑖}∅𝑖 𝑣(𝑆), 𝑣(𝑆 ∪ {𝑖})
’ ’

’

 

Figure 3. Proposed deep-stacked convolutional bidirectional LSTM model with dimensionality

reduction and explainable artificial intelligence.
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3. Experimental Study

The C-MAPSS dataset is typically used to give a prognosis for a turbofan engine’s RUL.

The condition evaluation of the turbofan engine is a prerequisite for addressing equipment malfunction,

maintenance, maintenance planning, and preventing potential loss of life. It is best to use the actual

turbofan engine’s operating information, but it is complicated to obtain sensor information from

equipment acquisition to failure. Therefore, NASA’s C-MAPSS dataset with several features was used

for the experiment, which simulated the turbofan engine’s state. In the following section, we introduce

the C-MAPSS dataset, hyperparameters, evaluation methods applied to the experiment, and the overall

experiment’s flow chart.

3.1. C-MAPSS Dataset

In this study, a turbofan engine’s RUL is given a prognosis using the C-MAPSS dataset FD001

of NASA. The turbofan engine consists of various components (fan, low pressure compressor,

high pressure compressor, low pressure turbine, high pressure turbine, combustor, and nozzle),

and the structure is shown in Figure 4. The information of each component, such as the temperature,

pressure, speed, and air ratio, is acquired through sensors. he C-MAPSS dataset consists of four

subsets, as shown in Table 1. Each subset is configured differently in terms of the number of engines,

operating conditions, and failure types. The dataset also provides training data, test data, and RUL data,

which are appropriate. The C-MAPSS dataset consists of 21 sensors that measure engine status and

information from three operating settings; the list and corresponding physical meanings are presented in

Table 2. The 24 multivariate time-series signals contain noise when depicting real data and illustrate the

degradation until the engine fails as a time-series trajectory. Some engine sensor information indicates a

direct deterioration trend for the engine, but some contain little or no information regarding performance

degradation. In practical scenarios, domain experts and decision-makers can use information from

sensors to monitor the turbofan engine’s condition and detect or rectify malfunctions. Furthermore,

it is possible to predict performance degradation and RUL.

’

’
’

’

’

’

’

Figure 4. Diagram of the turbofan engine modules.

Table 1. NASA C-MAPSS dataset.

Dataset FD001 FD002 FD003 FD004

Number of engines 100 260 100 249
Number of training samples 20,631 53,579 24,270 61,249

Number of test samples 100 259 100 248
Number of the data column 26 26 26 26

Average life span (cycles) 206 206 247 245

Operating conditions 1 6 1 6
Fault conditions 1 1 2 2
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Table 2. List and physical meanings of the C-MAPSS dataset.

Sensor Number Symbol Description Units Trend

1 T2 Total temperature at fan inlet ◦R ~
2 T24 Total temperature at LPC outlet ◦R ↑

3 T30 Total temperature at HPC outlet ◦R ↑

4 T50 Total temperature at LPT outlet ◦R ↑

5 P2 Pressure at fan inlet psia ~
6 P15 Total pressure in bypass-duct psia ~
7 P30 Total pressure at HPC outlet psia ↓

8 Nf Physical fan speed rpm ↑

9 Nc Physical core speed rpm ↑

10 epr Engine pressure ratio – ~
11 Ps30 Static pressure at HPC outlet psia ↑

12 Phi Ratio of fuel flow to Ps30 pps/psi ↓

13 NRf Corrected fan speed rpm ↑

14 NRc Corrected core speed rpm ↓

15 BPR Bypass ratio – ↑

16 farB Burner fuel-air ratio – ~
17 htBleed Bleed enthalpy – ↑

18 Nf_dmd Demanded fan speed rpm ~
19 PCNfR_dmd Demanded corrected fan speed rpm ~
20 W31 HPT coolant bleed lbm/s ↓

21 W32 LPT coolant bleed lbm/s ↓

3.2. Hyperparameter Setup and Evaluation Metrics

The hyperparameters for training the deep-stacked convolutional Bi-LSTM model are shown in

Table 3. The model consists of 8 layers, and the number of units is divided into four categories through

correlation analysis. The input data were divided into mini batches of 200 samples, normalized to

values between 0 and 1, and used for training. The dropout technique randomly excludes 55% of

the units during training. For hyperparameter optimization, an adaptive moment estimation (Adam)

algorithm, widely used with high performance, is used [39]. In the training phase, the model constitutes

a final model by learning through a training set of 95% for 100 training data engines and then performs

verification through a verification set consisting of 5%. The model then predicts the RUL for 100 engines

with new test data. The total epochs were 200, and early stopping was applied to finish learning early

when there was no learning improvement.

Table 3. Hyperparameters for deep-stacked convolutional bidirectional LSTM model.

Architecture Hyperparameters

Number of
Hidden Layers

Number of Units Normalization Activation Mini Batch Regularization

8(3, 3, 2)
128–64–22(15, 14,
13)–128–64–22(15,
14, 13)–256–512

Min-Max
Scaling

ReLu 200 Dropout (0.55)

Optimization Hyperparameters

Algorithm Validation Loss Epochs Decay Learning Rate

Adam 5% of train data RMSE
Early stopping

(Max. 200)
0 0.0001

Root mean squared error (RMSE) is used to evaluate the trained final model’s RUL prognosis

performance. There are many accuracy-based evaluation metrics used to evaluate regression models,

including RUL estimation [40]. Both RMSE and mean squared error (MSE) are given the same penalty

when the estimated RUL value is less than or greater than the actual RUL. The learning goal is to



Sensors 2020, 20, 6626 12 of 19

obtain 0, the smallest error for each engine’s RUL prognosis, which implies that the prediction result

is the same as the actual RUL. MSE tends to be exaggerated because it deals with squared values.

Therefore, the accuracy of the RMSE is compared with values reported in the literature. Additionally,

mean absolute error (MAE) and mean absolute percentage error (MAPE) are described as a reference

for the best case.

3.3. Flowchart of RUL Prognosis

The experiment’s overall process is shown in Figure 5, and the procedure for each step is as follows.

 

’
’

Figure 5. Flowchart of the experimental study.

1. The C-MAPSS data are indexed and normalized into a training set and a test set. The data are then

processed by correlation analysis and the feature selection technique of L1, L2, and Elastic Net.

2. The 21 time-series sensor data are divided into 200 mini batches and trained in the deep-stacked

convolutional Bi-LSTM model. The model learns temporal and spatial characteristics with three

1D CNN layers, three LSTM layers, and two Bi-LSTM layers and uses the dropout technique

and residual network to prevent overfitting and achieve high accuracy. Each time the epoch is

completed on the first parameter, the loss is calculated and the parameter is updated. Learning ends

when the maximum 200 epochs are completed or the early stopping condition is satisfied.

After training is complete, the final model is determined, and the RUL and error are calculated by

applying test data to this model.
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3. The SHAP algorithm, an explainable AI technique, is applied to the predicted result.

The explanation results can be visualized as a decision plot or force plot and used as analysis data.

4. Results and Discussion

4.1. Comparison with Literature

Table 4 shows a comparison with previous studies on the prognosis of the RUL of a turbofan engine

using C-MAPSS data. The algorithm, network configuration, publication year, and predicted RMSE

results of previous studies are summarized. Accuracy was improved by using advanced algorithms

which were developed from machine learning techniques to CNNS to RNNS. In addition, accuracy was

improved by deepening the network layer or using more than two algorithms. The proposed model

combines CNN and RNN, and LSTM and Bi-LSTM are used together, among the RNN algorithms.

The CNN layer easily exploits spatial features at the beginning of data entry. After the CNN layer,

the LSTM layer learns temporal features and the previous layer’s spatial features. In the last Bi-LSTM

layer, the turbofan engine’s RUL is given a prognosis by grasping the temporal and spatial characteristics

through interactive learning. As the network layer becomes deeper, there is a possibility of improving

the accuracy; however, overfitting also occurs. Therefore, the hyperparameters were fine-tuned, and a

dropout technique and residual network were applied to avoid overfitting problems. Among the

predictions of the RUL of turbofan engines for the last five years, the deep-stacked convolutional

Bi-LSTM model proposed in this paper achieved higher accuracy. In particular, it should be noted that

the RMSE of 10.41 is obtained, which is 25% and 14.9% lower RMSE than the study that predicted RUL

by combining two or more algorithms [15,16].

Table 4. Comparison of the prognosis RMSE results with other algorithms.

Method Description Years RMSE

MLP [8] Multilayer Perceptron 2016 37.56
SVR [8] Support Vector Regression 2016 20.96
RVR [8] Relevance Vector Regression 2016 23.80
CNN [8] 2 CNN 2016 18.45

LSTM [10] 2 LSTM 2017 16.14
DBN [13] Deep Belief Network 2017 15.21

BLSTM [11] 2 Bi-LSTM 2018 14.26
RNN [9] 5 Recurrent layers 2018 13.44

DCNN [9] 5 CNN 2018 12.61
Bi-LSTM [12] 2 Bi-LSTM 2018 13.65

Semi-Supervised [14] RBM + 2 LSTM 2019 12.56
HDNN [15] 3 CNN/3 LSTM Hybrid 2019 13.02
DAG [16] (CNN/LSTM Hybrid) + LSTM 2019 11.96

Proposed method 3 CNN + 3 LSTM + 2 Bi-LSTM 2020 10.41

4.2. Analysis of Feature Selection Effect

Feature selection during dimensionality reduction can improve performance by mitigating model

complexity and overfitting problems by reducing the number or influence of input sensors. In a turbofan

engine, as several sensors are used, the complexity problem can be solved by selectively removing and

learning unnecessary or omissible sensors rather than using all sensors. In this study, the C-MAPSS

FD001 dataset was divided into four categories through correlation analyses [41]: original (21 sensors

in total), exclusion of sensors with a correlation of 0% (15 sensors in total), exclusion of sensors with

correlation less than 30% (total of 14 sensors), and exclusion of sensors with correlation less than 60%

(total of 12 sensors). For the same experimental conditions, the rest of the hyperparameters remain the

same, except for the number of input sensors. In general, training on a set of features with low or little

correlation yields inaccurate results. Table 5 shows that the best accuracy is obtained when sensor
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data with a correlation of less than 30% are excluded and learned. In excluding sensor data with a

correlation of 0%, there was no significant difference compared to using the original dataset. However,

in excluding sensor data with a correlation of less than 60%, the number of input sensors decreased,

which adversely affected learning. It is evident that the accuracy is improved when some sensors are

excluded through correlation analysis, considering a dataset’s characteristics.

Table 5. RUL prognosis RMSE result with feature selection method.

Algorithm
Original

Data
(21 Sensors)

Exclude Correlation
under 0%

(6 Sensors Removed)

Exclude Correlation
under 30%

(7 Sensors Removed)

Exclude Correlation
under 60%

(9 Sensors Removed)
Average RMSE

Correlation
Analysis

11.43 11.73
10.41

(MSE 108.40, MAE
7.36, MAPE 14.05)

11.77 11.34

LASSO 11.68 12.81 14.79 10.70 12.50
Ridge 10.94 12.53 11.67 11.53 11.67

Elastic Net 11.82 13.53 12.62 14.12 13.02

The results of applying regularization were analyzed while changing the number of sensors

according to the correlation analysis. A comparison of each regularization result is shown in Figure 6.

When regularization was used on the original dataset, the accuracies of LASSO and Elastic Net were

low; however, Ridge exhibited high accuracy. In excluding sensor data with a correlation of 0% and

sensor data with less than 30%, LASSO, Ridge, and Elastic Net exhibited low accuracy. This result

indicates that, although complexity can be reduced through regularization, the information necessary

for learning is also removed. On excluding sensor data with a correlation of less than 60%, the accuracy

was high when LASSO and Ridge were used. This shows that regularization played a role in mitigating

the dataset’s multicollinearity problem. If the number of sensors is reduced through correlation analysis,

the model’s complexity can be reduced, and the prediction accuracy can be improved. However,

if excessive sensors are excluded, the features required for the prediction cannot be learned. This shows

that the feature selection technique considering the number of features and missing values in the

dataset could be optimized to obtain the best prediction result.

’
’

 

’

’ ’

’

’
’

Figure 6. Comparison of RMSE for different feature selection methods.

4.3. SHAP Analysis through Visualization

After the training model gave the prognosis for the turbofan engine’s RUL, SHAP analysis was

performed to explain the results. Because the training model uses a DNN, the SHAP is processed

through DeepExplainer. DeepExplainer shows the contribution of each sensor to the predicted RUL as a
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score. A sensor with a positive Shapley value indicates that, by adequately managing the corresponding

component, the turbofan engine can maintain its RUL suitably. However, a sensor with a negative

Shapley value indicates that the deterioration of the corresponding component can reduce the entire

turbofan engine’s life. Figure 7 shows each sensor’s contribution to the RUL prediction for engine 41

as a force plot and a decision plot. The red arrow represents a positive Shapley value, whereas the

blue arrow denotes a negative Shapley value. The length of the arrow indicates the magnitude of the

influence of each sensor. For the 41st turbofan engine, it can be seen that Phi (ratio of fuel flow to Ps30),

W32 (LPT coolant bleed), and engine pressure ratio are sensors with a negative role in predicting RUL.

In the decision plot, sensors representing negative Shapley values on the left and positive Shapley

values on the right are listed according to the absolute value of RUL prediction’s degree of influence.

Sensors that affect each engine can be intuitively identified through force plots and decision plots.

The SHAP analysis for the entire test dataset is shown in the summary plot in Figure 8. Shapley values

were applied to the entire dataset, and the impact was analyzed and displayed as a graph, listing the

most influential sensors. In Figure 8a, the degree sensor’s influence on the RUL of each engine is

expressed as points, and Figure 8b is expressed as the sum of the absolute values. Many outliers in

Figure 8a indicate that each engine’s driving conditions and flight environments are significantly

different and affected by noise. However, it should be noted that “phi” and “Ps30” have the most

significant impact on RUL prediction, suggesting that HPC (high pressure compressor) management

may affect the turbofan engine’s life. Lastly, the sensor’s Shapley value for each engine of the entire

dataset can be seen in Figure 9.

“ ” “ ” 
’ ’

 

(a) 

 

(b) 

Figure 7. (a) SHAP force plot for engine No. 41 and (b) SHAP decision plot for engine No. 41.
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(a) (b) 

’

Figure 8. (a) SHAP summary plot (point) and (b) SHAP summary plot (absolute value).

 

’

Figure 9. SHAP force plot of FD001 dataset.

The force plot in Figure 9 vertically accumulates and aligns each sensor’s Shapley values for

100 engines of FD001. Although listed according to similarity, it can be seen that the characteristics of

the sensors for RUL prediction are different.

As a result of studying the influence of the turbofan engine dataset using the regression tree, the

influence of sensor 7 (P30), sensor 12 (Phi), and sensor 21 (W32) was found to be high [20]. The SHAP

analysis conducted in this study showed that sensor 12 (phi) has the most significant effect on RUL

prediction, and sensor 21 (W32) has the 11th largest effect. However, it is necessary to consider that the

RMSE is not as high as 36.08, obtained for the study using the regression tree. For appropriate analyses,

it is necessary to use an accurate model with small errors before applying SHAP. It is also worth noting

that the description of the SHAP is not absolute in actual engine management because the description

of SHAP is based on prediction, even if it is analyzed using an accurate model. However, assuming that

the description results have been analyzed by decision-makers or domain experts, they can be reflected

in maintenance or equipment replacement plans, contributing to the longevity of turbofan engines.

5. Conclusions

In this study, the remaining useful life of a turbofan engine has been given a prognosis using a

DNN that combines 1D CNN, LSTM, and Bi-LSTM. Feature selection methods and xAI techniques

are adopted to solve the complexity and unobservability concerns of deep learning for its practical

implementation. Case studies are conducted using the NASA turbofan engine dataset, and the results
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are compared with those of previous studies. The results of case studies and contributions are

summarized as follows:

(1) The proposed deep learning model performs best in terms of accuracy in prognosis with reference

to the benchmarked algorithms. Residual network and dropout techniques contribute toward the

prevention of overfitting.

(2) During the feature selection, correlation analysis and regularization are employed to remove

irrelevant input sensors or weights. The regularized model can significantly reduce complexity,

while maintaining high accuracy.

(3) Use of xAI techniques helps identify primary sensors (i.e., components) influential to the

prognosis. The xAI helps specify the “black box” deep learning model, which is surely beneficial

for preventive and predictive engine maintenance.
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