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REMARK ON SIEGEL DOMAINS OF TYPE III1

JOSEPH A. WOLF

Abstract. Bounded symmetric domains have standard realiza-

tions as "Siegel domains of type III." Pjateckiï-Sapiro has intro-

duced a more restrictive notion of "Siegel domain of type III."

Here we give a direct proof that those standard realizations satisfy

the additional conditions of the new definition.

1. Introduction. In his book on the geometry and function theory

of the classical domains [l], I. I. Pjateckiï-Sapiro introduced the

very useful concepts of Siegel domains of types I, II and III for ap-

plication to the theory of automorphic functions. Given an irre-

ducible classical bounded symmetric domain D and an equivalence

class {B} of boundary components of D, he worked out an ad hoc

realization of D as a Siegel domain of type III with base B. Later, A.

Korányi and I [4] worked out the type III Siegel domain realizations

of all bounded symmetric domains in an intrinsic and classification

free manner. At about the same time, Pjateckiï-Sapiro [2] revised his

concept of type III Siegel domain for convenience of application. In

this note I extract a few small pieces of [4] to show directly that

the type III Siegel domains (old sense), that Korányi and I con-

structed in [4], all satisfy the revised conditions of Pjateckiï-Sapiro

for Siegel domains of type III (new sense).

I wish to thank Dr. T. Ochiai for mentioning this problem to me.

I wish to thank Professor I. I. Pjateckiï-Sapiro for his comment on

the manuscript. It turns out that the result had been obtained by

Pjateckiï-Sapiro in somewhat more generality [3], using the detailed

theory of bounded homogeneous domains. The present proof applies

only to bounded symmetric domains, but it is somewhat more direct

and elementary for that important case.

2. Definitions. Let Ur be a real vector space and SIEUr a non-

empty convex open cone that does not contain a straight line. This

data defines a Siegel domain of type I i = tube domain) in the complex

vector space U =Ur+íUr=Ur® C, which is

(Si) [uE U:Imu E®}-
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Let F be a second complex vector space and F: VX V—*U a map

that is hermitian relative to complex conjugation of U over UR.

Suppose that F is positive definite in the sense that O^vEV implies

07e Fiv, v)E& ( = closure of 0). This data defines a Siegel domain of

type II in U@ V, which is

(S„) {(«,») G U 8 Vllxa u - F(v, v)E^}-

Siegel domains of type I are the special case V = 0.

There is no variation in these original definitions of Pjateckiï-

Sapiro for Siegel domains of types I and II.

Let W be a third complex vector space, BEW a bounded domain

containing the origin 0, and W—*FW a smooth map of B into

HomR(V®RV, U) such that

(1) FK = F* + Fl where F* is hermitian and P¿ is C-bilinear,

(2) P0 = P,soPo = PSandPg = 0, and

(3) if vEV and either F„(v, V) =0 or FW(V, v)=Q then v = 0.

This data defines a Siegel domain of type III (old sense) in U@ V® W,

which is

{(«, », w) E U © V ® W:
(Sin old)

w E B and Im u - Re Fw(v, v) E &}•

B is its base. Siegel domains of type II are the case W = 0, i.e. B = (0).

Start again with the data iUR, Q, V, F) for a Siegel domain of type

II. That defines a complex vector space

Wuniv = {p'-V —> V conjugate-linear:

(4)
Fipv, v') = Fipv', v) for all *, v' E V}.

That vector space contains a bounded domain

Puuiv = \p E WwiY\ii 0f¿vEV then

(5) _,
0 ¿¿ Fiv, v) - Fipv, pv) E Q} -

If pEBuniv then I+p is invertible, for il+p)v = 0 implies P(i;, v)

= Fipv, pv). Thus we have maps

LP:V XV^U   defined by   LPiv, v') = P(t>, (7 + p)~W)

(6)
for p E  Puniv
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Now the universal Siegel domain of type III associated to ( Ur, Q, F, F)

is the domain in U® V® TFuniT which is

{(u,v, p) E U ® V ® Wwiv:
(Sin univ) ,

p E ^univ and Im u — Re Lp(v, v) E®}-

Lemma 1. If pEBn^w then I—p2 is invertible and the map Lp

satisfies (1), (2) and (3) with LP and L\ given by

Lkp(v, v') = F(v, (I - />2)~V)    and

Lp(v, v') = - F(v, (I - pYpv').

In particular, universal Siegel domains of type III are Siegel domains of

type III in the old sense.

Proof. If (l-p2)v = 0 then F(v,v) = F(p2v,v) = F(pv, pv) by (4), so

o = 0 by (5); that proves I-p2 invertible. Now (I-p*)~KI-p)

= (I+p) ~l by power series expansion in a neighborhood of 0 and then

analytic continuation to PUn¡v Given L\ and Lp as in (7) it follows

that Lp = LnP+Lp. Now (1) and (2) are immediate, and (3) follows. □

Again let (Ur, Í2, F, F) be the data for a Siegel domain of type II.

Let IF be a third complex vector space, PC IF a bounded domain and

<j>:B—»Puniv a holomorphic map with O£0(P). This data defines a

Siegel domain of type III (new sense) in U® V® W with base B, which

is

{(*, v, w) EU ®V ® W:
(Sm new) _

w E B and Im u — Re Z,¿(W)(t>, v) E £2}.

Lemma 1 says

Lemma 2. A Siegel domain of type III in the new sense is a Siegel do-

main of type III in the old sense for which Fw(v, v') = F(v, (I+4>(w))~h>').

3. Siegel domain realizations. We use the notation and conventions

of [4 ] for our verification, even though they may be too complicated

for other purposes. Now D is a bounded symmetric domain em-

bedded in its antihomomorphic tangent space p~ by the method of

Harish-Chandra. A is the corresponding maximal set of strongly

orthogonal noncompact positive roots, T is a subset of A, Dr is the

subdomain of D whose maximal set of strongly orthogonal noncom-

pact roots is r, and c¿-r is the partial Cayley transform involving the

elements of A — T. The space p~ = U® V® W where
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c7 = (3A-r,i is the ( + l)-eigenspace of ad(cA_r)4 on the subspace of p~

forA-r,
F = p2_ ¡s the ( —l)-eigenspaceof ad(cA-r)4on p~, and

W = pr ¡s the subspace of p~ for T, and is the ambient space of the

domain Pr-

We also have

Pfl=n[- real form of P = pÄ_r,i defined in [4, 6.1.3], and

ß = cr self dual cone in Pfi=tr[~ defined in [4, §7.1].

In [4] following Lemma 7.2 one finds the following definitions,

which we rewrite according to the "dictionary" just above. If

wEDt then ß(w)'.V-+V is the conjugate-linear map given by

ß(w)v = ad(w)ad(cA-r)2-v(v) where v is a certain complex conjugation,

and A„: FX F—>P is map given by

i
A„(v, v') =- [v, ad(cc-r)2v(I + ß(w))~V]

= - -1 ad(Ci_r)24ad(cA_r)2^, (/ + ß(w))~h'].

In [4, §7 ] it is shown that

CA-r(P) = {(«, v, w) E U ® V ® W.

(8) ,
w E Dr and Im u — Re Aw(v, v) E Œ}

and that the A„, wEDT, satisfy (1), (2) and (3), so that

(9) CA-r(P) is a Siegel domain of type III (old sense) in \r.

Theorem, ß is a holomorphic map from Dt to the domain Puniv for

the type II Siegel domain data (Ur, ß, F, A0). Thus ca-t(D) is a Siegel

domain of type III (new sense) in \>~.

Proof. Let TFun¡v and Puniv be defined as in (4) and (5) for the type

II Siegel domain data (Ur, ß, F, A0). If wEDv then ß(w) acts on F

by: the complex conjugation v, then ad(cA_r)2, then ad(w). Thus ß is a

holomorphic map of Pr into the space of conjugate-linear trans-

formations of F. \iv,v'EV and w ED t then [4, Lemma 7.3 (iii)]says

that A0(o, ß(w)v') = AofV, ß(w)v) ; after complex conjugation of U over

Ur this says that ß(w) E IFuniv. Now ß is a holomorphic map of D into

IFuniv.

Let wEDr and O^vEV. Define v'= (I-ß(w)2)v so O^v'EV. We

compute
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A0(», v) — Ao(p(w)v, p(w)v)

= A0(f, ») — A.0(p(w)2v, v)    because p(w) E Wwiy,

= Ao((7 - p(w)2)v, v)

= Ao(»', (7 — p(w)2)~lv')     by definition of »',

= Aol v', J fi(™)!"'' by power series expansion,

= 22 AoOí(w)V, (i(m)V)     because p(w) E WaaiV.
n-0

If p(w)"v'9*0 then 09iA0(p(w)nv', ß(w)"v') E&- As Û is convex, and is

strictly convex at 0, now A0(¡>, v) —Ao(u(w)v, piw)v)E& and A0(f, v)

—Aoißiw)v, uiw)v)=0 ii and only if ju(w>)V = 0 for all « = 0. But

t/^O, i.e. uiw)°v'^0, so now

0 9¿ Ao(», v) — \oiuiw)v, niw)v) E ß-

We have proved uiw) EBuniy, completing the proof of the theorem. □
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