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INVESTIGATION

Remarkably Divergent Regions Punctuate the
Genome Assembly of the Caenorhabditis elegans
Hawaiian Strain CB4856

Owen A. Thompson,* L. Basten Snoek,” Harm Nijveen,* Mark G. Sterken,’ Rita J. M. Volkers,*
Rachel Brenchley,® Arjen van't Hof, Roel P. J. Bevers,** Andrew R. Cossins,® Itai Yanai,™ Alex Hajnal,*
Tobias Schmid,** Jaryn D. Perkins,*® David Spencer,* Leonid Kruglyak,*** Erik C. Andersen,™*

Donald G. Moerman,* LaDeana W. Hillier,* Jan E. Kammenga," and Robert H. Waterston*:!

*Department of Genome Sciences, University of Washington, Seattle, Washington 98195, TLaboratory of Nematology, Wageningen
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California 90095, and *TTDepartment of Molecular Biosciences, Northwestern University, Evanston, lllinois 60208

ABSTRACT The Hawaiian strain (CB4856) of Caenorhabditis elegans is one of the most divergent from the canonical laboratory strain N2 and
has been widely used in developmental, population, and evolutionary studies. To enhance the utility of the strain, we have generated a draft
sequence of the CB4856 genome, exploiting a variety of resources and strategies. When compared against the N2 reference, the CB4856
genome has 327,050 single nucleotide variants (SNVs) and 79,529 insertion—deletion events that result in a total of 3.3 Mb of N2 sequence
missing from CB4856 and 1.4 Mb of sequence present in CB4856 but not present in N2. As previously reported, the density of SNVs varies
along the chromosomes, with the arms of chromosomes showing greater average variation than the centers. In addition, we find 61 regions
totaling 2.8 Mb, distributed across all six chromosomes, which have a greatly elevated SNV density, ranging from 2 to 16% SNVs. A survey of
other wild isolates show that the two alternative haplotypes for each region are widely distributed, suggesting they have been maintained by
balancing selection over long evolutionary times. These divergent regions contain an abundance of genes from large rapidly evolving families
encoding F-box, MATH, BATH, seven-transmembrane G-coupled receptors, and nuclear hormone receptors, suggesting that they provide
selective advantages in natural environments. The draft sequence makes available a comprehensive catalog of sequence differences between
the CB4856 and N2 strains that will facilitate the molecular dissection of their phenotypic differences. Our work also emphasizes the
importance of going beyond simple alignment of reads to a reference genome when assessing differences between genomes.

KEYWORDS C. elegans; genome assembly; evolution; variation

NA sequence variation, whether present in natural pop-
ulations or induced in the laboratory, has been central
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to the functional understanding of genes and genomes.
Natural variation has proven particularly valuable in the
analysis of quantitative traits while also providing insights
into the evolutionary processes that shape genomes. At the
same time, mutations of strong phenotypic effect have long
been a pillar of experimental genetics. As rapidly improving
DNA sequencing technology has simplified both the detec-
tion and the cataloging of variation, major efforts have been
undertaken to describe variation and then analyze quanti-
tative traits in wild isolates of various model organisms,
including Caenorhabditis elegans, Saccharomyces cerevisiae,
Drosophila, and Arabidopsis (Schacherer et al. 2009; Cao
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et al. 2011; Andersen et al. 2012; Mackay et al. 2012;
http://www.1001genomes.org).

For C. elegans, the canonical wild-type laboratory strain
N2 was derived from an isolate found in 1951 in mushroom
compost in England (Nicholas et al. 1959) and maintained
in liquid culture on agar slants and then on Escherichia coli
until protocols were developed in 1969 that allowed storage
of frozen stocks (Sulston and Brenner 1974; Sterken et al.
2015). It was the first multicellular organism to have a fully
sequenced genome (C. elegans Sequencing Consortium
1998), and this sequence has served as the reference for
C. elegans. Prior studies that have utilized the genetic diver-
sity available in wild populations of C. elegans, whether
studying specific phenotypes, genes, gene classes, or popu-
lation mutational spectra, have reported their results with
respect to the N2 strain.

Among the many wild isolates of C. elegans, one of the
most genetically divergent and most heavily studied is
CB4856, which was isolated in 1972 by Linda Holden from
a pineapple field on the Hawaiian island of Maui (under the
name HA8) (Hodgkin and Doniach 1997). It shows multiple
phenotypic differences with N2, including production of a cop-
ulatory plug, aggregation behavior, a lack of temperature-
size dependence, growth rate, fecundity, RNA interference
insensitivity by feeding and drug resistance (de Bono and
Bargmann 1998; Kammenga et al. 2007; Ghosh et al.
2012; Pollard and Rockman 2013; Andersen et al. 2014),
and gene expression differences (Capra et al. 2008;
Rockman et al. 2010; Vinuela et al. 2012; Volkers et al.
2013). Various populations of recombinant inbred lines
(RILs) and a population of introgression lines (ILs) have
been generated between CB4856 and N2 to define the ge-
netic architectures of complex genetic traits (Li et al. 2006;
Rockman and Kruglyak 2008; Doroszuk et al. 2009; Andersen
et al. 2015). Molecular genetic analyses of the Hawaiian
strain have revealed polymorphisms associated with several
of the above traits as well as others. An online database,
WormQTL, has been created for the deposition of expression
quantitative trait loci (Snoek et al. 2013, 2014; van der Velde
et al. 2014).

The elucidation of sequence variants in CB4856 has oc-
curred in several steps. Initially, random genomic fragments
were compared to the N2 reference genome, revealing
>6000 SNVs and small insertion/deletions (indels) (Wicks
et al. 2001). A later study increased the number of SNVs to
>17,000 (Swan et al. 2002). The genomic positions of these
SNVs are distributed nonrandomly, with more variation
present on chromosome arms than in the centers where re-
combination is lower (Koch et al. 2000; Wicks et al. 2001).
These variants provided suitable markers for genetic mapping
using a variety of methods. D. Spencer and R. H. Waterston
(unpublished results) cataloged >100,000 SNVs using an
early version of massively parallel sequencing (MPS) technol-
ogy in a whole-genome shotgun (WGS) approach and de-
posited these variants in WormBase, noting multiple
~25- to 100-kb regions of poor read alignment, possibly
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due to high sequence divergence. These regions were most
prevalent on the left arms of chromosomes I and II along
with both arms of chromosome V. Array comparative hy-
bridization identified large copy number variations (CNVs)
and found that these CNVs also were enriched on chromo-
some arms, affecting primarily gene family members that
had undergone recent expansion in C. elegans (Maydan
et al. 2007, 2010). A study of chemoreceptor gene families
uncovered functional genes in CB4856 that are defective in
N2 (Stewart et al. 2005). Recent genomic analyses of
CB4856 and N2, alongside other isolates, again found the
Hawaiian strain to be among the most divergent, either by
using sequencing restriction-site-associated DNA markers
in 202 strains (Andersen et al. 2012) and/or by comparing
hybridization of coding sequences between N2, CB4856,
and a panel of 46 wild isolates (Volkers et al. 2013). Recently,
we used MPS to obtain deep WGS coverage, providing a more
complete list of differences including indels of a full range of
sizes between the N2 reference and the Hawaiian genome
(175,097 SNVs and 46,544 indels) (Thompson et al. 2013).
Another group extended the set further using deeper WGS
coverage along with longer reads from the 454 platform
(Vergara et al. 2014).

One shortcoming of all of these studies has been that
they have relied on alignment of the sequence reads to
the N2 reference genome. As a result, multiple regions of
the Hawaiian genome remain missing or poorly defined.
These missing regions include insertions in the Hawaiian
genome relative to N2. But, in addition, inspection of the
deep WGS coverage revealed some regions of the genome
that apparently were so divergent that aligned reads were
sparse to absent (D. Spencer, O. A. Thompson, and R. H.
Waterston, unpublished results). The sequence of these
highly divergent regions and Hawaiian specific sequences
must be determined to interpret more fully any genotypic
and phenotypic differences between the Hawaiian and N2
strains.

Accordingly, we have undertaken the construction of
a Hawaiian reference genome sequence that more com-
pletely reflects the sequence differences between the two
isolates. To accomplish this goal, we took advantage of
several very deep coverage MPS data sets for the Hawaiian
genome, a de novo assembly program (Chu et al. 2013), end
sequences from a fosmid library for the Hawaiian genome,
recently released RNA-seq data, and low-coverage genome
sequence data from 49 RILs (Li et al. 2006) and 60 ILs
(Doroszuk et al. 2009) (Table 1). Exploiting these resources
and using a variety of software tools, we have modified the
N2 reference genome to generate a draft reference sequence
for the Hawaiian genome. The results reveal >60 regions
with haplotypes that are substantially divergent from N2.
The distribution of these haplotypes in other wild isolates
suggests that these regions were present in the genomes of
ancestral populations before the world-wide distribution of
the C. elegans species and have been maintained since that
time.
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Table 1 CB4856 sequence resources

[SIPIE, Insert Clones/total Coverage
Data set Pl Type Platform length (bp) size bases in reads expected (%)
Princeton University Andersen DNA lllumina PE 104, 104 321 bp 34,711,778/7,220,049,824 69.52X (96.6)
University of Washington Waterston ~ DNA lllumina PE 76, 76 179 bp 21,252,827/3,230,429,704 31.10% (96.6)
(Thompson et al. 2013)
Technion Yanai DNA lllumina  PE 100, 100 221 bp 79,406,930/15,881,386,000 80.08% (50.6)
University of Zurich Hajnal DNA lllumina PE 101,101 484 bp 825,754/166,799,884 1.41X (84.9)
University of Zurich Hajnal DNA SOLID PE 50, 35 124 bp 15,760,405/2,679,268,850 7.20% (26.9)
University of British Columbia Moerman DNA Sanger  PE ~770 bp ~33 kbp 15,360/20,520,434 0.20% (97.2)
(Perkins 2010)
Washington University Waterston ~ DNA Sanger  SE ~764 bp NA 11,541/8,843,526 0.07X (81.7)
(Wicks et al. 2001)
Wageningen University/ Kammenga/ DNA (ILs/RILs)  SOLID SE 50 NA 2,709,932,329/135,496,616,450 766.85X (56.8)
University of Liverpool Cossins
Total DNA 956.43%
SE = single end

PE = paired end

Materials and Methods
Sequencing methods

DNA from the C. elegans CB4856 strain was extracted using
the Qiagen Blood and Tissue kit and quantified using a Qubit
2.0 broad-range kit. DNA was sheared in a Covaris LE220
sonicator to a size of 300-600 bp and then 400- to 600-bp
fragments were gel-extracted after standard Illumina
TruSeq sample preparation. One Ilumina HiSeq2000 lane
was run to obtain the 101-bp paired-end sequence reads
used in this study.

Creating a Hawaiian reference

Using a strategy similar to that employed in the analysis of
different Arabidopsis accessions (Gan et al. 2011; Schneeberger
et al. 2011), we first aligned the random genomic reads to the
N2 reference genome, identified SNVs and indels, modified the
N2 reference accordingly, and realigned the reads, repeating
the process 19 times to create a first version of the Hawaiian
genome (20 cycles total) (Figure 1; Supporting Information,
Figure S1; Table S1). This process allowed extension of se-
quence into regions of high divergence, closed large dele-
tions, and built sequence into insertions (Figure 1 and
Figure 2). We used the JR-Assembler (Chu et al. 2013) to
create de novo assemblies of the same sequence reads,
assessed their quality using the program REAPR (Hunt
et al. 2013), breaking contigs as needed, and aligned the
resultant contigs to the Hawaiian genome. To identify dele-
tions previously missed, we scanned the genome for regions
devoid of coverage, merging adjacent regions if they were
separated only by short segments of either very low cover-
age or repeated sequences. For regions flanked by adjacent
segments of the de novo assembled contigs, we used the
contig to close the gap. To confirm that such segments were
properly placed in the genome, we used the RIL data to
establish their chromosomal location (Figure S2; Figure
S3; Table S2). Specific methods for each of these steps are
presented in the Supporting Information.

The result is an initial draft reference Hawaiian genome
with a total length of 98.2 Mb. Regions of excess coverage
(>99X) suggest that we have failed to represent some du-
plicated segments, which total some 0.5 Mb in length. Also,
the de novo assembly generated 22 contigs of 16 kb total
length that we were unable to locate in the reference. Just as
the N2 reference has been improved through continuous
community input, we expect users will provide improve-
ments here.

ALE scoring of divergent regions in wild isolates

MPS sequence reads from each of the 39 wild isolates
previously studied (Thompson et al. 2013) were aligned
against both the N2 and CB4856 reference sequences. The
resultant alignments were scored using the ALE program
(Clark et al. 2013). For each divergent region (Table S3),
we then plotted the placement score for each strain against
the two genomes. Many sites followed a simple binary pat-
tern, with scores for each strain against N2 and CB4856
resembling one of the controls (Figure S4A). Other regions
in some strains showed intermediate scores against either or
both N2 and CB4856. Inspection of the alignments and ALE
score patterns across the region suggested that the strain
had intermediate divergence across the region, where some
blocks of a region resembled the N2 haplotype and others
resembled CB4856 (Figure S4B). These patterns were con-
sistent with the idea that recombination had occurred within
the region. However, some regions had one or more strains
with reads that aligned poorly with both strains, and inspec-
tion of those regions in these strains was consistent with the
presence of a third haplotype for the region (Figure S4C).
Other regions, particularly those from the left arm of chro-
mosome II, had more complex patterns and were not ana-
lyzed further.

Comparing the two reference genomes

The C. elegans N2 genome, version WS230 (note that while
annotations changed, the N2 genome sequence remained

C. elegans Hawaiian Strain CB4856 Genome 977


http://www.wormbase.org/db/get?name=CB4856;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/175950SI.pdf
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/FigureS1.pdf
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/TableS1.pdf
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/FigureS2.pdf
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/FigureS3.pdf
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/FigureS3.pdf
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/TableS2.pdf
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/175950SI.pdf
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=CB4856;class=Strain
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/TableS3.pdf
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=CB4856;class=Strain
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/FigureS4.pdf
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=CB4856;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=CB4856;class=Strain
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/FigureS4.pdf
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/FigureS4.pdf
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain

A
A deletion <A™ substitution error  insertion
o s
s’ A
HA reads PN
-t o & ~,
’ N
N
N2 -
N 1
~
o
s I
revised -

B
Gl W W W W W

JR-contig 23b
']

Coverage NS

JR-contig 23

JR-contig 23a
SN 1111 ST R

Contigs

Contigs

Figure 1 Strategy for constructing a Hawaiian reference sequence. (A)
Alignment of 100-bp paired-end reads from the CB4856 genome to the
N2 genome. Sites that differed by base substitution and insertion and
deletion were recognized, and the N2 genome was altered at those sites.
For insertions larger than a read and at the edge of divergent regions, the
consensus sequences from the unmatched segments of the reads were
added to the reference. Then the reads were aligned to the modified
reference, and the cycle was repeated for 20 times, by which time few
changes were being made. (B) After the 20 cycles of alterations, areas
with incomplete coverage still persisted. To correct these areas, individual
reads were assembled de novo with the JR-Assembler and aligned against
the modified reference. Typically, these JR contigs would show good
agreement where read coverage was good, and thus corrections had
been made, but poor alignment where the reference sequence did not
have coverage and had not been altered from the N2 reference. The JR
contigs were also aligned against sequence reads from RiLs and ILs. Only
RILs and ILs containing a segment of the Hawaiian genome that spanned
the JR contig yielded good coverage across these divergent regions,
thereby locating the JR contigs on the genome. Where the JR contigs
had regions of good match against the reference and their location was
confirmed by alignment of reads from RILs and ILs, they were spliced
cleanly into the reference. Remaining large deletions were also removed.

identical from WS215 through WS234), was aligned against
the Hawaiian genome using LASTZ [version 1.02.00; O =
400, E = 30, K = 3000, L = 3000, M = 0; (Harris 2007)].
The program LASTZ, like BLASTZ (Schwartz et al. 2003),
uses a series of steps consisting of seeding (a user-specific
seed pattern is allowed), gap-free extension, chaining, an-
choring, gapped extension, and interpolation. However, un-
like BLASTZ, LASTZ can derive its own suitable tuning
parameters from the sequences themselves. We chose
LASTZ because it is able to perform pairwise gapped full
chromosome-to-chromosome alignments using very little
memory.

The LASTZ alignments were performed with the chain
option and lav output format. Files in the lav output format
were converted to psl format using lav2psl (J. Kent, http://
hgdownload.cse.ucsc.edu/admin/jksrc.zip) and were chained
[creating a sequence of gapless aligned blocks with no
overlapping blocks (Kent et al. 2003)] using axtChain
(-linearGap = loose). The resulting alignment files (a read-
able text version for coordinate lookup is available in File
S1) were merged using chainMergeSort and prepared for
the netting step using chainPreNet and then netted (a net
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is a hierarchical collection of chains, with the highest-scoring
nonoverlapping chains on top; their gaps were filled in
where possible by lower-scoring chains; for more information
see http://genomewiki.ucsc.edu/index.php/Chains_Nets),
retaining a unique, ordered set of alignments within the
N2 genome using chainNet. The resulting output contains
a single set of ordered alignments in the N2 genome fol-
lowed by additional “fill in” alignments. Only alignments
to the same chromosome in N2 and Hawaiian and on the
same strand were retained. We reviewed the additional “fill
in” alignments and found only a possible 2 kb of unique
additional aligned sequence that could have been used for
SNV identification. Therefore, we chose not to retain the “fill
in” alignments (they occur in the output file after the initial
list of the entire N2 chromosomal alignments). The axt files
created by the final netting step were parsed using a custom
script to create files listing the SNVs and insertion/deletion
differences.

When there were gaps in either the N2 or Hawaiian ge-
nome between the “major” alignments, they were annotated
as indels. Two types of regions were identified between
neighboring blocks: (1) simple indels, where the sequence
was cleanly inserted/deleted in one genome relative to the
other and (2) 816 cases where sequence was present in both
the N2 and Hawaiian genomes but could not be accurately
aligned (alignment using various Smith-Waterman algo-
rithm implementations revealed different alignments in
each case). Thus, we elected to simply retain those regions
as blocks of indels. To identify high-quality substitutions
within the LASTZ alignments, we required at least three
reads and =150 reads with the fraction of reads that dis-
agree with the total reads at the site as <0.2.

RNA-seq ALIGNMENTS/TOPHAT/CUFFLINKS

Hawaiian reads from available RNA-seq projects
(313,124,440 reads) (Stoeckius et al. 2014) were aligned
to the Hawaiian genome using TopHat (-b2-fast) (Trapnell
et al. 2012), and BAM files were generated containing the
resulting 215,316,914 aligned reads. Cufflinks (-min-frags-
per-transfrag 5-min-intron-length 25-trim-3-avgcov-thresh
5 -p 8) created 31,965 transcript predictions (30,199 genes)
composed of 91,185 exons (84,461 different exons) (Trapnell
et al. 2012).

Genefinder

Using the C. elegans table files, we ran Genefinder (version
1.1; P. Green, unpublished results; -orfcutoff -0.5 -intron3-
cutoff -0.5 -intron5cutoff -0.5) to provide de novo gene pre-
diction in the Hawaiian genome. A total of 22,261
transcripts were predicted, which were composed of
126,518 different exons.

Identifying N2 genes in Hawaiian

To identify C. elegans N2 genes in Hawaiian, the N2 pre-
dicted genes (WS240) were aligned against the Hawaiian
genome using blat (-q = rna). Each N2 gene was aligned to
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Figure 2 Read coverage and SNV density in the N2 reference genome and the iteratively corrected CB4856 genome. (A) A typical region for most of the
genome is shown, with good coverage (top track) and infrequent SNVs and indels (second track). Genes are shown below. (B) A region of the N2
reference showing poor coverage and a high SNV/indel density with the Hawaiian reads. (C) After 20 iterations of reference-guided corrections, the
same region as in B now has improved coverage by the CB4856 reads. In addition to coverage, the tracks show the SNV calls (MMP SNVs) reported in
(Thompson et al. 2013), the SNV calls based on the new reference (SNVs), indels based on the new reference (Indels), and regions that failed to align
with sequence present in the N2 reference (Unaligned). Gene models for each region are shown below. (D) The boundary of a divergent region (left)
with a less divergent region of the genome is shown. The density of SNVs and indels changes abruptly. Tracks are as in C.

the corresponding Hawaiian chromosome. At least partial
alignments were obtained for 26,571 of the 26,769 genes.

Validation of CB4856 by random long (Sanger) reads—SNVs

The CB4856 Sanger sequencing reads from the Washington
University (random genomic short inserts) and the Univer-
sity of British Columbia (insert end sequences of a genomic
fosmid library) projects were aligned against the final
CB4856 reference using bwa (Li and Durbin 2009; Li et al
2009). To assess whether the Hawaiian SNVs presented
here were confirmed by those long reads, all reads with
a mapping quality of >40 (25,667 total reads with
13,835,952 bases having phred quality scores =40) were
retained for analysis. A total of 28,203 of the Hawaiian
SNVs presented here were covered with at least one of
the base calls from the long read set of phred quality
=40. Of those 28,203, there were 27,680 (98.1%) where

the long read confirmed the Hawaiian SNV. Of those, 8380
were in a divergent region, and 8123 of those were con-
firmed (96.9%). For the 19,823 not in divergent regions,
19,556 were confirmed (98.7%). For the 523 positions
where the Hawaiian SNV was not confirmed by the long
read data, we examined the basecall from the JR-Assembler
for that position in the genome. Of the 523 positions, there
were 416 total (172 in the divergent regions) where the
position was in a JR-Assembler contig that was not one
of the 221 complete JR-assembled contigs inserted into
the final reference sequence. Small parts of other contigs
were also incorporated into the final assembly, but because
they were small, they were not excluded here. In 415 of the
416 cases, or less than half a percent of the cases, the base
called in the JR-Assembler contig agreed with the Hawai-
ian SNV call. The single case that did not agree was in one
of the divergent regions. The consistency between the
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integrated assembly and the JR-contigs suggests that many
of the differences with the fosmid end sequences could be
due to strain differences or from errors in the Sanger reads.

Validation of CB4856 by random long (Sanger)
reads—indels

There are 190 reciprocal indels where a bwa alignment
suggests a long Sanger sequencing read alignment spanning
a position of a reciprocal deletion (106 of which are in
divergent regions). In each case, the reads involved were
realigned with the CB4856 genome using cross match
(P. Green, unpublished data), providing an alternative align-
ment method and a full Smith-Waterman alignment of the
read against the genome, and analyzed. Of those 190, in 3
(1.6%) cases (1 of the 106 in the highly divergent regions)
the alignment of the long read suggests an alternate indel
from what is in the CB4856 assembly.

There are 4900 simple insertions (1196 in highly di-
vergent regions) where a bwa alignment identified a read
that aligns within the simple insertion. After alignment with
cross_match, in 11 cases (1%) the long read suggests an
alternate insertion [4 (0.3%) in highly divergent regions].

Results
Generating a Hawaiian reference sequence

To develop a reference sequence for the CB4856 genome
that would account for regions of poor representation and
incorporate sequence present in CB4856 and missing in
N2, we exploited data sets from across the world (Table
1). The missing and poorly defined regions of the CB4856
genome might reflect problems with specific libraries or
sequencing platforms. Aligning sequence reads against
the N2 reference genome from three independently gener-
ated libraries sequenced with the Illumina platform gave
broadly similar patterns of coverage, with similar regions
of poor or no coverage of the N2 reference. Calling SNVs on
these data sets yielded essentially the same set of SNVs
with no more than 3% of SNV calls unique to any one
library (Figure S5). These regions of poor coverage per-
sisted with different aligners that handle repeats differently—
phaster, which places all reads that match equally well
at multiple copies of identical repeats at the first copy
(P. Green, personal communication), and bwa or smalt
(http://sanger.ac.uk/resources/software/smalt/), which
distributes the matching reads randomly among the copies.
The small percentage of SNVs that were unique to individ-
ual data sets tended to be in regions where read coverage
was marginal (e.g., Figure 2), leading to above-threshold
calls in one data set, but not in the others. Similar regions
of poor coverage were also seen with the WGS library se-
quenced with SOLIiD technology. These regions were also
flagged with tools designed to detect alignment irregular-
ities, such as REAPR and ALE (Clark et al. 2013; Hunt et al.
2013). Because these regions of poor coverage persisted
across libraries and platforms, we postulated that these
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Table 2 Comparison of reference sequence lengths

Chromosome N2 HA Difference %
| 15,072,423 14,890,789 181,634 1.21
Il 15,279,345 14,885,952 393,393 2.57
Il 13,783,700 13,596,826 186,874 1.36
v 17,493,793 17,183,857 309,936 1.77
\% 20,924,149 20,182,852 741,297 3.54
X 17,718,866 17,537,347 181,519 1.02
Total 100,272,276 98,277,623 1,994,653 1.99

% difference in size expressed as a percentage of the length of the chromosome in
the Hawaiian genome.

regions might reflect segments of the genome with much
higher-than-average sequence differences that led to vari-
ability in read alignment or even alignment failure.

To improve read alignment in such regions and to
extend coverage, we initially employed a technique similar
to the reference-guided assembly strategy used in Arabi-
dopsis (Gan et al. 2011; Schneeberger et al. 2011). This
guided assembly approach allowed us to exploit the conti-
nuity and high quality of the N2 reference sequence and to
avoid the pitfalls associated with whole-genome assemblies
using current technologies and algorithms. We used the
called SNVs to change the N2 reference sequence to reflect
the presumptive Hawaiian sequence throughout the ge-
nome (Figure 1). We also deleted N2 sequence where read
coverage was largely lacking and split reads clearly
spanned from one N2 region to another. We added se-
quence at the edge of insertion sites, based on the consen-
sus sequences of the unmatched portions of reads. We then
realigned the reads against the revised sequence. For these
purposes, we used only a single data set to avoid possible
differences between starting strains and to avoid the exces-
sive computational demands from using all the WGS data
sets. We selected the Princeton data set because it had very
deep coverage (~70X), longer paired reads with larger
inserts, and a high fraction of reads aligning to the genome.
An initial cycle significantly improved alignments, and af-
ter 20 cycles of alignment and correction most regions had
excellent agreement between the draft reference and the
sequence reads. For example, alignment of CB4856 reads
against the draft reference produced only 13 SNVs and 8
indels (compared with 219,787 SNVs and 46,674 indels
against the N2 reference). As a broader measure of the
improvement, average ALE scores per base, adjusted using
N2 reads against the N2 reference as a baseline, decreased
from —6.10 to —2.49 (Figure S6).

Even after 20 cycles of replacements, we found ~50-70
regions of 10-100 kb where the initial uneven coverage of
the N2 sequence had nucleated improved coverage after the
iterative correction/extension approach, but overall cover-
age of the region remained discontinuous; ALE and REAPR
scores remained high in these regions (Figure 2). These
regions often had indications of multiple deletions that
lacked spanning reads to define their end points. As a result,
they had not been removed in our iterative alignment and
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Table 3 Number of deletion events and base counts in deletions in
N2 and CB4856

Deletions in N2 Deletions in CB4856

Chromosome Events Bases Events Bases

| 5,693 94,543 6,158 233,930
Il 7,370 230,813 7,692 478,884
1l 5,464 99,324 6,008 275,997
\% 5,700 116,249 5,841 265,504
V 10,902 343,640 11,740 854,733
X 3,453 37,442 3,507 156,819
Total 38,582 922,011 40,946 226,5867

correction procedure. To resolve these regions, we exploited
a new whole-genome assembly algorithm, the JR-Assembler
(Chu et al. 2013), which compares favorably to current
assemblers in terms of quality, efficiency, and memory. We
used the JR-Assembler to create a de novo assembly of the
CB4856 genome. To reduce the number of likely false joins,
we analyzed the assembled JR contigs with REAPR, splitting
them where REAPR signaled problems.

To utilize the JR contigs, we first aligned the resultant
14,167 JR contigs, totaling 93,075,504 bases with an N50
of 15,785 bp (1601 contigs) against both the N2 and the
iteratively improved genomes. The JR contigs aligned
against N2 showed base-pair disagreements consistent
with the called SNVs in most regions of the genome, i.e.,
those that had good coverage with the CB4856 sequence
reads. However, they revealed additional SNVs and indels
in the 50-70 regions of spotty coverage (Figure 2). In con-
trast, when the JR contigs were aligned against the recur-
sively corrected genome, they showed only rare differences,
except in the regions with spotty coverage. In those regions,
the JR contigs indicated additional base-pair changes and
likely indels, suggesting that substituting the JR-contig
sequences in the divergent regions of the recursive genome
could be used (1) to remove some deletions that had failed to
meet our criteria for removal in the iterative process, (2) to
add sequence that had not been fully added in the 20 cycles,
and (3) to correct some remaining substitutions (Figure 1 and
Figure 2).

To confirm that the JR contigs were properly placed
within the genome, we examined coverage metrics for each
contig across a collection of 60 introgression lines and 49
RILs. For contigs aligning to these divergent regions, normal
coverage with Hawaiian-derived reads was limited to those
strains with a Hawaiian segment for that region, thus
locating the contig within a region of a few megabases
(Figure S7). Similar metrics were used to confirm placement
of large insertions. Using only confirmed contigs, we replaced
sequences in the recursive genome with the sequences
from the JR contigs totaling >2 Mb (see Materials and
Methods for details). We also removed presumptive de-
leted regions that had no JR contigs aligning and no aligning
reads. These changes dropped the adjusted genome-wide
ALE scores from —2.48 to —1.18 (Figure S6), and visual
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Figure 3 Overlap with previous SNV calls. A Venn diagram shows the
overlap of the previous SNV calls with those obtained with the CB4856
reference.

inspection of the divergent regions also supported a much-
improved version of the genome (illustrated in Figure 1).
Alignment of 42,261 Sanger reads from fosmid ends and
plasmids (Table 1) also confirmed the substitutions and
indels introduced in new CB4856 reference (Supporting
Information).

From this combination of approaches we estimate that
the resulting Hawaiian (HA) genome sequence totals
98,277,623 bases (98,291,416 including mitochondrial
DNA), almost 2 Mb less than the N2 genome. All the
CB4856 chromosomes are smaller than their N2 counter-
parts with II and V showing the greatest reductions at 2.57
and 3.54%, respectively (Table 2). The CB4856 genome
size may be an underestimate because we have not been
able to separate distinct copies of some repeats and some
novel CB4856 sequences could still be missing. To provide
a rough estimate of the total bases that might be missing
from the CB4856 genome, we compared all the JR contigs
to the CB4856 reference. There are only 22 assembled
contigs (16,206 bases) that fail to align at all with our
parameters. However, portions of other contigs fail to align
to the CB4856 reference, and these total 1.12 Mb (2617
contigs). In addition, portions of other contigs (810 con-
tigs, 1.74 Mb total) match the reference poorly (>1% of
bases mismatched/inserted/deleted). Inspection of a sam-
ple of these contigs suggests that they could represent
small insertions/deletions within the aligned sequence, du-
plicated sequence, poorly assembled sequence, or seg-
ments in the CB4856 with remaining problems. REAPR
and ALE analysis also show some remaining problematic
areas in the CB4856 reference, including high read cover-
age in regions that suggests unresolved duplications
(sometimes overlapping more than one JR contig with poor
alignment scores), low coverage, and inconsistent read
pairing. Nonetheless, the CB4856 reference sequence
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Table 4 SNV distribution

Chromosome Total Centers SNV/kb centers Arms SNV/kb arms % on arms

| 36,192 9,424 1.15 26,768 3.89 73.96

Il 65,592 8,843 1.1 56,749 7.80 86.52

11 38,938 5,429 0.78 33,509 4.94 86.06

\Y 36,198 9,016 1.00 27,182 3.20 75.09

V 129,096 18,179 2.02 110,917 9.30 85.92

X 21,034 8,076 1.08 12,958 1.27 61.61
Total 327,050 58,967 1.21 268,083 5.20 81.97

provides a much more complete picture of the genome for
the analysis of variation.

Summary of sequence variation

To assess the sequence differences between the Hawaiian
and N2 reference genomes, we aligned the CB4856 genome
to N2 using LASTZ, a program that is able to perform pair-
wise, gapped, full chromosome-to-chromosome alignments
even with quite distantly related sequences (Harris 2007).
This alignment yielded a total of 327,050 SNVs and 79,529
indel events (File S1, File S2, File S3, File S4). In addition,
816 segments with sequence in both genomes failed to align
with LASTZ and also failed to produce consistent alignments
with different Smith-Waterman alignment implementa-
tions. Because these sequences fail to align, we cannot call
variants in them. Inspection of several of these regions sug-
gests several different origins. Some are extremely divergent
and could represent overlapping deletions of an ancestral
sequence, leaving unrelated sequences in the same place
in the two present-day genomes. Others may just be of
slightly greater divergence than LASTZ tolerates. Still others
involve short sequences in one genome opposite a much
larger region in the other genome that might be associated
with repair events around a deletion. Because we were un-
certain of the origin of the individual events, for purposes of
analysis we treated the 816 segments as reciprocal inser-
tion/deletion events.

If we treat the indels as deletions in N2 or CB4856 from
a larger ancestral genome, we find similar numbers of de-
letion events in each genome, with small deletions (=5 bas-
es) accounting for 28,779 and 28,776 events in each N2
and CB4856, respectively. But the larger deletions (>5 bas-
es) are slightly more numerous in CB4856 (12,181 vs.
9803), and the overall the number of bases deleted in
CB4856 is much larger (2.2 Mb of ancestral genome lost
in CB4856 vs. 0.92 Mb in N2). Chromosomes II and V have
larger numbers of bases deleted. In addition to the indels,
the 816 reciprocal insertion/deletion events show a similar
trend of greater loss of sequence in the CB4856 genome,
with these segments containing 458,526 bases in CB4856
and 1,109,331 bases in N2. In toto from the indels and re-
ciprocal indels, N2 has 3.3 Mb of sequence not represented
in CB4856, and CB4856 has 1.4 Mb of sequence not present
in N2 (Table 3).
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Among the deletions and insertions were copies of the
transposons Tcl, Tc2, Tc3, Tc4, and Tc5. For example,
among the 32 copies of Tcl in the N2 reference, only 19
were detected in the CB4856 genome (Table S4). However,
we found evidence for Tcl copies in the CB4856 not present
in N2. Because of the repeated nature of the sequence, the
copies were incomplete in the CB4856 genome, but in 12
cases, Tcl end sequences were present on both ends flank-
ing a gap and, in another five cases, new Tcl sequences
were detected at one end. Differences in other Tc family
transposons were also noted.

Our 327,050 SNV calls detect most of the SNVs reported
earlier (Thompson et al. 2013; Vergara et al. 2014), but we
find almost twice as many SNVs as Thompson et al. (2013)
and 103,955 not reported by Vergara et al. (2014) (Figure
3). These novel SNVs are supported by conventional Sanger
sequenced reads at a rate similar to those found in common
by all three reports (Supporting Information). Many of the
SNVs reported in Vergara et al. (2014) but not found here
are adjacent to small deletions associated with homopoly-
mer runs not reported in Vergara et al. (2014) [these
authors report only 31,791 indels, compared with 46,544
detected in the Million Mutation Project (Thompson et al.
2013) and almost 80,000 here], suggesting that some of
their called SNVs result from alignment issues and/or prob-
lems in runs (Becker et al. 2012).

Next, we looked at the distribution of the SNVs and
indels across and within the chromosomes. C. elegans chro-
mosomes have a distinctive organization, with the outer 20—
30% of each chromosome (the arms) exhibiting a higher
rate of recombination and a higher fraction of repeated
sequences (Barnes et al. 1995; Rockman and Kruglyak
2009). They also contain the bulk of genes for large, rapidly
evolving gene families. Consistent with previous reports, we
find the number of SNVs is higher on the autosome arms
than in the centers (Table 4, File S4, Figure S8), with as
much as 86% of SNVs on arms . The distribution of indel
events follows a similar pattern.

More strikingly, we noted a strong clustering of variants
in smaller regions where we had extended sequence from
the ends of aligned segments during the iterative alignment
process (Figure 1A) and where we had replaced sequence
with the JR-assembled contigs (Figure 1B). To detect these
regions of higher divergence systematically, we clustered
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Table 5 SNVs in divergent regions

Divergent regions

Other regions

Chromosome SNVs Bases SNVs/kb SNVs Bases SNVs/kb
| 3,940 87,170 45.20 32,252 14,985,253 2.15
Il 27,649 709,991 38.94 37,943 14,569,354 2.60
1] 13,962 344,847 40.49 24,976 13,438,853 1.86
\% 5,657 206,442 27.40 30,541 17,287,351 1.77
\ 77,704 1,444,451 53.79 51,392 19,479,698 2.64
X 900 38261 23.52 20,134 17,680,605 1.14
Total 129,812 2,831,162 45.85 197,238 97,441,114 2.02

1-kb windows with >1.4% bases different or >500 bases
deleted or inserted, retaining clusters of =9 kb. We manu-
ally reviewed each of the resulting clusters, adjusting the
end points to more precisely reflect increasing SNV density,
merging closely spaced clusters separated by repeats or
other regions where SNVs were unable to be called. This
procedure produced 61 regions containing a strikingly high
proportion of SNVs and spanning 2,313,859 bases in the
CB4856 sequence and 2,831,162 in the N2 genome (Table
5; see also Table S3 for a list of regions with coordinates and
Table S5 for SNV counts in the absence of the divergent
regions). The boundaries between these divergent regions
and other regions are usually very sharp (Figure 2 and Fig-
ure 4). The segments are scattered across all six chromo-
somes, range in size from 8 to >162 kb and show 2-15.8%
sequence divergence from N2 without an obvious correla-
tion between size and divergence (Figure 5). The autosomal
clusters fall principally on the arms with just one cluster in
the central region of IV and three clusters in the central
region of V (Figure S8). The X chromosome has only two
clusters, and these have just 2 and 4.6% divergence each.
The autosomal divergent regions include the peel-1 zeel-1
region and the glc-1 gene, both of which had been previ-
ously reported as having an elevated sequence divergence
(Seidel et al. 2011; Ghosh et al. 2012).

Curiously, in comparing our results with prior studies
using array CGH (Maydan et al. 2007; Maydan et al. 2010),
we find that more than one-third of their deletion calls fall
within these divergent regions, often extending across most
of the region. Apparently the sequence divergence within
the regions led to poor hybridization with the probes and
resultant scoring of the area as deleted. The remaining
arrayCGH deletions overlap extensively with deletions in
the CB4856 reference except in one case [WBVar00091092;
niDf71(III); chrlll:13778179-13781358] where we have
normal coverage throughout the region.

Functional impact of the sequence variants

Prediction of the functional effects of the variants using
WS230 annotation shows that a large portion of the protein-
coding potential of the Hawaiian genome is altered (Table
6; File S5). Across the whole genome, 8140 (40%) of the
20,504 protein-coding genes have some coding change (for
complete lists of the alterations, see File S2, File S3, and File

S5, File S6). Of these genes, 1885 protein-coding genes have
a likely loss-of-function (LOF) mutation—an induced stop
codon, a frameshift, or a deletion across a splice junction—
and 357 of these delete the gene entirely. Our reference also
detects previously reported variants throughout the genome
(Table S6).

In the 2.83 Mb of divergent regions, the relative impact of
the variation on protein-coding genes is even greater. Of the
883 genes in these regions, 866 (98%) have some coding
change, with 576 genes having LOF changes and 195 genes
deleted entirely. Those genes with LOF changes could all be
pseudogenes in CB4856, perhaps as a rapid means of adap-
tation (Olson 1999). However, the persistence of these
regions over long evolutionary times (see below) suggests
that they contain functionally important genes.

The genes altered by the LOF variants are disproportion-
ately composed of members of large, rapidly evolving gene
families, including the math, bath (btb-math), clec (c-lectin),
fbx (F-box), and seven-transmembrane serpentine receptor
genes. By contrast, the nhr (nuclear hormone receptor)
genes are not overrepresented in LOF variants. The same
large, rapidly evolving gene families are also heavily repre-
sented in the divergent regions. The math family is notable,
having 37 of its 49 members in the divergent regions. Within
the divergent regions the math, bath, and fbx families also
suffer a disproportionate number of LOF variants. The mem-
bers of these families in the divergent regions that do not
contain LOF variants also show a dy/ds ratio (ratio of diver-
gence at nonsynonymous and synonymous sites) approaching
or even exceeding 1. By contrast, the seven-transmembrane
and nhr gene families are relatively spared. Members of these
families without LOF variants also show a lower fraction of
nonsynonymous changes than the math and fbx families.

Some genes with easily visible mutant phenotypes
contain LOF variants, such as ced-1, ced-6, unc-13, and unc-49.
However, inspection of the variants in these genes in compar-
ison with WormBase models and the extensive modENCODE
RNA-seq data (Gerstein et al. 2014) suggest in each case that
the annotation likely requires correction. For example, the
putative stop codon in the unc-13 model falls in a splice
form that has no RNA-seq support; instead, the RNA-seq
evidence suggests that the exon in question is an alternate
first exon and the “nonsense” change lies in the 5" UTR.
Similarly, the putative frameshift mutation (an insertion of
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a G) in ced-6 falls adjacent to a noncanonical splice donor
sequence in the WormBase gene model, where the pres-
ence of an extra G would allow the use of a canonical GT
donor. Inspection of data from an N2 strain (VC2010) sug-
gests that a G is missing here in the N2 reference.

Other regions that include genes such as tbx-30, tbx-31,
vit-3, and vit-4 have suffered large deletions in the CB4856
genome, with tbx-30 deleted entirely. However, in the N2
genome tbx-30 has an exact duplicate, thx-42, as part of an
inverted duplicated segment; presumably, the loss of a single
copy is tolerated. The two vit genes are adjacent in the
genome, and in this case the deletion appears to fuse the
two genes into a single gene.

Although genes have been lost in the CB4856 genome,
genes may also be present in CB4856 that are defective or
absent in N2. To look for these genes, we generated gene
models by using an ab initio gene prediction tool, Gene-
finder, and by aligning CB4856 RNA-seq data (Table 1)
against the CB4856 reference (Trapnell et al. 2012).
Among the recent N2 pseudogenes that arose by duplica-
tion, we found two gene models in CB4856 that had full
opening reading frames that were similar to the parent
genes. In sequences inserted in CB4856 relative to N2,
Genefinder produced models that were often supported
by RNA-seq data and had similarity to members of multi-
gene families. For example, two large insertions of 5 and
15 kb in one divergent region (I1:1544781-1579478
CB4856 coordinates; 11:1613411-1636156 N2 coordi-
nates) contain seven Genefinder models, all of which
have similarity to fbx genes. Similarly, in regions where
LASTZ failed to align the N2 and CB4856 sequence, there
were gene models with RNA-seq support in the CB4856
sequences. For example, in two adjacent regions that fail
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to align by LASTZ in a divergent region (11:2974336-
3020963 CB4856 coordinates; 11:3197502-3250769 N2
coordinates), there are two gene models, one with simi-
larity to seven-transmembrane receptors and the second
to fbx genes. Thus, while CB4856 has lost genes present
in N2, it has also gained genes.

We also examined genes present in both species with
multiple differences that suggested that they were inactive
in CB4856. One gene—F47H4.2—stood out because of the
multiple changes reported from the LASTZ alignments, in-
cluding 691 SNVs across the two isoforms that, considered
together, result in 511-amino-acid substitutions, 1 non-
sense mutation, and 13 frameshifting indels. Despite these
multiple variants, a Genefinder model in the region of
CB4856 predicts a protein of 628 amino acids with its
seven exons having open reading frames similar in length
to those in N2 and with six of those having splice junctions
in precisely equivalent places (Figure S9). The predicted
nonsense codon is present in an unused frame, a conse-
quence of flanking, compensating frameshift variants. The
628-amino-acid predicted protein, when evaluated by
blastp (Altschul et al. 1990) against the N2 proteins,
yielded a match that covered amino acids 1-633 (P =
2.7e-127) of an F47H4.2 isoform, spanning two FTH
domains that are also found in F-box genes. The Gene-
finder exons also are matched by RNA-seq reads. Open
reading frames also exist in CB4856 for the final three
exons of F47H4.2 and are partially incorporated into a sec-
ond Genefinder model (Figure S9). These results suggest
that, rather than containing an inactivated gene, the
CB4856 region encodes a homologous protein. Like F47H4.2,
other genes that appear to have suffered a LOF variant in
CB4856 also have Genefinder models in syntenic regions
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that are often supported by RNA-seq data and may sim-
ilarly encode full-length proteins.

Divergent regions in other C. elegans strains

Prior studies of the glc-1 and peel-1 zeel-1 regions showed
that both CB4856 and N2 haplotypes were widely distrib-
uted in strains recovered from the wild (Seidel et al. 2011;
Ghosh et al. 2012). To determine haplotype representation
of the 61 divergent regions in other wild strains, we
exploited the MPS sequence reads acquired previously
(Thompson et al. 2013) for each of 39 strains and aligned
them against the N2 reference and the CB4856 reference.
We expected that, if a particular region in a given strain had
the N2 haplotype, its reads would align well with the N2
reference but poorly with the CB4856 reference and vice
versa. To assess the alignment quality, we calculated ALE
scores using the N2 and CB4856 reads aligned against each
other as controls.

Using the ALE scores (Figure S10), we cataloged the
regions as N2-like, CB4856-like, intermediate, or different
from either. The results (Figure 6) for the 44 regions giving
consistent scoring show that, while, overall, N2-like hap-
lotypes are most frequent, the CB4856-like sequence is
found in at least one other strain for all but six of the
regions. For five regions, the CB4856-like haplotype is pre-
dominant. Two regions are represented mainly by se-
quence that matches neither N2 nor CB4856 well,
suggesting the presence of another version of the sequence
in these strains. Other regions match both N2 and CB4856
at intermediate levels, e.g., V:18193641-18260001, and
inspection of these regions suggests that some have one
segment that matches CB4856 well and a second segment
that matches N2 well, perhaps reflecting recombination
events between the two haplotypes. Most of the strains have
unique combinations of sequences; however, JU1171, MY2,

and MY14 all share the same pattern (both MY2 and MY14
were isolated from Munster, Germany; share 96% of SNV
calls and share 96% with JU1171, isolated in Chile; they
likely represent a single isotype), and ED3057 and ED3072
are similar (the latter two were both isolated in Kenya and
share 97% of their SNV calls and also likely represent a single

isotype).

Discussion

We have used a variety of resources and methods to produce
a draft reference CB4856 genome sequence. We combined
iterative alignment of deep whole-genome sequence reads
to a progressively corrected CB4856 reference version with
a de novo whole-genome assembly. We used the assembly
assessment tools ALE and REAPR to monitor progress, to
identify problem areas needing improvement, and to break
suspicious joins in the de novo assembly. Sequence reads
from ILs and RILs helped guide placement of the de novo
contigs into the reference. Sanger reads from fosmid-insert
ends and random clones were critical in validating the ref-
erence sequence at each step.

The resulting CB4856 reference sequence extends and
refines the scope of the variation between N2 and CB4856
from prior studies. In particular, the draft sequence reveals
61 regions of substantially higher divergence than the rest
of the genome. These regions total 2.8% of the N2 genome
and contain 40% (129,812/327,050) of total SNVs and
21% (16,822/79,558) of total indels. A survey of genome
sequence data from other wild isolates of C. elegans shows
that generally in these regions they closely resemble one or
the other genome. However, some isolates appear to have
regions that are divergent from both N2 and CB4856 and in
segments outside the divergent regions some strains show
divergence from both N2 and CB4856. These findings
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Table 6 Genes in diverged regions and with LOF mutations

Divergent regions

Genome

Disabling Expected?

Total Expected

Expected?

Disabling

Total

Gene class

72 80.0
8.70e-1

49.7
7.38e-14

123.7 118

2.20e-13¢

204

1346

Serpentine receptor (sr</str)

46.3
1.51e-4

60

15.3
3.75e

71

325
1.56e-45

129

353

F-box (fbx*)

28

20.2
7.49e-1

19

.0

11

1.81e

234 31
1.05e-8

53

254

C-lectin (clec)

7

24.1
1.47e-4

34

2
2.00e-41

4.4 37
1.92e-32

39

48

Math (math)

34 15 1.6 14 9.7
4.83e-8 1.11e-11 1.42e-2

16

37

Bath (bath)

17.6
9.99e-1

10

11.8
7.38e-05

27

256
4.90e-1

26
? The expected number of disabled genes in the total genome based on 20,504 genes and 1885 disabled overall.

278

nhr)

(

Nuclear hormone receptor

b The expected number of genes in the divergent regions based on 883 genes of the 20,504 genes in the genome and 576 of the 883 genes disabled.

¢ Hypergeometric test.

viewed through a track data hub listed on the University of
California at Santa Cruz browser (http://genome.ucsc.

suggest that N2 and CB4856 do not capture all the diver-

gent haplotypes in these regions or even all the regions

edu/cgi-bin/hgHubConnect and connect to “C. elegans

isolates”).

with divergent haplotypes extant in this species. The refer-

ence genome, associated data sets, and annotations can be
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Figure 6 A heatmap representation of the allelic content of the 39 strains (rows) across 44 of the 61 divergent regions (columns). Regions matching N2
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The high level of divergence between the two haplotypes
of N2 and CB4856 in these regions indicates an ancient
origin. Possible explanations could include long-term bal-
ancing selection, as suggested for the glc-1 haplotypes
(Ghosh et al. 2012), that were estimated to have arisen
~7 X 10° generations ago. Applying the same methods to
the 61 regions described here gives an overall estimate of dg
(average number of nucleotide differences between sequen-
ces per synonymous site) of 0.12 and similar estimate of
6.7 X 10° generations. The male—female species C. rema-
nei shows 4% divergence in wild populations (Dey et al.
2012). Perhaps these divergent regions are a remnant of the
variation present at the conversion to a hermaphroditic spe-
cies, with all 61 regions maintained by balancing selection
since the origin of the species. Alternatively, the sequences
may have evolved independently in different, isolated
populations, followed by one or more subsequent cross-
breeding events, leading to admixture and introgression.
Regardless of the origin, haplotypes for only a few regions
have persisted, perhaps maintained by balancing selection.
Although the high degree of sequence divergence might be
expected to interfere with crossing over in the initial hybrid,
resulting in a severe lack of fitness, nematodes with this
level of divergence have been found to be fertile (Dey
et al. 2013). Perhaps the need for only one recombination
event per chromosome makes the Caenorhabditis species
more tolerant of long tracts of divergent sequences. Regard-
less of the nature of the original event(s), balancing selec-
tion is likely to be playing a role in the maintenance of these
regions across the globe.

What is driving the balancing selection? Genes that
belong to large, rapidly evolving gene families and that
have a putative role in the interaction with the environ-
ment are abundant in these regions (Thomas 2006;
Thomas and Robertson 2008). The alternative haplotypes
may harbor combinations of genes and alleles that provide
selective advantage in the face of changing environmental
conditions. The glc-1 polymorphisms provide a specific example
of polymorphisms that would confer selective advantage in an
environment containing avermectin or related compounds. In
the absence of avermectin, the defective gic-1 may lead to a fit-
ness disadvantage (Ghosh et al. 2012). But also, glc-1 lies in
a divergent region with multiple seven-transmembrane receptor
and clec genes. Perhaps these other genes also have a role in
balancing selection.

Beyond the revelation of these divergent regions, the
CB4856 reference sequence provides investigators with
a comprehensive list of the changes between CB4856
and N2 (File S1, File S2, File S3, File S5). These lists
should prove useful to those investigators using wild iso-
lates of C. elegans. For example, the failure of a probe to
hybridize well to the CB4856-derived sequences might
lead to false negatives. RNA-seq biases introduced by
mapping to the N2 reference may also distort any signal.
These biases are particularly relevant for the divergent
regions. The extensive catalog of differences now available

between these two strains in combination with the power-
ful genetic approaches available in C. elegans should facil-
itate the dissection of the growing number of phenotypic
differences.

Our findings also have broader implications for studies
comparing genome sequences to reference sequences using
short reads. The high degree of sequence divergence in
these divergent regions compromises alignment of short
reads. Studies that use only standard alignment of reads to
a reference fail to assess such divergent sequence. If similar
areas of high divergence are present in other species, they
too would be missed. Our results indicate the importance of
going beyond simple read alignment in the assessment of
variability between different genomes.

Acknowledgments

We thank Brent Ewing and Stephane Flibotte for many
discussions on sequence alignment, assembly, and analysis;
Yeh Teng Wen and the JR-Assembler team for help in
installing and running their assembler; and Asher Cutter
for ideas about the origins of the divergent regions. The
work was supported by The American Recovery and Rein-
vestment Act Grand Opportunities (ARRA GO) grant
HGO005921 from the National Human Genome Research In-
stitute (NHGRI), by grant HG007355 from NHGRI, and by
the William H. Gates Chair of Biomedical Sciences. L.B.S.
was funded by The Netherlands Organisation for Scientific
Research (project no. 823.01.001).

Literature Cited

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman
1990 Basic local alignment search tool. J. Mol. Biol. 215: 403—
410.

Andersen, E. C., J. P. Gerke, J. A. Shapiro, J. R. Crissman, R. Ghosh
et al., 2012 Chromosome-scale selective sweeps shape Caeno-
rhabditis elegans genomic diversity. Nat. Genet. 44: 285-290.

Andersen, E. C., J. S. Bloom, J. P. Gerke, and L. Kruglyak, 2014 A
variant in the neuropeptide receptor npr-1 is a major determi-
nant of Caenorhabditis elegans growth and physiology. PLoS
Genet. 10: e1004156.

Andersen, E. C., T. C. Shimko, J. R. Crissman, R. Ghosh, J. S. Bloom
et al., 2015 A powerful new quantitative genetics platform,
combining Caenorhabditis elegans high-throughput fitness as-
says with a large collection of recombinant strains. G3 (Be-
thesda) 5: 911-920.

Barnes, T. M., Y. Kohara, A. Coulson, and S. Hekimi, 1995 Meiotic
recombination, noncoding DNA and genomic organization in
Caenorhabditis elegans. Genetics 141: 159-179.

Becker, E. A., C. M. Burns, E. J. Leon, S. Rajabojan, R. Friedman
etal., 2012 Experimental analysis of sources of error in evolu-
tionary studies based on Roche/454 pyrosequencing of viral
genomes. Genome Biol. Evol. 4: 457-465.

Cao, J., K. Schneeberger, S. Ossowski, T. Gunther, S. Bender et al.,
2011 Whole-genome sequencing of multiple Arabidopsis thali-
ana populations. Nat. Genet. 43: 956-963.

Capra, E. J., S. M. Skrovanek, and L. Kruglyak, 2008 Comparative
developmental expression profiling of two C. elegans isolates.
PLoS ONE 3: e4055.

C. elegans Hawaiian Strain CB4856 Genome 987


http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=CB4856;class=Strain
http://www.wormbase.org/db/get?name=WBGene00001591;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001591;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001591;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001591;class=Gene
http://www.wormbase.org/db/get?name=CB4856;class=Strain
http://www.wormbase.org/db/get?name=CB4856;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.genetics.org/content/suppl/2015/05/19/genetics.115.175950.DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.175950/-/DC1/FileS2.gz
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.175950/-/DC1/FileS3.gz
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.175950/-/DC1/FileS5.gz
http://www.wormbase.org/db/get?name=CB4856;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain

C. elegans Sequencing Consortium, 1998 Genome sequence of the
nematode C. elegans: a platform for investigating biology. Sci-
ence 282: 2012-2018.

Chu, T. C., C. H. Lu, T. Liu, G. C. Lee, W. H. Li et al,
2013 Assembler for de novo assembly of large genomes. Proc.
Natl. Acad. Sci. USA 110: E3417-E3424.

Clark, S. C., R. Egan, P. L. Frazier, and Z. Wang, 2013 ALE: a ge-
neric assembly likelihood evaluation framework for assessing
the accuracy of genome and metagenome assemblies. Bioinfor-
matics 29: 435-443.

de Bono, M., and C. I. Bargmann, 1998 Natural variation in a neu-
ropeptide Y receptor homolog modifies social behavior and food
response in C. elegans. Cell 94: 679-689.

Dey, A., Y. Jeon, G. X. Wang, and A. D. Cutter, 2012 Global pop-
ulation genetic structure of Caenorhabditis remanei reveals in-
cipient speciation. Genetics 191: 1257-1269.

Dey, A., C. K. Chan, C. G. Thomas, and A. D. Cutter, 2013 Molecular
hyperdiversity defines populations of the nematode Caenorhabditis
brenneri. Proc. Natl. Acad. Sci. USA 110: 11056-11060.

Doroszuk, A., L. B. Snoek, E. Fradin, J. Riksen, and J. Kammenga,
2009 A genome-wide library of CB4856/N2 introgression lines
of Caenorhabditis elegans. Nucleic Acids Res. 37: e110.

Gan, X., O. Stegle, J. Behr, J. G. Steffen, P. Drewe et al.,
2011 Multiple reference genomes and transcriptomes for Arabi-
dopsis thaliana. Nature 477: 419-423.

Ghosh, R., E. C. Andersen, J. A. Shapiro, J. P. Gerke, and L. Kruglyak,
2012 Natural variation in a chloride channel subunit confers
avermectin resistance in C. elegans. Science 335: 574-578.

Gerstein, M. B., J. Rozowsky, K. K. Yan, D. Wang, C. Cheng et al.,
2014 Comparative analysis of the transcriptome across distant
species. Nature 28: 445-448.

Harris, R. S., 2007 Improved Pairwise Alignment of Genomic DNA.
Ph.D. Thesis, The Pennsylvania State University Press.

Hodgkin, J., and T. Doniach, 1997 Natural variation and copula-
tory plug formation in Caenorhabditis elegans. Genetics 146:
149-164.

Hunt, M., T. Kikuchi, M. Sanders, C. Newbold, M. Berriman et al.,
2013 REAPR: a universal tool for genome assembly evalua-
tion. Genome Biol. 14: R47.

Kammenga, J. E., A. Doroszuk, J. A. Riksen, E. Hazendonk, L. Spiridon
et al., 2007 A Caenorhabditis elegans wild type defies the
temperature-size rule owing to a single nucleotide polymor-
phism in tra-3. PLoS Genet. 3: e34.

Kent, W. J., R. Baertsch, A. Hinrichs, W. Miller, and D. Haussler,
2003 Evolution’s cauldron: duplication, deletion, and rear-
rangement in the mouse and human genomes. Proc. Natl. Acad.
Sci. USA 100: 11484-11489.

Koch, R., H. G. van Luenen, M. van der Horst, K. L. Thijssen, and
R. H. Plasterk, 2000 Single nucleotide polymorphisms in
wild isolates of Caenorhabditis elegans. Genome Res. 10:
1690-1696.

Li, H., and R. Durbin, 2009 Fast and accurate short read align-
ment with Burrows-Wheeler transform. Bioinformatics 25:
1754-1760.

Li, H.,, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al,
2009 The Sequence Alignment/Map format and SAMtools. Bio-
informatics 25: 2078-2079.

Li, Y., O. A. Alvarez, E. W. Gutteling, M. Tijsterman, J. Fu et al.,
2006 Mapping determinants of gene expression plasticity by
genetical genomics in C. elegans. PLoS Genet. 2: €222.

Mackay, T. F., S. Richards, E. A. Stone, A. Barbadilla, J. F. Ayroles
et al., 2012 The Drosophila melanogaster Genetic Reference
Panel. Nature 482: 173-178.

Maydan, J. S., S. Flibotte, M. L. Edgley, J. Lau, R. R. Selzer et al.,
2007 Efficient high-resolution deletion discovery in Caenor-
habditis elegans by array comparative genomic hybridization.
Genome Res. 17: 337-347.

988 O. A. Thompson et al.

Maydan, J. S., A. Lorch, M. L. Edgley, S. Flibotte, and D. G. Moerman,
2010 Copy number variation in the genomes of twelve natural
isolates of Caenorhabditis elegans. BMC Genomics 11: 62.

Nicholas, W. L., E. C. Dougherty, and E. L. Hansen, 1959 Axenic
cultivation of Caenorhabditis briggsae (Nematoda, Rhabditidae)
with chemically undefined supplements: comparative studies
with related nematodes. Ann. N. Y. Acad. Sci. 77: 218-236.

Olson, M. V., 1999 When less is more: gene loss as an engine of
evolutionary change. Am. J. Hum. Genet. 64: 18-23.

Perkins, J. D., 2010 Comparison of Fosmid Libraries Made from
Two Geographic Isolates of Caenorhabditis elegans. M.Sc. Thesis,
University of British Columbia, Vancouver.

Pollard, D. A., and M. V. Rockman, 2013 Resistance to germline
RNA interference in a Caenorhabditis elegans wild isolate exhib-
its complexity and nonadditivity. G3 (Bethesda) 3: 941-947.

Rockman, M. V., and L. Kruglyak, 2008 Breeding designs for recombi-
nant inbred advanced intercross lines. Genetics 179: 1069-1078.

Rockman, M. V., and L. Kruglyak, 2009 Recombinational land-
scape and population genomics of Caenorhabditis elegans. PLoS
Genet. 5: €1000419.

Rockman, M. V., S. S. Skrovanek, and L. Kruglyak, 2010 Selection
at linked sites shapes heritable phenotypic variation in C. elegans.
Science 330: 372-376.

Schacherer, J., J. A. Shapiro, D. M. Ruderfer, and L. Kruglyak,
2009 Comprehensive polymorphism survey elucidates popula-
tion structure of Saccharomyces cerevisiae. Nature 458: 342-345.

Schneeberger, K., S. Ossowski, F. Ott, J. D. Klein, X. Wang et al,
2011 Reference-guided assembly of four diverse Arabidopsis
thaliana genomes. Proc. Natl. Acad. Sci. USA 108: 10249-10254.

Schwartz, S., W. J. Kent, A. Smit, Z. Zhang, R. Baertsch et al,
2003 Human-mouse alignments with BLASTZ. Genome Res.
13: 103-107.

Seidel, H. S., M. Ailion, J. Li, A. van Oudenaarden, M. V. Rockman
et al., 2011 A novel sperm-delivered toxin causes late-stage
embryo lethality and transmission ratio distortion in C. elegans.
PLoS Biol. 9: e1001115.

Snoek, L. B., K. J. Van der Velde, D. Arends, Y. Li, A. Beyer et al.,
2013 WormQTL: public archive and analysis web portal for
natural variation data in Caenorhabditis spp. Nucleic Acids
Res. 41: D738-D743.

Snoek, L. B., H. E. Orbidans, J. J. Stastna, A. Aartse, M. Rodriguez
et al., 2014 Widespread genomic incompatibilities in Caenor-
habditis elegans. G3 (Bethesda) 4: 1813-1823.

Sterken, M. G., L. B. Snoek, J. E. Kammenga, and E. C. Andersen,
2015 The laboratory domestication of Caenorhabditis elegans.
Trends Genet. 31: 224-231.

Stewart, M. K., N. L. Clark, G. Merrihew, E. M. Galloway, and J. H.
Thomas, 2005 High genetic diversity in the chemoreceptor su-
perfamily of Caenorhabditis elegans. Genetics 169: 1985-1996.

Stoeckius, M., D. Grun, and N. Rajewsky, 2014 Paternal RNA
contributions in the Caenorhabditis elegans zygote. EMBO J.
33: 1740-1750.

Sulston, J. E., and S. Brenner, 1974 The DNA of Caenorhabditis
elegans. Genetics 77: 95-104.

Swan, K. A., D. E. Curtis, K. B. McKusick, A. V. Voinov, F. A. Mapa
et al., 2002 High-throughput gene mapping in Caenorhabditis
elegans. Genome Res. 12: 1100-1105.

Thomas, J. H., 2006  Adaptive evolution in two large families of ubiquitin-
ligase adapters in nematodes and plants. Genome Res. 16: 1017-1030.

Thomas, J. H., and H. M. Robertson, 2008 The Caenorhabditis
chemoreceptor gene families. BMC Biol. 6: 42.

Thompson, O., M. Edgley, P. Strasbourger, S. Flibotte, B. Ewing
et al., 2013 The million mutation project: a new approach to
genetics in Caenorhabditis elegans. Genome Res. 23: 1749-1762.

Trapnell, C., A. Roberts, L. Goff, G. Pertea, D. Kim et dl,
2012 Differential gene and transcript expression analysis of RNA-
seq experiments with TopHat and Cufflinks. Nat. Protoc. 7: 562-578.



van der Velde, K. J., M. de Haan, K. Zych, D. Arends, L. B. Snoek
et al.,, 2014 WormQTLHD: a web database for linking human
disease to natural variation data in C. elegans. Nucleic Acids Res.
42: D794-D801.

Vergara, I. A., M. Tarailo-Graovac, C. Frech, J. Wang, Z. Qin et al.,
2014 Genome-wide variations in a natural isolate of the nem-
atode Caenorhabditis elegans. BMC Genomics 15: 255.

Vinuela, A., L. B. Snoek, J. A. Riksen, and J. E. Kammenga,
2012 Aging uncouples heritability and expression-QTL in
Caenorhabditis elegans. G3 (Bethesda) 2: 597-605.

Volkers, R. J., L. B. Snoek, C. J. Hubar, R. Coopman, W. Chen et al.,
2013 Gene-environment and protein-degradation signatures
characterize genomic and phenotypic diversity in wild Caenor-
habditis elegans populations. BMC Biol. 11: 93.

Wicks, S. R., R. T. Yeh, W. R. Gish, R. H. Waterston, and R. H.
Plasterk, 2001 Rapid gene mapping in Caenorhabditis elegans
using a high density polymorphism map. Nat. Genet. 28: 160-
164.

Communicating editor: M. Johnston

C. elegans Hawaiian Strain CB4856 Genome 989



GENETICS

Supporting Information
www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.175950/-/DC1

Remarkably Divergent Regions Punctuate the
Genome Assembly of the Caenorhabditis elegans
Hawaiian Strain CB4856

Owen A. Thompson, L. Basten Snoek, Harm Nijveen, Mark G. Sterken, Rita J. M. Volkers,
Rachel Brenchley, Arjen van’t Hof, Roel P. J. Bevers, Andrew R. Cossins, Itai Yanai, Alex Hajnal,
Tobias Schmid, Jaryn D. Perkins, David Spencer, Leonid Kruglyak, Erik C. Andersen,

Donald G. Moerman, LaDeana W. Hillier, Jan E. Kammenga, and Robert H. Waterston

Copyright © 2015 by the Genetics Society of America
DOI: 10.1534/genetics.115.175950



Supplementary Figures

ML - Jsli
L] | [
i Jj;s — | ;j-
t 77

Figure S1 Read realignment via CIGAR modification using information from adjacent reads. (a) Elimination of Soft
Clipping: A deletion with respect to the reference sequence is called in a fraction of reads at a given site, but induces
some right-sided clipping (read 1, clipped sequence in green) or left-sided clipping (read 5) when reads cannot
sufficiently frame the variant. Clipped reads may also occur when encountering high SNV density or compound
variants. Testing the sequence of the read against the variant sequence predicted by other alignments to the same
locus allows for extension of clipped alignments through the variant region, reducing the number of spurious clipping
sites. (b) Variant regions near the ends of reads may also cause aligners to generate erroneous unclipped alignments,
often preferring the introduction of multiple SNVs to the introduction of a gap (red tick marks, reads 1 and 5), as has
been noted many times elsewhere. In both figure (a) and figure (b), analyzing each read for agreement with variant
alignments at the same locus allows us to increase support for the predominant variant call(s) at the locus in question
when consensus thresholds are implemented.
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Figure S2 Example RIL CB/N2 sequence contribution. We detected CB4856 contributions to the genome of the
introgressed N2/CB4856 line ewir064 and ewir066 by scanning each chromosome in bins of 10kb to determine the
fraction of known CB4856 SNPs. The only shared regions in the two strains are on V:607001-5152001, thus locating
any contig with matches to these strains to this interval. (Blue lines = CB4856 SNPs detected, vertical displacement of
red coordinates for each chromosome = fraction of known CB4856 SNPs detected in the window, Empty green circles
= PCR negative for a known variant, Filled green circles = PCR positive for a known variant (Doroszuk et al. 2009)).
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RIL Support: contig1397_start3075_9876.Reapri
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Figure S3 IL Usage to Map JR-Contig 1397 to chromosome V. SOLID reads from the 49 IL lines were aligned to
contig1397_start3075_9876.Reaprl and Z scores calculated in each strain for both the depth of coverage (X axis) and
the fraction of bases producing that coverage (Y axis), roughly approximating the levels of CB4856-unique sequence
and the overall agreement with CB4856, respectively. IL lines ewir064 and ewir066 are substantially elevated in each
statistic, indicating that these two ILs have sequence from this assembly contig. The shared CB4856 regions defined
previously (e.g. in Figure S3) locate the contig to a genomic region.
(waterston.gs.washington.edu/trackhubs/isolates/JR-Assembler/images)
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Figure S4 Match of sequence reads from 39 different wild isolates, N2 and CB4856 (HA) against the N2 genome and

the CB4856 genome in a divergent region from chromosome I. The extent of the match is measured by ALE

placement scores averaged across the region, with larger negative scores indicating a poorer fit. In (A) this region

only the fourth strain (CB4854) resembles the CB4856 sequence. In (B) most strains are similar to the N2 pattern, but

ED3049(9), JU258(19), MY6(38) and PX174(39) resemble HA. Others show an intermediate match, e.g. AB3(2) and

CB4853(3). In (C), most strains again resemble N2, none resemble HA, a few are intermediate, e.g., AB3(2) and

CB4853(3), and others are different from both N2 and HA, e.g., ED3052(10), JU1088(14) and JU1171(15). Figure S11

contains these same data for all of the divergent regions.

58I

O. A. Thompson et al.



Technion

946

1933 *

Figure S5 Comparison of SNV calls on various datasets. A Venn diagram shows the overlap of the previous SNV calls
(see Table 1) upon comparison with the N2 reference.
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Figure S6 Average ALE scores per base by assembly iteration. The average ALE scores per base, adjusted using N2
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reads against the N2 reference as a baseline, plotted for each cycle of the assembly. The average ALE score per base
decreased from -6.10 to -2.49 indicating substantial improvement in the quality of the assembly.
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Figure S7 IL read coverage and SNP density. (A) A JR contig (5037-1) with reads aligned against a sample different ILs.
A few reads from each of the ILs align against the contig, but only reads from IL 11, 70 and 72 show alignment across
most of the length of the contig. This contig must lie in the region of the CB4856 shared by these three lines. (B) Plots
of SNV density for chromosome V in the three strains containing CB4856 for JR contig 5037-1. The blocks of red dots
indicate regions deriving from CB4856 in these ILs. The CB4856 regions shared between all three strains positions
the 5037-1 contig. The RILs could be used to place the cointg still more precisely. The chromosome coordinates in
megabases are given below.
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Figure S8 Density of variant sites across chromosomes. Density was calculated in 9kb windows moving in 1kb steps.

Blue boxes mark those areas defined as highly divergent. Green lines mark the boundaries of the arms versus centers
of the chromosomes.
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F47H4.2a/b

x1724

x1725

Figure S9 Exon structure of the gene F47H4.2. The exon structure of F47H4.2 (black representing F47H4.2a and red
representing F47H4.2b) is shown schematically at the top, with the exon length given above exon box. The black
boxes indicate common exons while the red boxes are found in the b isoform only. The exon structure of two
Genefinder predictions in the CB4856 reference are shown below. The green boxes indicate the six exons of x1724
and the purple boxes represent two of the exons in prediction x1725. The blue box indicates an open reading frame
present in the CB4856 sequence not part of the x1725 model, but in frame with the prior 589 base exon. The dotted
lines connect equivalent positions in the two sequences.
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate

7094233-7367020" e

"ha.V
"n2.V

T
-
.y

0.4 1
-0.6 |-
-08 -

v

VH

¢N
VLIXd
9AN
¢AN
FAN
9LAN
VEAN
YEOMT
yLeuM
sz.nr
avonr
€esnr
Zeenr
yeenr
Leenr
ogenr
svenr
ceenr
ckenr
ooenr
€9¢nr
8GeNr
csaLnr
Lovine
oovinr
LZene
8goLNr
LMXDO
¢/0ed4d
£60€ed3
¢s0ea3d
610€d3
¢v0ed3
or0ea3s
leoeas
210ed3d
S8¥90
€98¥90
€ayv
Lav

isolate

533l

O. A. Thompson et al.



T T T T T T T T T T T°T1
464-12449980" --m---

"ha.V:12116567-12130512" —e—

"'n2.V:124

B W

average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate

p—— VH
—e 42N
e - ¥/IXd
- eem 4 9AN
o me T 4 2AN
n 4 LAN
-u 4 9LAIN
R — A vIAN
“e{ $EOM
,,,,,,,,, o Y1LEHN
T S sz.nr
zvonr
=T gesnr
6enr
yeenr
Loenr
o9enr
syenr
zzenr
zienr
ooenr
ggznr
8senr
zsoLnre
Lorinre
oovLnr
LZLene
8soLNr
LMXD
2.0ea3
£50€a3
2soea3
6v0£a3
2voea3
ov0ea3
120ea3
/10ea3
¥58¥90
€58¥90
€av
Lav

0-16856085" ---m--

"ha.V:16545600-16553689"

2mV/:1684855

"
|
!
1
I

v

isolate

O. A. Thompson et al.

60 Sl



average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate

T 1T -1 17T T T 1T 1T T T
1-

.V:17645339-17710126"

ha
n2
»

V1819364

n
\

/
/
/
i

\

\
\

|

v

25 F

VH

¢N
VLIXd
9AN
¢AN
FAN
9LAN
VEAN
YEOMT
yLeuM
sz.nr
avonr
€esnr
Zeenr
yeenr
Leenr
ogenr
svenr
ceenr
ckenr
ooenr
€9¢nr
8GeNr
csaLnr
Lovine
oovinr
LZene
8goLNr
LMXDO
¢/0ed4d
£60€ed3
¢s0ea3d
610€d3
¢v0ed3
or0ea3s
leoeas
210ed3d
S8¥90
€98¥90
€ayv
Lav

isolate

65 Sl

O. A. Thompson et al.



"ha.V:18085929-18094141" —e—

average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate

1507699-1534961" e
1534338-1561578" -~ -

"ha.X
"n2.X

-0.1

VH

¢N
VLIXd
9AN
¢AN
FAN
9LAN
VEAN
YEOMT
yLeuM
sz.nr
avonr
€esnr
Zeenr
yeenr
Leenr
ogenr
svenr
ceenr
ckenr
ooenr
€9¢nr
8GeNr
csaLnr
Lovine
oovinr
LZene
8goLNr
LMXDO
¢/0ed4d
£60€ed3
¢s0ea3d
610€d3
¢v0ed3
or0ea3s
leoeas
210ed3d
S8¥90
€98¥90
€ayv
Lav

isolate

73Sl

0. A. Thompson et al.



average ALE placement score over bases with read depth of at least 2 per isolate
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average ALE placement score over bases with read depth of at least 2 per isolate
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Figure S10 Match of sequence reads from 39 different wild isolates, N2 and CB4856 (HA) against the N2 genome and

the CB4856 genome in all 61 divergent regions. The extent of the match is measured by ALE placement scores

averaged across the region, with larger negative scores indicating a poorer fit. See Figure S4 for more details of

interpretation.
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File S1
LASTZ alignment between C. elegans N2 (WS230) and CB4856

File S1 is available for download as a text file at http://dx.doi.org/10.5061/dryad.1k8kq
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File S2
SNVs identified in C. elegans N2 (WS230) and CB4856 comparisons with corresponding sequence features

File S2 is available for download as a text file at
www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.175950/-/DC1
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File S3
INDELs identified in C. elegans N2 (WS230) and CB4856 comparisons with corresponding sequence features

File S3 is available for download as a text file at
www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.175950/-/DC1
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File S4
Summary counts of SNV and INDELs identified in C. elegans N2 (WS230) and CB4856 comparisons

File S4 is available for download as an excel spreadsheet file at
www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.175950/-/DC1
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File S5
Effects of variation on protein coding genes from C. elegans N2 (WS230) and CB4856 comparisons

File S5 is available for download as a text file at
www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.175950/-/DC1
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File S6

Materials and Methods

Creating a Hawaiian reference

In this section we expand upon the overview presented in the main text.

Iterative editing using variants: As a first step in generating a CB4856 reference sequence, we used the C. elegans genome
assembly N2 (WS230) as a template, and iteratively edited it based on the variants detected with aligned CB4856 reads from
the Princeton data set. To identify SNVs, indels (gapped insertions/deletions) and other variants detected with “split” reads
(non-contiguous read alignments suggesting complex and/or intermediately sized variants), we modified our previously
published pipeline (THomPsON et al. 2013). We also inserted new sequence based on the consensus behavior of clipped reads.
The SNVs, indels, split-read variants and clipped read extensions were integrated into a single pipeline as described below.

Step 1: In an initial step, we corrected the alignment of reads that were falsely clipped (Figure S1A) or improperly aligned
to the reference (Figure S1B) that matched other reads at the same position. In the first instance, reads adjacent to an
alignment gap had been clipped by the aligner because the unmatched portion of the read was too short to be confidently
split. However, in the presence of split reads with longer extensions across the gap, and where the clipped portion matched
that of other split reads with longer extensions, we altered the alignhment of those reads by modifying the CIGAR code (the
description of the alignment of the read to the reference sequence in BAM alignment files as described in the samtools
package (Li et al. 2009); reads 1 and 5 in Figure S1A). In the second instance, reads adjacent to an alignment gap might have a
short, often SNV-enriched match against the immediately adjacent sequence. Again in the presence of other split reads with
longer overlaps, and where the extended alignment matched the other gapped or split reads, we altered the alignment of
those reads by modifying the CIGAR code (reads 1 and 5 in Figure S1B).

Step 2: With spuriously clipped reads corrected, at all remaining sites containing reads clipped on either side, we derived
a consensus sequence for the clipped sequence and stored it for possible integration into the reference.

Step 3: For each base, we called a SNV if the coverage was at least 4x (the equivalent of 3.8 standard deviations below the
mean in the CB4856 Princeton dataset), and if the phred-weighted coverage of the SNV allele (defined as the sum of the
phred-scaled base quality scores supporting the allele, divided by the sum of the phred-scaled base quality scores of all aligned
bases at the site) was >= 0.8. We then altered the base at that position in the reference.

Step 4: We called short indels detected within the alighment of single, unsplit reads if the coverage was at least 4x and

the phred-weighted coverage of the indel allele was >= 0.8. Again, we altered the reference sequence accordingly.
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Step 5: We called larger deletions at sites of split reads where the donor/acceptor pairs in the split-read relationship were
reciprocally detected (i.e. left and right clipped sites predicted the same variant). We required >=5x coverage and the fraction
of reads being right-clipped and left-clipped to be >=0.8. We introduced either a deletion, a deletion with an associated
insertion, or a small duplication/insertion less than the size of a read length, as previously described (THompsoN et al. 2013).
We altered the reference sequence accordingly. Large duplications predicted by the split-read pipeline were not introduced,
nor were predicted inversions or translocations.

Step 6: For both left- and right-clipping sites, where a reciprocally defined split-read deletion could not be called and thus
were presumptive insertion sites, we integrated the consensus of the stored clipped sequence from step 2 above as an
insertion as shown in Figure S1. This allowed us to introduce novel sequence into the CB4856 reference, anchored to existing
sequence derived from the N2 genome. After 20 total cycles of reference editing this approach successfully resolved many
CB4856 insertions with respect to the N2 reference, particularly where repetitive sequence was not involved.

After 20 cycles of iteratively editing the WS230 genome with CB4856 alignments, further cycles resulted in few changes.

The number of variants of each type introduced by cycle can be seen in Table S1.

Contig Generation: To make further improvements to the CB4856 reference, we generated a de novo short-read assembly of
the CB4856 Princeton data set with JR-Assembler (CHu et al. 2013). We set the insert size parameter for JR-Assembler at 321,
the mean insert size of the library when aligned against the N2 reference. After several tests of the software we set the other
parameters: (1) to include low-complexity regions in the assembly, (2) not to trim 5’ bases from the reads, (3) to use the entire
read as the assembly read length, (4) to enable base correction, (5) to connect overlapping paired-end reads, and (6) to use a
resampling read shift of 5bp. We used default kernel parameters (minimum overlap length = 30bp, maximum overlap length =
45 bp, minimum remapping ratio = 0.2, minimum contig length = 300 bp) and both constructed a contig order and filled small
gaps.

These parameters gave 12,155 contigs with an N50 of 18,813 bp. To remove possible false joins in these contigs, they
were then processed with REAPR to split contigs at locations where alignments generated with smalt
(sanger.ac.uk/resources/software/smalt/, the optimal aligner the ALE pipeline described below) generated an automatic
fraction coverage distribution error (see HUNT et al. 2013 for details). REAPR introduced 1,880 contig breaks in 1,539 contigs,

yielding a set of 14,167 contigs with an N50 of 15,785 bp.
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Contig Integration: Initial Alignment, RIL/IL Region Delineation and Usage. We aligned the JR contigs to the cycle-20 reference
sequence using cross_match (a Smith-Waterman alignment tool, P. Green, unpublished) on default settings, but several
contigs showed ambiguous locations, particularly in regions that initially had poor read coverage. To derive an independent
assessment of a contigs location in the genome, we exploited WGS data sets obtained with the SOLiD platform from 49 RILs
and 60 ILs (Table 1; (Li et al. 2006; Doroszuk et al. 2009); SRA PRIEB7445) as well as a subset of the CB4856 data sets (Wicks et
al. 2001; GRISHKEVICH et al. 2012; THOMPSON et al. 2013). We reasoned that good coverage of the JR contigs with reads from the
RILs and ILs would require the presence of a CB4856 segment corresponding to that contig in the IL or RIL. In turn the CB4856
variants in the ILs and RILs would define the CB4856 segments contained in those lines. Finally, the segment shared between
all strains yielding good coverage of the JR contig would localize the contig in the genome. To determine which regions in
each IL or RIL originated in CB4856 and which originated in N2, we aligned the reads to the WS230 reference in colorspace
with bwa-0.5.9, then merged the read alignments with samtools 0.1.18 (for coverage statistics see Table S2) and determined
the SNV content of each strain across the genome compared to a list of 183,509 SNVs called independently in all three of the
Washington, Technion, and Princeton CB4856 datasets. For each RIL/IL, we examined the fraction of SNV locations that
contained only CB4856 alleles, moving across each chromosome in 1kb increments (Figure S2). We excluded sites at which
only the CB4856 allele was present in more than 30 strains, likely reflecting an error in the WS230 reference or problems with
alignment. RIL/IL regions were annotated as originating from CB4856 when more than 150 consecutive 10 kb bins in 1 kb
steps (150 kb) contained nonzero fractions of exclusively CB4856 SNV alleles, at least one bin in the region contained 100%
CB4856 alleles, and at least 50 successive 10 kb bins in 1 kb steps (50 kb) contained no CB4856 alleles to either side (or were
telomeric). On average each IL contained 1.6 CB4856 regions per line, and each RIL contained 9.0 regions per line.

In parallel, we aligned the SOLID reads from each line against the JR contigs in colorspace, again using bwa-
0.5.9 on default settings and merging with samtools. For each contig, two distributions were calculated across the set of 60
ILs: (a) the coverage of each IL when aligned to the contig, normalized to the total coverage in the IL as defined in Table S2,
and (b) the fraction of the contig covered to a depth of >= 1x. Based on the mean and standard deviation for each of these
statistics, each contig was given two Z scores. We heuristically determined that if either Z score was greater than 3 for a given
IL, or if one Z score was greater than 2 and the other greater than 1, the contig was likely to trace its origin to the defined
CB4856 regions in that strain. For example, contig1397-1 (aka, contig1397_start3075_9876.Reaprl) was covered at a
substantially higher fraction of its bases, and to a substantially higher depth, in IL lines ewir064 and ewir066, which shared

CB4856 sequence only on chromosome V (Figure S3). The IL-defined location of the contig that was consistent with the
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position of the contig aligned to the iteratively edited reference (+/- 50 kb to account for differences in coordinates in the two
references) was then accepted at the correct location.

Contig Integration: Contig Placement. 11,254 of the JR contigs (79.4%) aligned fully and contiguously to the iterative CB4856
draft genome with cross_match, an improvement from 10,216 (72.1%) fully aligning to the WS230 genome. Of the remaining
2,913 contigs, 2,716 produced at least one high quality (HQ) alignment (having the maximum cross_match alignment score of
254) to the iteratively edited reference. 1,902 of these produced more than one HQ alignment, often to a given region but
sometimes dispersed across chromosomes in the iteratively edited reference, particularly where the iterative extension of
sequences failed to yield contiguous coverage, or where the contig contained repeated sequences. 123 contigs produced more
than five initial HQ alignments. To improve the sequence in these regions that had proved recalcitrant to modification through
our iterative editing procedure, we sought to replace the problematic areas with the de novo assembled sequence. The
complicated relationships of contig alignments in some of these regions, many of which were flagged by REAPR and ALE to
indicate remaining assembly problems, led us to develop a series of procedures to resolve discrepancies where we could, and
to use the JR contig information conservatively.

For those contigs with HQ alignments across different chromosomes, we used the IL mapping procedure described above
to determine which alignments were consistent with the placement of the contig in the ILs. Of 311 such contigs, we were able
to define a genomic region for 177: in 44 the region predicted by the IL analysis did not contain any of the candidate
alignments, and in another 90 the ILs failed to identify a genomic region, primarily because the CB4856 sequences in these
regions were too similar to N2 to cause a drop in mapping density. After resolving chromosomal locations in this way, 260
contigs yielded HQ alignments to different strands (38 of these had been localized with the IL analysis), perhaps the result of
local inversions between N2 and CB4856. To determine the orientation of these contigs for integration, we used a simple
heuristic: if strand A accounted for >= 80% of the contig, or if strand A generated more total alignments and accounted for >=
60% of the contig, we selected strand A. For 93 contigs, the strand was ambiguous by the above criteria and these contigs
were left unresolved.

For those 2,489 contigs with HQ alignments that could be assigned to a region and a strand, we added any additional
alignments (i.e. even those with lower mapping quality) to our set of HQ alignments provided they shared the same
chromosome and strand. We then defined regions in which the alignments to the reference were in the same order as in the
contig and were not interrupted by the unique alignment of another contig segment. If the whole contig aligned to a single
chromosomal span and contained five or more alignments, we replaced the whole region with the JR contig (221 contigs

totaling 2,384,154 bp, replacing 2,538,749 bp of the edited sequence). For other contigs with fewer discrepancies, we simply
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replaced the segments surrounding any gaps with the corresponding segment of the JR contig, introducing insertions,
deletions or duplications present in the JR contig (1,543 replacements from 1,264 contigs). 333 segments gave inconsistent
results and were not used. Integrating these changes into one more iteration of our variant calling pipeline, we were able to
identify 1,574 additional gapped indels, supported by the alignment of the contigs to the reference, that were present in our
earlier alignments but had coverage below the thresholds of our variant calling pipeline so had not been replaced in the early

rounds of iterative editing.

Residual N2-only Sequence Removal: In addition to integrating REAPR-processed JR-Assembler contigs into our final assembly,
we also removed stretches of sequence that we determined to be absent from the CB4856 genome. These regions had
persisted in the iteratively edited reference because up to this point we had only deleted sequences where we could determine
the end points with basepair resolution through consensus alignments (repeated sequence at the ends of the likely deletions
were a major problem here). Thus, there remained stretches of original N2 sequence in our CB4856 reference. To identify and
remove these sequences we looked for stretches of 100 bp or more that generated zero coverage with smalt. Smalt places
multiply mapped reads randomly, ensuring coverage of repeated sequence, which might otherwise be flagged as having no
coverage. We then expanded the region both upstream and downstream until coverage rose above two standard deviations
less than the mean coverage for the strain. When, not infrequently, such a region ended inside an annotated RepeatMasker
(SmiT et al. 1996-2010) motif, we extended the region to the end of the repeat. 1,098 regions totaling 1,565,559 bp were

removed from the final assembly using the above criteria.
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Supplementary Tables

Table S1 Variant calls by iteration

Iteration SNVs Indels Split-Read Variants Clipped-Read Extensions
1 219787 46674 4905 6856
2 17790 5504 1226 3889
3 8412 1927 543 2461
4 4890 983 280 1618
5 3023 598 130 1130
6 2104 366 77 775
7 1230 206 47 594
8 940 157 27 439
9 734 99 13 341
10 490 66 6 294
11 390 67 5 236
12 321 53 4 185
13 230 33 5 161
14 285 36 4 126
15 213 24 1 102
16 131 18 4 94
17 107 20 1 82
18 111 18 1 71
19 93 14 0 59

20 65 11 1 50
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Table S2 CB4856 IL and RIL coverage and region list

Strain (alias) Type SOLID N2 coverage CB4856 Regions Region List
ewir001 It 3.23 3 13;;81)80%4:3/0:37'2(1)31—9132:91000
ewir002 IL 6.53 1 1:2777001-7909000

ewir004 (ewir073) IL 9.87 1 V:14933001-16302000
ewir005 IL 7.41 1 1:6280001-10873000
ewir007 IL 7.64 1 1:3401001-10873000
ewir009 IL 7.68 1 1:9135001-11315000

ewir010 (ewir039) IL 7.08 1 11:6444001-11217000

1:9135001-14682000

ewir011 IL 6.42 3 11:13195001-13400000

V:16546001-20913000
ewir012 IL 7.13 1 1:9135001-15059000
ewir016 IL 4.61 1 1:11379001-15058000
ewir017 IL 5.52 1 1:12433001-15059000
ewir019 IL 3.61 2 11:1 222[;%%2(\)/6]6%774001
ewir020 IL 5.70 2 11:1 291?%%(;(\)/6]6?)774001
ewir021 IL 11.00 1 11:1-3598000
ewir023 IL 4.17 1 11:2850001-11030000
ewir024 IL 11.35 0
ewir025 IL 5.21 1 11:12610001-13081000
ewir026 IL 6.74 1 11:11794001-13907000
ewir027 IL 6.41 1 11:12262001-15268000
ewir028 IL 6.27 1 111:1-2461000
ewir029 IL 8.75 1 11:616001-2007000
ewir030 IL 6.88 1 111:1-3096000
ewir032 IL 5.77 1 111:1857001-2948000
ewio34 L 575 : 1511580001 12156000
ewir035 IL 10.01 1 111:2571001-9675000
ewir039 IL 7.37 1 1V:9068001-13348000

ewir040 (ewir041) IL 7.09 1 11:8034001-11308000
ewir042 IL 7.19 1 111:9015001-11436000
ewir043 IL 6.54 1 111:12141001-13772000
ewir044 IL 7.78 1 111:11580001-13772000
ewir045 IL 795 5 1IV:168001 ;;)78;())(())0N388001
ewir046 IL 8.62 1 1V:524001-2740000
ewir048 IL 3.78 1 IV:1164001-3485000
ewir050 IL 19.08 1 1V:2272001-4403000
u : o
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ewir052 IL 11.05 1 IV:1418001-13347000
ewir054 IL 8.94 1 IV:9068001-13349000
ewir055 IL 7.68 1 IV:9845001-13348000

IV:10259001-10442000
ewir058 IL 4.77 3 IV:10507001-10767000
IV:10971001-16248000
ewir060 IL 5.80 1 IV:12683001-16599000
11:1-12266000 V:4472001-
. 16285000 1V:16346001-
ewir063 (wn291) L >-46 > 17482000 X:2572001-6374000
X:15009001-15160000
11:13395001-15268000
. IV:14652001-17482000 V:1-
ewir064 (wn292) RIL 4.94 > 8766000 V:8927001-13377000
X:1-1816000
. V:607001-2454000
ewir066 L 8.05 2 V:2557001-5152000
ewir067 IL 7.29 1 V:3857001-6578000
ewir068 IL 9.07 1 V:3857001-13403000
ewir070 IL 5.17 1 V:10577001-20913000
ewir071 IL 7.76 1 V:11379001-13403000
. 11:13076001-14184000
ewir074 L >.72 2 V:14659001-18407000
11:12178001-13691000
1V:994001-10935000
ewir075 (wn041) RIL 9.31 5 IV:11017001-13472000
X:3460001-4406000
X:4738001-9210000
ewir077 IL 8.36 1 V:19248001-20913000
ewir078 IL 10.35 1 X:1-1146000
ewir079 IL 6.00 1 X:1-2028000
ewir080 IL 6.51 1 X:1-2750000
ewir081 IL 7.31 1 X:1-9096000
1:1-1433000 I1:1-11834000
IV:5155001-8027000
ewir084 (wn293) L 24 , IV:8099001-8995000
_original : IV:9076001-10284000
X:5746001-13101000
X:13173001-15160000
1:1-1435000 I1:1-11836000
_ IV:5155001-10324000
ewir084 (wn293) _repeat RIL 10.25 5 X:5746001-13112000
X:13239001-15159000
ewir086 IL 5.23 1 X:5834001-9094000
ewir087 IL 455 1 X:9096001-11038000
X:9096001-12038000
ewir088 IL 5.50 3 X:12117001-13112000
X:13173001-14249000
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ewir089

8.05

X:13173001-16737000

ewir090

6.15

X:13255001-17684000

wn009 (wn294)

RIL

4.33

13

1:1-1558000 1:9204001-
9353000 11:1-2783000
11:12217001-15268000
111:2337001-2722000
111:3411001-13772000
1V:777001-8966000
1V:9045001-10082000
IV:10164001-11998000
V:2564001-2798000
V:3120001-8428000
X:2195001-13112000
X:13173001-17705000

wn013

RIL

6.90

1:1-1961000 11:1-12005000
111:4300001-11283000
IV:12495001-17482000 V:1-
19603000 V:19685001-
20913000 X:1730001-
17705000

wn020

RIL

7.09

1:1-1773000 1:2471001-
15059000 11:5674001-
13394000 I11:1-1014000
111:1556001-1980000 V:1-
8821000 V:8904001-20913000

wn021

RIL

8.93

1:2830001-15059000 II:1-
2550000 111:1-13772000 1V:1-
332000 1V:416001-4401000
1V:4474001-15452000
V:15581001-20913000

wn031

RIL

6.67

1IV:2222001-17482000 V:1-
8834000 V:8898001-18070000
V:19157001-20913000 X:1-
1658000

wn034

RIL

8.78

1:3662001-14838000 IlI:1-
11968000 IV:388001-
17482000 V:12009001-
17751000 X:10132001-
13112000 X:13207001-
17705000

wn036

RIL

8.50

wn037 (wn076_repeat)

RIL

4.87

11

1:13868001-15059000 11I:1-
4745000 111:4812001-6088000
111:6155001-11032000
111:11143001-13772000
1V:388001-686000 I1V:776001-
12632000 1V:12695001-
13335000 V:7192001-8843000
V:8904001-20913000
X:6910001-17701000
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wn038

RIL

7.59

12

1:1-1143000 1:3070001-
15059000 11:1-2641000 III:1-
13772000 1V:68001-556000

1V:639001-2763000
IV:14638001-17482000 V:1-
2454000 V:2527001-2957000
V:9010001-20913000 X:1-
13112000 X:13173001-
17705000

wn041 (ewir076)

RIL

7.36

V:18590001-20046000

wn046

RIL

6.61

1:6032001-15059000 II:1-
15268000 1V:7939001-
10935000 1V:10996001-

16137000 V:1-2059000 X:1-
13112000 X:13173001-
15147000

wn049

RIL

5.02

1:11783001-15059000
1V:548001-1087000
IV:8841001-8978000
1V:9068001-10769000
IV:10842001-17482000
V:2741001-8851000
V:8921001-20913000
X:15089001-17701000

wn053 (wn054)

RIL

6.08

12

1:11576001-15058000
111:2704001-4158000
111:4220001-6158000
111:6219001-6330000

111:6397001-13767000 IV:1-
122000 IV:548001-667000
1V:740001-4053000 V:1-
2486000 V:2557001-8834000
V:8904001-10598000
V:14830001-20913000

wn057

RIL

7.22

10

1:1-7909000 I1:1-13907000
111:1-2007000 1V:3817001-
4389000 1V:4461001-8978000
1V:9041001-11058000
IV:11134001-17482000
X:9101001-13112000
X:13176001-14249000
X:15670001-17684000

wn058

RIL

6.43

1:1-1790000 11:2472001-
15268000 111:5133001-
12697000 1V:1010001-
11094000 IV:11155001-
17482000 V:3458001-
13650000 X:1-10965000
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wn068 (wn076)

RIL

5.99

12

1:13857001-15059000 111:1-
4154000 111:4239001-6330000
111:6397001-13772000
1V:388001-4401000
1V:4472001-10776000
IV:10842001-11416000
IV:11477001-13342000
V:7192001-8797000
V:8898001-20913000
X:6885001-13112000
X:13176001-17701000

wn070 (wn041)

RIL

8.22

11:12005001-15268000
111:11330001-13767000 IV:1-
220000 1V:524001-1172000

IV:15083001-17482000
V:14904001-20913000 X:1-

8665000

wn071

RIL

6.40

1:2771001-15059000 II:1-
15268000 I1V:2505001-
2814000 I1V:15517001-

17482000 V:3058001-8851000

V:8921001-19140000 X:1-
12653000 X:12714001-
13112000 X:13173001-

13964000

wn072

RIL

5.77

12

1:1-1079000 11:1-5417000
111:5472001-13772000
IV:2530001-4401000
IV:4472001-5450000
1IV:5522001-17482000 V:1-
8797000 V:8898001-15075000
X:1-538000 X:1183001-
3046000 X:6021001-13112000
X:13176001-17693000

wn074 (wn174)

RIL

6.37

11

1:2549001-5126000 1:5191001-
15059000 11:13174001-
15268000 I11:1-6157000

111:6242001-12805000
IV:14933001-17482000 V:1-
2454000 V:2557001-8766000
V:8921001-14979000 X:1-
13094000 X:13173001-
13540000

wn075 (wn067)

RIL

11.84

1:1-1901000 [11:1-4918000
111:4986001-13772000 V:1-
20913000 X:9294001-
17701000
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1:1-2297000 11:1-3302000
11:13040001-14375000
111:8582001-13767000
1V:168001-308000 1V:388001-
wn098 RIL 6.02 12 548000 1V:636001-2420000
V:1-2454000 V:2564001-
8843000 V:8921001-20913000
X:1-13112000 X:13173001-
15520000

1:1-2534000 1:3017001-
15058000 I11:1-15268000 I11:1-
2791000 111:11830001-
13772000 1V:1-122000
wn105 RIL 6.20 11 1V:409001-4401000
IV:4474001-5342000
IV:5407001-9002000
IV:9076001-9537000 X:1-
4157000

1:3035001-10529000
11:3207001-15268000 I11:1-
12726000 IV:1-220000
1V:388001-667000 IV:740001-
9002000 1V:9068001-
7.12 13 10931000 1V:10996001-
17482000 V:1-2454000
V:2564001-4777000
V:4842001-8196000
X:4898001-13112000
X:13173001-17707000

1:1-1616000 1:2624001-
11991000 11:12131001-
15268000 I11:1-3313000
IV:524001-17482000 V:1-
wn109 RIL 5.86 11 2453000 V:2557001-8797000
V:8904001-20913000 X:1-

12653000 X:12744001-

13101000 X:13176001-
17682000

wn106 (wn107) RIL

1:2890001-15059000 I1:1-
12305000 1V:13204001-
16284000 IV:16345001-

7.19 17482000 V:1-2486000

V:2557001-19157000 X:1-

13112000 X:13176001-

17693000

wnl11ll (wn110) RIL

1:3242001-15059000
11:13914001-15268000
wnll3 RIL 4.31 111:11105001-13772000 V:1-
2454000 V:2564001-20913000
X:10346001-13973000
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wnll6

RIL

4.93

11:4584001-15268000
111:8742001-13772000 1V:1-
168000 1V:524001-686000

1IV:776001-2212000
V:18909001-19702000

wn118 (wn048)

RIL

4.94

IV:1-220000 1V:284001-
461000 1V:524001-667000
1V:740001-1295000 V:1-
2486000 V:2557001-16438000
X:1-1656000 X:12653001-
17705000

wnl24

RIL

5.36

12

1:2870001-15059000 II:1-
711000 11:3903001-12597000
111:1-3910000 1V:388001-
570000 1V:642001-1000000
IV:1975001-4401000
IV:4472001-8977000
1V:9041001-11448000
IV:11523001-17482000
V:17975001-20913000
X:14500001-17705000

wnl128

RIL

4.77

14

1:1533001-2202000 1:2484001-
15059000 11:1-15268000 111:1-
4154000 111:4215001-6383000
111:6454001-13767000
IV:1005001-4389000
IV:4472001-8878000
1V:8949001-12633000
IV:12695001-16285000
IV:16346001-17482000 V:1-
2486000 V:2557001-8843000
V:8904001-11811000

wnl129

RIL

5.64

12

11:11006001-11954000 11I:1-
4161000 111:4236001-
13772000 1V:1-324000

1V:636001-9002000
1V:9068001-10060000

IV:10122001-13313000 V:1-

2454000 V:2557001-3921000

X:1-12140000 X:12211001-

13112000 X:13173001-
17684000

wnl34

RIL

6.46

14

1:1-1167000 1:3023001-
15059000 I11:1-4150000
111:4220001-6397000
11:6465001-13772000 IV:1-
122000 IV:620001-9002000
1V:9076001-10810000
IV:10896001-11107000
IV:11184001-17482000 V:1-
2454000 V:2527001-8834000
V:8898001-14311000
X:4797001-8487000
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wn135

RIL

6.61

16

1:1-2174000 1:2770001-
15059000 11:1-15268000
111:2523001-8804000
111:8866001-13087000
IV:69001-220000 1V:388001-
524000 1V:620001-2524000
1V:4253001-10357000
IV:10423001-10769000
IV:10835001-10931000
IV:10996001-17482000
V:4413001-8851000
V:8921001-11398000 X:1-
8654000 X:13956001-
15391000

wn140

RIL

6.29

10

1:1-15059000 11:1-5038000
IV:1-220000 1V:388001-
495000 1V:556001-9002000
1V:9076001-16285000
IV:16346001-17482000 V:1-
1028000 X:12763001-
13112000 X:13176001-
17701000

wnl42

RIL

6.48

12

1:1-12434000 1:12538001-
14012000 1:14086001-
15059000 I1:1-15268000 I11:1-
1907000 111:10076001-
12617000 IV:1-17482000 V:1-
2454000 V:2527001-8845000
V:8921001-20913000 X:1-
2881000 X:16562001-
17705000

wnl46

RIL

6.40

1:8022001-15058000 II:1-
12985000 1V:1-168000
1V:388001-2063000 V:1-
2454000 V:2527001-10163000
X:1-12805000

wn152

RIL

7.49

1:1-1567000 1:3101001-
15059000 11:1-7960000 IV:1-
308000 1V:388001-9002000

1V:9068001-10769000

IV:10835001-17482000

X:11398001-13112000

X:13173001-17705000

wn153

RIL

9.46

1:933001-2180000 1:3600001-
15058000 I11:1-13178000
IV:1336001-17482000 V:1-
2486000 V:2564001-8851000
V:8921001-20913000 X:1-
13079000
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wnl58

RIL

5.54

10

1:1-3545000 11:1-15268000
111:1-2822000 111:11198001-
12398000 1V:1830001-
4401000 1V:4472001-8977000
1V:9041001-17482000 V:1-
8766000 V:8851001-20913000
X:3837001-17693000

wnl61l

RIL

6.89

12

1:2502001-15058000
11:13485001-15268000 Il1:1-
4365000 111:4433001-
13772000 1V:1-168000
1V:388001-1408000
1V:1812001-11104000
IV:11166001-13534000 V:1-
8821000 V:8904001-9701000
V:9762001-12430000
X:14708001-17705000

wnl62

RIL

7.71

11:1-3506000 111:4275001-
6383000 I11:6444001-
13769000 1V:2140001-

10061000 1V:10122001-
15446000 V:3926001-
20913000 X:8898001-
13112000 X:13173001-

17701000

wnl71

RIL

7.95

11:1-1685000 I11:1-13772000
V:1-2486000 V:2557001-
4726000 V:4792001-8766000
V:8827001-16038000 X:1-
13416000 X:14038001-
17327000 X:17396001-
17693000

wnl76

RIL

8.12

1:1-2100000 1:3311001-
14698000 11:1-2907000
11:5598001-12010000 I1I:1-
13772000 1V:1979001-
14785000 1V:15449001-
17482000 V:1-8851000
V:8921001-20913000

wnl77

RIL

7.88

11:2647001-15268000 I11:1-
13772000 IV:2629001-
15993000 X:2466001-
13101000 X:13221001-

17707000

wn185

RIL

5.59

1:1-1545000 11:12355001-
15268000 I11:1-1188000
111:2047001-11218000
V:1166001-2454000
V:2557001-8845000
V:8921001-20913000
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wnl186

RIL

8.54

11:1-15268000 I11:1-13772000
1V:9719001-17482000 V:1-
3867000 V:18463001-
20913000 X:1-13112000
X:13173001-13658000
X:14395001-17693000

wn190

RIL

3.11

11:1320001-8752000
11:13008001-15268000
1V:2543001-10906000

IV:11075001-16285000
IV:16346001-17482000 V:1-
2453000 V:2564001-8766000
V:8851001-17547000

wn196 (wn195)

RIL

5.94

11:1-15268000 1V:548001-
1677000 1V:1940001-2650000
V:1-2453000 V:2527001-
8851000 V:8921001-20913000
X:12446001-12831000
X:13491001-17707000

CB4856

CB4856 control 5.71

13

1:1-15059000 II:1-
15268000 I:1-
13772000 IV:388001-524000
1V:604001-4389000
1V:4472001-10842000
IV:10909001-17482000 V:1-
2486000 V:2557001-
8766000 V:8851001-20913000
X:1-9811000
X:9894001-13112000
X:13173001-17705000
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Table S3 Coordinates of highly diver;

gent regions in C. elegans N2 and CB4856

C. elegans N2 (WS230)

CB4856

1:1086047-1112098

1:1101806-1127574

1:2285977-2305562

1:2327626-2360993

1:2734559-2744454

1:2798869-2809018

1:12476597-12500146

1:12627240-12645122

11:988416-1024139

11:1031447-1074741

11:1470218-1516517

11:1530810-1584979

11:1544781-1579478

11:1613411-1636156

11:1589069-1610149

11:1645699-1671813

11:1686985-1804605

11:1748738-1945322

11:1862640-1887001

11:1993695-2064046

11:1950748-1990258

11:2132999-2184616

11:2044915-2139275

11:2237615-2332746

11:2184771-2201617

11:2388444-2405596

11:2974336-3020963

11:3197502-3250769

11:3097260-3125113

11:3331072-3375129

11:3407722-3456546

11:3672222-3697801

11:3478700-3490495

11:3720082-3730000

111:1-162260

111:1-189633

111:884590-952990

111:931824-994823

111:1302565-1364095

111:1345352-1417238

111:112170290-12200078

111:112350622-12370948

1V:2502463-2518228

1V:2557585-2601617

1V:2609665-2633042

1V:2693368-2721980

1V:3839868-3874858

1V:3938677-3972117

1V:6109360-6140581

1V:6268434-6301517

1V:16036516-16058260

1V:16285400-16352670

V:518047-594265

V:519843-589301

V:687214-723559

V:681654-720089

V:2232729-2264473

V:2259327-2276075

V:2273335-2293636

V:2284931-2303184

V:2393882-2410540

V:2407223-2431542

V:2445201-2455014

V:2580971-2592469

V:2665323-2683253

V:2802647-2821695

V:3133005-3142615

V:3277718-3286975

V:3175100-3211048

V:3319347-3445836

V:3621005-3631859

V:3859108-3870050

V:3667594-3681994

V:3905495-3920741

V:3698216-3715816

V:3939565-3959664

V:7017957-7064447

V:7318802-7360355

V:7294233-7367020

V:7592038-7668476
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V:12116567-12130512

V:12433464-12449980

V:15394389-15439019

V:15722924-15764693

V:15580092-15674206

V:15889637-15980152

V:15865905-15917533

V:16175096-16243084

V:16134646-16181460

V:16463162-16501406

V:16270370-16280562

V:16595350-16607029

V:16545600-16553689

V:16848550-16856085

V:16605149-16633418

V:16907288-16963843

V:16870092-16958775

V:17225619-17367259

V:17256246-17270779

V:17773246-17787294

V:17285255-17296361

V:17801498-17834237

V:17645339-17710126

V:18193641-18260001

V:18085929-18094141

V:18675982-18691917

V:18734280-18876232

V:19366735-19527624

V:19304333-19313907

V:19986300-19996675

V:19442863-19465521

V:20127985-20173435

V:19492868-19522263

V:20203259-20235306

V:19763911-19775102

V:20482152-20493438

V:19819367-19884716

V:20540845-20625910

X:1507699-1534961

X:1534338-1561578

X:14046536-14057565

X:14217202-14228221
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Table S4 Tcl copies in the N2 and CB4856 genomes

Retained
copies Tclstart ([Tclend N2 coordinates CB4856 coordinates Clone
1 1 1610|chrl:10528229-10529839 1:10448092-10449702 F59C6
2 1 1612|chrl:12481317-12482892 1:12329190-12330765 T27F6
3 1 1610|chrl:14021864-14023474 1:13858652-13860198 7C334
4 1 1610|chrll:6571191-6572801 11:6301769-6303379 F18C5
5 1 1472|chrll:13307543-13309014 11:12983176-12984647 YA8C3A
6 1 1610|chrlll:2119183-2120793 111:2057190-2058796 YA8G9A
7 1 1610|chrlll:12865065-12866675  |I11:12688772-12690382 Y37D8A
8 1 1610|chrIV:9685246-9686856 1V:9514675-9516285 ZK1251
9 1 1610|chrIV:13223694-13225304  |IV:13030790-13032400 C48D1
10 1 1610|chrlV:15484067-15485677  |IV:15253992-15255602 Y73F8A
11 90 1610|chrV:1834327-1835848 V/:1818396-1819853 T10B5
12 1 1610|chrV:3989832-3991442 V:3745971-3747581 B0213/K09D9
13 1 182|chrV:9890310-9890491 V:9575212-9575393 C50H2
876 1610|chrV:9890486-9891220 V/:9831139-9831873
14 1 1610|chrV:10187631-10189240  |V:9872535-9874144 ZK856
15 1 112|chrV:11288609-11288720  |V:10973599-10973710 CO3E10
68 1619|chrVv:11288742-11290273  |V:11229563-11231094
16 1 1610|chrV:16312007-16313617  |V:15984106-15985716 C31A11
17 1 1610|chrV:18442316-18443926  |V:17859623-17861233 Y51A2C/ZK228
18 1 1610|chrX:7017195-7018805 X:6882401-6884011 R173
19 1 1610|chrX:11311136-11312746  |X:11149404-11151014 FO08G12
Deleted
Full length Tclstart |Tclend |N2 coordinates Clone
1 1 860|chrll:4168682-4169542 RO3H10
1535 1610|chrll:4169535-4169610
2 1610|chrll:784390-786001 Y39F10A/FA6F5
3 1 1610|chrl1:894218-895828 TO7D3
4 1 1610|chrll:1935486-1937097 ZK250
5 1 1610|chrll:7516627-7518237 C28F5
6 1 1610|chrll:12520686-12522296 T21B4
7 1 1610|chrll:12750742-12752352 Y46G5A
8 1 1610|chrIV:2485118-2486727 Y69A2AR
9 1 1610|chrV:1836070-1837680 Y32G9B/T10B5°
10 1 1610|chrV:3251322-3252932 T28A11°
11 1 1610|chrV:3590233-3591844 T22F32
12 1 1610|chrV:15907121-15908731 F35E8
13 1 1610|chrV:17805773-17807383 Y94A7B
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Inserted

One end only

orientation  [Tcistart |Tclend |CB4856 coordinates

B 1525 1610|1:1645408-1645496 1

+ 1487 1610]11:3089263-3089386 2

+ 1 73|111:13494864-13494936 3

- 1557 1610[V:12058803-12058856 4

+ 1 83|V:17660363-17660445 5

Inserted -

Both ends

orientation |Tclstart |Tclend |CB4856 coordinates orientation ([Tclstart |Tclend |CB4856 coordinates

+ 1 100(1:2635117-2635212 + 1539 1610|1:2635203-2635274 1
+ 1 82(1:12276809-12276890 |+ 1534 1610|1:12276886-12276962 2
+ 1 68]11:1929985-1930051 + 1534 1610(11:1930048-1930124 3
- 1530 1610(11:3087013-3087093 - 1 79|11:3087086-3087164 4
- 1 81|11:7549244-7549324 + 1533 1610|11:7549172-7549247 5
+ 1 77|11:12569787-12569863 |+ 1534 1610(11:12569787-12569863 6
- 1535 1610j11:13612906-13612981 |- 1 72(11:13612982-13613053 7
+ 1 100|11:14472906-14473004 |+ 1534 1610)11:14472990-14473066 8
- 1533 1610|V:2775116-2775193 - 1 78|V:2775189-2775266 9
- 1525 1610|V:7189046-7189131 - 1 80|V:7189132-7189211 10
- 1542 1610[V:12390311-12390379 |- 1 72|V:12390380-12390451 11
+ 1 84|V:16571603-16571686 |+ 1546 1610|V:16571687-16571751 12
@Present in

DOLGIN et al.

2008
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Table S5 SNVs excluding divergent regions

Chromosome | Bases in SNVs on | Fraction SNVs Bases in SNVs on | Fraction SNVs
ARMS ARMS on ARMS CENTERS CENTERS | on CENTERS

I 6590733 23628 0.359 8163409 8624 0.106

Il 6261468 29100 0.465 7941885 8843 0.111

11l 6298078 19547 0.31 6930366 5429 0.078

IV 8102292 23349 0.288 8865871 7192 0.081

Vv 10021279 42785 0.427 8803113 8607 0.098
10046187 12058 0.12 7427535 8076 0.109
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Table S6 Previously studied loci for C. elegans N2/CB4856

Locus

Study

Genotype

Identified same change
found in cited reference

rtw-5

(HODGKIN AND
DONIACH 1997)

In N2 rtw-5 carries a variant G to A change at position
46... CB4856 has the ancestral genotype

yes

npr-1

(DE BONO AND
BARGMANN 1998)

One isoform, NPR-1 215F, is found exclusively in
social strains, while the other isoform, NPR-1 215V, is
found exclusively in solitary strains. An NPR-1 215V
transgene can induce solitary feeding behavior in a
wild social strain.”

“Within the npr-1 locus, the two social strains CB4856
and CB4932 both had an insertion of approximately
50bp inintron 1...”

yes

ppw-1

(TUSTERMAN et al.
2002)

“Sequencing this locus identified multiple
polymorphisms between the Hawaiian strain and N2.
Besides some base alterations that result in the
alterations of the amino acid sequence (including two
amino acid changes in protein domains that are
highly conserved), the Hawaiian allele carries a single
base deletion resulting in an early stop codon that is
suggestive of a null allele.” ppw-1

4 NS and 1 SS change;
one frameshift and a
inframe indel

(ELvIN et al. 2011)

We first sequenced the ppw-1 locus for 31 RiLs and
then analyzed whether the genotype can predict the
phenotype..."Polymorphisms in ppw-1 appear to
explain the loss of germline RNAI sensitivity in
Hawaii"

(POLLARD AND
Rockman 2013)

“we distinguished N2 and CB alleles of ppw-1 by
sequencing through chrl, which is the position of a
1bp deletion... a 5kb fragment was amplified
necessary to avoid amplifying the paralog sago-2. ”

yes

gst-38

(DENVER et al. 2003)

“the divergent F35E8 locus on chromosome V
spanned the entire F35E8.8 gene, composed of two
exon and one intron. All of the variable sites detected
at this locus were base substitutions... the majority of
substitutions detected at this locus were in exon
sequences. Among the 30 base substitutions
observed in F35E8.8 exon sequence, eight were
replacements and 22 were silent. No base
substitutions were observed that resulted in
premature stop codons for the F35E8.8 gene.”

yes

(MAVDAN et al.
2007)

We also examined a gene, gst-38, that has been
sequenced from the Hawaiian strain and is known to
have several SNPs relative to Bristol [Denver 2003].
Probe targets in the Hawaiian genome contain 0-3
SNPs each, which resulted in a significantly negative
log2 ratio in that region of the genome, but not of
sufficient amplitude to pass our conservative criteria
for identifying deletions.”

NA
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tra-3

(KAMMENGA et al.
2007)

The natural variation in body size response to
temperature between CB and N2 was caused by a
single mutation F96L in a calpain-like protease TRA-3
encoded by tra-3....0ne SNP was found within the
coding region where phenylanaline-96 in N2 was
mutated into leucine-96 in CB

no

C47G7.1,
D1065.3

(MAYDAN et al.
2007)

“We identified a 2943bp deletion on chrV in the
Hawaiian strain CB4856 that affects two adjacent
genes, C49G7.1 and D1065.3. Both are
uncharacterized genes... we designed primers
flanking the deletion, amplified the affected region
using PCR, and sequenced the region to determine
the deletion breakpoints.”

yes

plg-1

(PALopoLI et al.
2008)

Sequence analysis revealed that the [Cer1]
retrotransposon and its long terminal repeats (LTRs)
interrupts a novel, unannotated protein-coding gene
whose predicted product has similarity to canonical
mucins... the protein is predicted to contain proline,
threonine, and serine-rich (PTS) repeats.” [ "We show
that the plugging polymorphism results from the
insertion of a retrotransposon into an exon of a novel
mucin-like gene, plg-1, whose product is a major
structural component of the copulatory plug."]

8.8 kb deletion in CB4856
relative to N2

peel-1/ zeel-1

(SEIDEL et al. 2008)

“The interval to which zeel-1 and peel-1 map contains
a region of dramatically elevated sequence
divergence between the Bristol and Hawaii
haplotypes. This region spans 33kbs of Bristol
sequence and includes four full genes and part of a
fifth. The Hawaii haplotype contains a 19-kb deletion
spanning the gene Y39G10AR.5. Divergence within
coding segments of the remaining genes averages
5%, which is 50 times higher than previous genome-
wide estimates of pairwise divergence from both
coding and noncoding sequence. Noncoding
segments in this region are largely unalignable and
contain many insertions and deletions, mainly
composed of repetitive elements. The left boundary
of the divergent interval is abrupt and is marked by a
1-kb insertion in Hawaii. Genomic divergence within
the 13kb immediately outside the insertion is 0.1%.
The right boundary is less abrupt, with divergence
falling gradually to 0.7% across 4kb.”

yes

tyra-3

(BENDESKY et al.
2011)

“To identify polymorphisms between N2 and HW
alleles of tyra-3, we sequenced ~19kb surrounding
the tyra-3 locus in HW. There were 34 differences
between HW and the N2 consensus genomic
sequence: 33 noncoding changes and a single coding
difference that changed a glutamate in the tyra-3b
isoform to glycine.”

0. A. Thompson et al.
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“tyra-3 transgenes with the N2 noncoding sequence
were significantly more potent than comparable
transgenes with the HW sequence...excluding the
coding polymorphism and localizing a functional
difference between N2 and HW tyra-3 genes to a
4.9kb region that harbors 5 noncoding SNPs, one 1bp
insertion, and a 184bp deletion in HW... results
indicate that the 184bp deletion represents at least
part of the functional difference between N2 and HW
tyra-3 alleles. ”

abts-3/exp-1

(BENDESKY et al.
2011)

Sequencing this region uncovered 11 polymorphisms
between HW and N2: five noncoding SNPs, two
coding SNPs, one 1bp deletion, one 1bp insertion, a
3bp insertion, and a 23bp deletion.” (abts-3)

“a second gene close to the II-QTL is exp-1... the stop
codon of exp-1 is 2.2kb away from the QTL.... we
suggest that a noncoding variation 3’ of the exp-1
transcript, within the abts-3 gene, modifies
aggregation and bordering behavior by affecting the
activity of exp-1.”

yes, plus additional SNVs
and indels

glc-1

(GHosH et al. 2012)

To identify the functional polymorphism(s), we
sequenced the N2 and CB alleles of glc-1. Relative to
N2, CB had 77 SNPs in the coding region, 32 of which
resulted in AA changes, as well as a 4-AA deletion in
exon 2. Despite the multiple coding polymorphisms,
the predicted secondary structure and membrane
topology of GLC-1 from N2 and CB were similar...

“The glc-1 region exhibited high sequence divergence
between N2 and CB, with 178 SNPs in 5kb, a
polymorphism rate ~30 times higher than the
average of 1SNP/840bp (Wicks). Sequences of five
other gluatmate-gated Cl channel subunits differed
very little between N2 and CB.”

253 SNVs

tac-1

(TARAILO-GRAOVAC
AND CHEN 2012)

“In CB we identified a number of SNVs that affect tac-
1. In particular, one variation affected the second
exon of tac-1 causing a C94W change in the AA
sequence.”

yes

glb-5

104 sl

(PERSSON et al.
2009)

(MCGRATH et al.
2009)

This interval contained two genes, one of which, glb-
5, had similarity to globins. Comparison of N2 and
CB4856 sequences in the 8kb revealed 11
polymorphisms, all in g/b-5. Ten SNPs altered
introns, the remaining polymorphism partially
duplicated glb-5 in N2 but not CB4856.

“The genomic sequence of glb-5 contained a 765bp
duplication/insertion in N2 compared to HW. glb-5
cDNA analysis demonstrated that the DNA
polymorphism resulted in substantially different
mRNAs and predicted GLB-5 proteins in N2 and CB.
The duplicated exon in N2 led to an in-frame stop
codon in the glb-5 cDNA, resulting in a truncation of
the last 179 AAs of the protein compared to HW, and
the inclusion of 40 different residues.”

9 SNPs in introns, 3 indels
including one the
deletion in hawaiian
corresponding to the
partial duplication of glb-
5in N2

yes
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