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Abstract
In this paper we prove two results about the inviscid limit of the Navier-

Stokes system. The first one concerns the convergence in Hs of a sequence of
solutions to the Navier-Stokes system when the viscosity goes to zero and the
initial data is in Hs. The second result deals with the best rate of convergence
for vortex patch initial data in 2 and 3 dimensions. We present here a simple
proof which also works in the 3D case. The 3D case is new.

1 The inviscid limit

The Navier-Stokes system is the basic mathematical model for viscous in-
compressible flows. In a bounded domain, it reads

∂tu + u.∇u− ν∆u +∇p = 0,
div(u) = 0,

u = 0 on ∂Ω,
(1)

where u is the velocity, p is the pressure and ν is the kinematic viscosity. We
can define a typical length scale L and a typical velocity U . The dimensionless
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parameter Re = UL
ν

is very important to compare the properties of different
flows. When Re is very large (ν very small), we expect that the Navier-Stokes
system (NSν) behaves like the Euler system

∂tu + u.∇u +∇p = 0,
div(u) = 0,

u.n = 0 on ∂Ω.
(2)

The zero-viscosity limit of the incompressible Navier-Stokes equation in
a bounded domain, with Dirichlet boundary conditions, is one of the most
challenging open problems in Fluid Mechanics (see [19] and the references
therein). This is due to the formation of a boundary layer which appears
because, we can not impose a Dirichlet boundary condition for the Euler
equation. This boundary layer satisfies formally the Prandtl equations, which
seem to be ill-posed in general.

In this paper we only deal with the inviscid limit in the whole space. All
the results presented here can easily be extended to the periodic case.

2 Convergence in Hs.

The inviscid limit in the whole space case was performed by several authors,
we can refer for instance to Swann [20] and Kato [16, 17] (see also Constantin
[10]). Here, we would like to improve slightly the convergence stated in the
previous works by proving the convergence in the Hs space as long as the
solution of the Euler system exists. Indeed, in most of the previous results
only convergence in Hs′ for s′ < s was proved. We also point out that in
[17], Kato proved the convergence in Hs for a short time, by using a general
theory about quasi-linear equations. So, we do not claim that theorem 2.1 is
really new.

Take the Navier-Stokes system in the whole space Rd

∂tu
n + div(un ⊗ un)− νn∆un = −∇pn in Rd (3)

div(un) = 0 in Rd (4)

un(t = 0) = un
0 with div(un

0 ) = 0 (5)

where νn goes to 0 when n goes to infinity.
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Theorem 2.1 Let s > d/2 + 1, and un
0 ∈ Hs(Rd) such that un

0 goes to
u0 in Hs(Rd) when n goes to infinity. Let T ∗ be the time of existence and
u ∈ Cloc([0, T

∗); Hs) be the solution of the Euler system

∂tu + div(u⊗ u) = −∇p in Rd (6)

div(u) = 0 in Rd (7)

u(t = 0) = u0 with div(u0) = 0. (8)

Then, for all 0 < T0 < T ∗, there exists ν0 > 0 such that for all νn ≤ ν0, the
Navier-Stokes system (3 - 5) has a unique solution un ∈ C([0, T0]; H

s(Rd)).
Moreover,

‖un − u‖L∞(0,T0;Hs) → 0, n →∞ (9)

‖(un − u)(t)‖Hs−2 ≤ C(νnt + ‖un
0 − u0‖Hs−2) (10)

‖(un − u)(t)‖Hs′ ≤ C((νnt)
(s−s′)/2 + ‖un

0 − u0‖Hs′ ) (11)

for all 0 ≤ t ≤ T0, s− 2 ≤ s′ ≤ s− 1 and C depends only on u and T0.

Remark 2.2 1) The only relatively new part in theorem 2.1 is the conver-
gence in Hs stated in (9) which holds for all T0 < T ∗.

2) Interpolating between (10) and the uniform bound for wn in C([0, T ]; Hs(Rd)),
we deduce that un converges to u in Hs′ for any s′ < s and for s−2 < s′ < s,
we have

‖(un − u)(t)‖Hs′ ≤ C(νnt + ‖un
0 − u0‖Hs−2)

s−s′
2 . (12)

for all 0 ≤ t ≤ T0.

Proof:
The proof of this theorem is based on a standard Grönwall inequality (see

also [20, 16, 10]). Let us start by proving (10). First, we see that we can
solve the Navier-Stokes system and Euler system in C([0, T ]; Hs(Rd)) on some
time interval independent of νn ≤ ν0 with bounds which are independent of
n. This is because there is no boundary. Moreover, wn = un − u satisfies

∂tw
n + un∇wn + wn.∇u− νn∆wn + νn∆u +∇(pn − p) = 0 (13)

Then, we can write an energy estimate in Hs−2 for wn = un − u, namely

∂t‖wn‖2
Hs−2 + νn‖∇wn‖2

Hs−2

≤
(
C(‖u‖Hs + ‖wn‖Hs)‖wn‖Hs−2 + νn‖∆u‖Hs−2

)
‖wn‖Hs−2 (14)
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and by Grönwall lemma, we can deduce that (10) holds for T0 = T . It was
proved in [10] that the convergence holds as long as we can solve the Euler
system and hence we can take any T0 such that T0 < T ∗ (see [10]). Notice
that in [10], the regularity required is s − 2 > d/2 + 1. However, this is
not necessary modulo the regularization argument which is used to prove the
convergence in Hs.

To prove (11), we write an energy estimate in Hs′ , s− 2 ≤ s′ ≤ s− 1

∂t‖wn‖2
Hs′ + νn‖∇wn‖2

Hs′

≤
(
C(‖u‖Hs + ‖wn‖Hs)‖wn‖2

Hs′ + νn‖∇u‖Hs−1‖∇wn‖H2s′−(s−1)

)
. (15)

Then using an interpolation inequality and Holder inequality, we deduce that

‖∇wn‖H2s′−s+1 ≤ C‖wn‖s−s′−1

Hs′ ‖∇wn‖2−(s−s′)

Hs′ ≤ 1

C
‖∇wn‖2

Hs′ + C2‖wn‖
2− 2

s−s′

Hs′ .

Hence,

∂t‖wn‖2
Hs′ ≤ C‖wn‖2

Hs′ + Cνn‖wn‖
2− 2

s−s′

Hs′ (16)

and (11) follows.
Getting the convergence in Hs requires a regularization of the initial

data. For all δ > 0, we take uδ
0 such that ‖uδ

0‖Hs ≤ C‖u0‖Hs , ‖uδ
0‖Hs+1 ≤

C
δ
, ‖uδ

0‖Hs+2 ≤ C
δ2 and for some s′ such that d/2 < s′ < s − 1, we have

‖uδ
0 − u0‖Hs′ ≤ Cδs−s′ . Such a uδ

0 can be easily constructed by taking uδ
0 =

F−1(1{|ξ|≤1/δ}Fu0).
Let vδ be the solution of the Euler system (6,7,8) with the initial data

vδ(t = 0) = uδ
0. It is easy to see that vδ exists on some time interval [0, T ],

T < T ∗ which only depends on ‖u0‖Hs and such that for 0 ≤ t ≤ T , we
have ‖vδ(t)‖Hs ≤ C and ‖vδ(t)‖Hs+2 ≤ C

δ2 uniformly in δ. Indeed, the energy
estimates at the level Hs and Hs+2 read

∂t‖vδ‖2
Hs ≤ C‖vδ‖3

Hs (17)

∂t‖vδ‖2
Hs+2 ≤ C‖vδ‖Hs‖vδ‖2

Hs+2 (18)

from which the uniform estimates follow.
Then, setting wδ = vδ − u, we have

∂tw
δ + wδ.∇vδ + u.∇wδ = −∇(pδ − p). (19)

4



Taking the energy estimate in Hs yields

∂t‖wδ‖2
Hs ≤ C(‖u‖Hs + ‖vδ‖Hs)‖wδ‖2

Hs + C‖vδ‖Hs+1‖wδ‖Hs‖wδ‖L∞ . (20)

Then, we notice that on the time interval [0, T ], we have ‖vδ‖Hs+1 ≤ C
δ
.

Moreover, taking the energy estimate at the regularity s′, we get

∂t‖wδ‖2
Hs′ ≤ C(‖u‖Hs′ + ‖vδ‖Hs′+1)‖wδ‖2

Hs′ (21)

and since s′ + 1 < s, we get easily that ‖wδ‖L∞(0,T ;Hs′ ) ≤ Cδs−s′ and by

Sobolev embedding, we have ‖wδ‖L∞(0,T ;L∞) ≤ C‖wδ‖L∞(0,T ;Hs′ ) ≤ Cδs−s′ .
Hence, (20) gives

∂t‖wδ‖Hs ≤ C(‖u‖Hs + ‖vδ‖Hs))‖wδ‖Hs + Cδs−s′−1. (22)

Hence wδ goes to zero in L∞(0, T ; Hs), namely vδ goes to v in L∞(0, T ; Hs)
when δ goes to zero and we have

‖vδ − u‖L∞(0,T ;Hs) ≤ C(‖uδ
0 − u0‖Hs + δs−s′−1T ) (23)

Writing an energy estimate for wn,δ = un − vδ, we get (here we drop the
n and δ)

∂t‖w‖2
Hs + νn‖∇w‖2

Hs

≤ C(‖w‖L∞‖vδ‖Hs+1‖w‖Hs + (‖vδ‖Hs + ‖un‖Hs)‖w‖2
Hs)+

νn‖vδ‖Hs+2‖w‖Hs . (24)

Hence, we get

∂t‖w‖Hs ≤ C‖un − u‖L∞‖vδ‖Hs+1 + C‖vδ − u‖L∞‖vδ‖Hs+1+

νn‖vδ‖Hs+2 + C(‖vδ‖Hs + ‖un‖Hs)‖w‖Hs . (25)

Since un converges to u in Hs−1, we deduce that

‖un−u‖L∞(0,T ;L∞) ≤ C‖un−u‖L∞(Hs−1) ≤ C((νnT )1/2+‖un
0−u0‖Hs−1). (26)

Taking δ = δn such that δn,
‖un

0−u0‖Hs−1

δn
and νn

δ2
n

go to zero when n goes to
infinity, we deduce that

∂t‖wn,δ‖Hs ≤ C(
(νT )1/2 + ‖un

0 − u0‖Hs−1

δ
+ δs−s′−1 +

ν

δ2
+ ‖wn,δ‖Hs) (27)
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Hence, by Grönwall lemma, we deduce that wn,δ goes to zero in L∞(0, T ; Hs)
and that un goes to u in L∞(0, T ; Hs). Moreover,

‖un − u‖L∞(0,T ;Hs) ≤ CT

(
(νT )1/2 + ‖un

0 − u0‖Hs−1

δ
+ δs−s′−1 +

ν

δ2

)
+

C(‖un
0 − u0‖Hs + ‖uδ

0 − u0‖Hs + δs−s′−1T ). (28)

We notice here that the rate of convergence gets better if we have a better
approximation of u0 by uδ

0. This will be studied in the next subsection.
Since, we have proved the convergence in Hs till the time T , we can

iterate the previous argument. Indeed, taking T as a new initial time and
noticing that un(T ) goes to u(T ) in Hs, we see that we can iterate the
previous argument on some time interval [T, T +T1] where T1 = T1(‖u(T )‖Hs)
only depends on ‖u(T )‖Hs and T1 ≥ C/‖u(T )‖Hs . Then, we can construct
a sequence of times Tk, k ≥ 1 by this procedure. Now, it is clear that
T + T1 + ... + Tk goes to T ∗ when k goes to infinity. Indeed, the time Tk+1

goes to zero only if ‖u(T + T1 + ... + Tk)‖Hs goes to infinity, which means
that T + T1 + ... + Tk goes to T ∗. This iteration argument allows us to get
the convergence on any time interval [0, T0], T0 < T ∗.

Remark 2.3 1) We notice that the time T ∗ is related to the existence time
for the Euler system (6). If d = 2 it is known [22, 21] that the Euler system
(6) has a global solution and hence one can take any time T0 < ∞ in the
above theorem.

2) The idea of using a regularization of the initial data was also used
by Beirão da Veiga [2, 3] to prove a similar result in the compressible-
incompressible limit. It is also used to prove the continuity of the solution
with respect to the initial data in hyperbolic equations (see for instance Bona
and Smith [5]). In the inviscid limit, this idea was used by Constantin and
Wu [12] to prove some estimates on the rate of convergence of the vorticity.

2.1 Rate of convergence in Hs

Take β such that 1 < β ≤ 2 and d/2 < s− β and for 0 ≤ δ < ∞, T > 0 we
define uδ

0 = F−1(1{|ξ|≤1/δ}Fu0), εT (δ) = ‖uδ
0−u0‖Hs +Tδβ−1, fT (δ) = δεT (δ)

and gT (δ) = δ2εT (δ). We can see easily that for T > 0, fT and gT are
increasing on [0,∞). We denote by f−1

T and g−1
T their inverse. From the

proof of theorem 2.1, we can deduce the following corollary
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Corollory 2.4 Under the same hypotheses of theorem 2.1, we have the fol-
lowing rate of convergence

‖(un−u)(t)‖Hs ≤ C
νt

(g−1
t (νt))2

+C
t((νt)β/2 + ‖un

0 − u0‖Hs−β)

f−1
t (t((νt)β/2 + ‖un

0 − u0‖Hs−β))
+C‖un

0−u0‖Hs

(29)
for all 0 ≤ t ≤ T0 and C depends only on u and T0.

Proof:
Going back to the proof of theorem 2.1, we see that (26) can be replaced

by

‖(un − u)(t)‖L∞ ≤ C‖un − u(t)‖Hs−β ≤ C((νnt)
β/2 + ‖un

0 − u0‖Hs−β). (30)

Hence (28) can be replaced by

‖(un − u)(t)‖Hs ≤ Ct(
(νt)β/2 + ‖un

0 − u0‖Hs−β

δ
+

ν

δ2
)+

C(εt(δ) + ‖un
0 − u0‖Hs). (31)

Taking the optimum in δ and applying lemma 2.5, we deduce easily that (29)
holds.

Lemma 2.5 For a, b, t > 0, we have

inf
δ>0

a

δ
+

b

δ2
+ εt(δ) ≤ 2

a

f−1
t (a)

+
b

(g−1
t (b))2

(32)

The proof of this lemma is simple and is left for the reader
If we assume that u0 is more regular, we can give a more precise rate.

Corollory 2.6 We take the same hypotheses as in theorem 2.1 and assume
in addition that u0 ∈ Hs+α for some 0 < α ≤ 2.

If 1 ≤ α ≤ 2, we have

‖(un − u)(t)‖Hs ≤ C((νt)α/2 + ‖un
0 − u0‖Hs) (33)

for all 0 ≤ t ≤ T0 and C depends only on u and T0.
If 0 < α < 1, then for all β such that 1 ≤ α + β ≤ 2 and s− β > d/2, we

have

‖(un − u)(t)‖Hs ≤ C(t‖un
0 − u0‖Hs−β)α + C((νt)α/2 + ‖un

0 − u0‖Hs) (34)

for all 0 ≤ t ≤ T0 and C depends only on u, β and T0.
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Proof:
First, notice that from the extra regularity of u0, we deduce that ‖vδ‖Hs+1 ≤

C(1 + δα−1), ‖vδ‖Hs+2 ≤ Cδα−2 and ‖vδ − u‖Hs ≤ Cδα.
If 1 ≤ α ≤ 2, then (24) yields

∂t‖w‖Hs ≤ C‖w‖Hs + Cνnδ
α−2. (35)

Hence
‖(un − u)(t)‖Hs ≤ C

(
νtδα−2 + δα + ‖un

0 − u0‖Hs

)
(36)

Taking the optimum in δ, namely δ =
√

νt, we deduce that (33) holds.
If 0 < α < 1, then arguing as in (15), we have

∂t‖wn‖2
Hs−β + νn‖∇wn‖2

Hs−β

≤
(
C(‖u‖Hs+α + ‖wn‖Hs)‖wn‖2

Hs−β + νn‖∇u‖Hs+α−1‖∇wn‖Hs+1−2β−α

)
.

(37)

Then using an interpolation inequality and Holder inequality, we deduce that

‖∇wn‖Hs+1−2β−α ≤ C‖wn‖β+α−1
Hs−β ‖∇wn‖2−β−α

Hs−β ≤ 1

C
‖∇wn‖2

Hs−β+C2‖wn‖
2− 2

β+α

Hs−β .

Hence, we deduce that

‖(un − u)(t)‖Hs−β ≤ C((νnt)
(β+α)/2 + ‖un

0 − u0‖Hs−β). (38)

In the proof of theorem 2.1, we see that (26) can be replaced by

‖(un−u)(t)‖L∞ ≤ C‖un−u(t)‖Hs−β ≤ C((νnt)
(β+α)/2+‖un

0−u0‖Hs−β). (39)

Moreover, ‖vα − u‖L∞ ≤ Cδβ+α. Hence (28) can be replaced by

‖(un − u)(t)‖Hs ≤ Ct
(
((νt)(β+α)/2 + ‖un

0 − u0‖Hs−β)δα−1 + νδα−2
)
+

C(δα + tδβ+2α−1 + ‖un
0 − u0‖Hs). (40)

Taking the optimum in δ, we deduce that

‖(un−u)(t)‖Hs ≤ C
(
t((νt)(β+α)/2+‖un

0−u0‖Hs−β)
)α

+C(νt)α/2+C‖un
0−u0‖Hs .

(41)

Hence (34) holds.
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3 Vortex patches

In this section d = 2 or 3. For 2D vortex patches, namely the case where
curl(u0) is the characteristic function of a C1+α domain α > 0, it was proved
in [7] (see also [4]) that the Euler system (6,7,8) has a unique solution u such
that the characteristic function of curl(u) remains a C1+α domain and that
the velocity u is in L∞

loc(R; Lip). A similar result holds for 3D vortex patches,
but only on a bounded interval, namely u ∈ L∞

loc(0, T
∗; Lip) (see [14]).

For vortex patches, theorem 2.1 does not apply. Indeed, the velocity is
not in Hs for any s > d/2 + 1. For 2D vortex patches, it was proved in
[11, 12] that the convergence to the Euler system still holds and that

‖un − u‖L∞(0,T ;L2) ≤ C(νnT )
1
2 . (42)

In [12], the authors also prove some estimate in Lp spaces for the difference
between the vorticities, in particular they prove for p ≥ 2 that ‖curl(un −
u)‖L∞(0,T ;Lp) ≤ Cν

1
4p
−ε

n for some short time T and ε > 0.
Also, in [1], a better rate of convergence is given for 2D vortex patches,

namely
‖un − u‖L∞(0,T ;L2) ≤ C(νnT )

3
4 (43)

which is optimal.
Here, we would like to extend the result of Abid and Danchin [1] to the

3D case and also give a slight improvement of their 2D result by allowing
un

0 − u0 to be just in L2. Moreover, the proof we present is much simpler.
Let us recall the definition of a vortex patch

Definition 3.1 Take 0 < r < 1. A vector field u is called a Cr vortex patch
if the following decomposition holds

curl(u) = χ
P
ωi + χ

Pc ωe (44)

where P ⊂ Rd is an open set of class C1+r and ωi, ωe ∈ Cr(Rd)∩L1(Rd) are
compactly supported.

Here χ
P

denotes the characteristic function of P . Notice that since curl(u)
is divergence-free, we have ωi.n = ωe.n on ∂P . This condition is always
satisfied if d = 2.

First, we recall that Gamblin and Saint-Raymond [14] proved the exis-
tence of a local solution u ∈ L∞

loc(0, T
∗; Lip) to the vortex patch problem in

3D (see also [13] and [15]). Moreover, u remains a Cr vortex patch.
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Hence, curl(u) ∈ L∞
loc(0, T

∗; Ḃα
2,∞) where α = min(r, 1/2) (see the ap-

pendix).

Theorem 3.2 Here d = 2 or 3. We assume that un
0 −u0 goes to 0 in L2(Rd)

when n goes to infinity. We also assume that u0 is a Cr vortex patch.
Then, if T ∗ is the time of existence and u ∈ Cloc([0, T

∗); Lip) is the so-
lution of the Euler system with initial data u0, then for all 0 < T < T ∗,
there exists ν0 such that for all νn ≤ ν0 and for all sequence of weak (Leray)
solutions to the Navier-Stokes system (3 - 5), we have for 0 < t < T ,

‖(un − u)(t)‖L2 ≤ C((tνn)
1+α

2 + ‖un
0 − u0‖L2) (45)

where α = min(1/2, r) and where C depends only on u and T .

Remark 3.3 In the 2D case, knowing that curl(u0) ∈ L1∩L∞ does not imply
that u ∈ L2 and in general u0 is not in L2 unless

∫
curlu = 0. In particular

in the classical 2D vortex patch problem [18], namely the case curl(u) is the
characteristic function of a Cr+1 domain, u0 is not in L2. However, in the
3D case, the fact that curlu0 ∈ L1∩L∞ implies that u0 ∈ L2 from Biot-Savart
formula.

Proof: Let us denote wn = un − u, hence

∂tw
n + wn.∇u + u.∇wn − νn∆wn − νn∆u = −∇(pn − p). (46)

Taking the L2 product with wn, we get (at least formally) for 0 < t < T ,

1

2
‖wn(t)‖2

L2 + νn

∫ t

0

‖∇wn‖2
L2 ≤

1

2
‖wn(0)‖2

L2+∫ t

0

C‖∇u‖L∞‖wn‖2
L2 −

∫ t

0

∫
νn∇u.∇wn. (47)

In the 2D case, this computation is fully justified. We only point that in
the 2D case, u and un are not in general in L2 but their difference is in L2.

To prove (47) rigorously in the 3D case, we just add the energy inequality
(48) and energy equality (49)

1

2
‖un(t)‖2

L2 + νn

∫ t

0

‖∇un‖2
L2 ≤

1

2
‖un(0)‖2

L2 (48)
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1

2
‖u(t)‖2

L2 =
1

2
‖u(0)‖2

L2 (49)

and subtract the weak formulation∫
unu(t)−

∫
unu(0) +

∫ t

0

∫
unu.∇u + uun.∇un + νn∇un.∇u = 0. (50)

Besides, using the duality between Ḃ−α
2,1 and Ḃα

2,∞, the divergence-free
property of u and lemma 5.1 (see the appendix), we have

|
∫
∇u.∇wn| ≤ C‖∇u‖Ḃα

2,∞
‖∇wn‖Ḃ−α

2,1
(51)

≤ C‖curlu‖Ḃα
2,∞
‖wn‖Ḃ1−α

2,1
(52)

≤ C‖curlu‖Ḃα
2,∞
‖wn‖α

L2‖∇wn‖1−α
L2 . (53)

By Holder inequality, we have

νn‖curlu‖Ḃα
2,∞
‖wn‖α

L2‖∇wn‖1−α
L2 ≤ Cνn‖curlu‖

2
1+α

Ḃα
2,∞
‖wn‖

2α
1+α

L2 +
νn

2
‖∇wn‖2

L2 .

(54)

Hence, we get from (47)

‖wn(t)‖2
L2 ≤ ‖wn(0)‖2

L2+C

∫ t

0

‖∇u‖L∞‖wn‖2
L2+Cνn‖curlu‖

2
1+α

Ḃα
2,∞
‖wn‖

2α
1+α

L2 ds.

(55)

And by Grönwall lemma, we deduce that

‖wn(t)‖
2

1+α

L2 ≤ C‖wn(0)‖
2

1+α

L2 + Cνnt (56)

and (45) follows.
From the proof, we can see that the only information we used about u

is that u ∈ L∞
loc(0, T

∗; Lip) and curlu ∈ L∞
loc(0, T

∗; Ḃα
2,∞). Moreover, it is

easy to see that if u ∈ L∞
loc([0, T

∗); Lip) then the Ḃα
2,∞, 0 < α < 1 regularity

of curlu is propagated by the flow, namely if curlu0 ∈ Ḃα
2,∞, then curlu ∈

L∞
loc([0, T

∗); Ḃα
2,∞) (see [8]). Hence, we have the following theorem
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Theorem 3.4 We assume that un
0 − u0 goes to 0 in L2(Rd) when n goes to

infinity and that curlu0 ∈ Ḃα
2,∞, 0 < α < 1. We also assume that the Euler

system with the initial data u0 has a unique solution u ∈ L∞
loc([0, T

∗); Lip).
Then for all 0 < T < T ∗, there exists ν0 such that for all νn ≤ ν0 and for all
sequence of weak (Leray) solutions to the Navier-Stokes system (3 - 5), we
have for 0 < t < T ,

‖(un − u)(t)‖L2 ≤ C((tνn)
1+α

2 + ‖un
0 − u0‖L2) (57)

where C depends only on u and T .

This theorem is an improvement of theorem 1.1 of [1] since we only assume
that the solution of the Euler system is Lipschitz. We would like to give two
applications of this theorem which yield a better convergence rate than the
simple application of theorem 3.2.

Consider a vector field u0 which is a Cr vortex patch with 0 < r < 1/2

and assume in addition that curlu0 ∈ Ḃ
1/2
2,∞, then theorem 3.4 allows us to

prove that
‖(un − u)(t)‖L2 ≤ C((tνn)

3
4 + ‖un

0 − u0‖L2) (58)

which is better than the rate we get from (45).
There are several situations where u0 is a Cr vortex patch with 0 <

r < 1/2 and curlu0 ∈ Ḃ
1/2
2,∞. For instance this is the case if curl(u0) =

χ
P
ωi0+χ

Pc ωe0 is such that P ⊂ Rd is an open set of class C1+r and ωi0, ωe0 ∈
C1/2(Rd) ∩ L1(Rd). We notice here that for t > 0 we only know that u is
a Cr vortex patch, namely curl(u) = χ

P (t)ωi(t) + χ
P (t)c

ωe(t) with P (t) of

class C1+r and ωi(t), ωe(t) ∈ L∞
loc(0, T

∗; Cr(Rd) ∩ L1(Rd)). Hence, curlu ∈
L∞

loc([0, T
∗); Ḃr

2,∞). However, propagating the initial Ḃ
1/2
2,∞ yields that curlu ∈

L∞
loc([0, T

∗); Ḃ
1/2
2,∞) and gives the better rate (58).

In particular theorem 3.4 applies to the classical 2D vortex patch, namely
the case curlu0 = χ

P
and P is of class C1+r, r > 0 in which case (58) holds

even if r < 1/2.

Remark 3.5 In the 2D case, one can lower the regularity of the initial data.
Indeed Yudovich [22] proved that if ω0 = curl(u0) ∈ L∞ ∩ Lp for some 1 <
p < ∞ then the Euler system (6) has a unique global solution (see also [8]).
It was proved in [9] that the solution to the Navier-Stokes system converges
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in L∞((0, T ); L2) to the solution of the Euler system if we only assume that
ω0 = curl(u0) ∈ L∞ ∩ Lp. More precisely, Chemin [9] proves that

‖un − u‖L∞(0,T ;L2) ≤ C‖curl(u0)‖L∞∩L2(νnT )
1
2
exp(−C‖curl(u0)‖L∞∩L2T ). (59)

Notice that here, the rate of convergence deteriorates with time. This does not
happen if we also know that u is in L∞(0, T ; Lip) as was proved by Constantin
and Wu [11].
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5 Appendix

We define C to be the ring of center 0, of small radius 1/2 and great radius 2.
There exist two nonnegative radial functions χ and ϕ belonging respectively
to D(B(0, 1)) and to D(C) so that

χ(ξ) +
∑
q≥0

ϕ(2−qξ) = 1, (60)

|p− q| ≥ 2 ⇒ Supp ϕ(2−q·) ∩ Supp ϕ(2−p·) = ∅. (61)

For instance, one can take χ ∈ D(B(0, 1)) such that χ ≡ 1 on B(0, 1/2) and
take

ϕ(ξ) = χ(2ξ)− χ(ξ).

Then, we are able to define the Littlewood-Paley decomposition. Let us
denote by F the Fourier transform on Rd. Let h, h̃, ∆q, Sq (q ∈ Z) be
defined as follows:

h = F−1ϕ and h̃ = F−1χ,

∆qu = F−1(ϕ(2−qξ)Fu) = 2qd

∫
h(2qy)u(x− y)dy,

Squ = F−1(χ(2−qξ)Fu) = 2qd

∫
h̃(2qy)u(x− y)dy.
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Then, we define the non-homogeneous and homogeneous Besov norms

‖u‖Bs
2,r

=
(
‖S0u‖r

L2 +
∑
q≥0

2rsq‖∆qu‖r
L2

)1/r

‖u‖Ḃs
2,r

=
( ∑

q∈Z

2rsq‖∆qu‖r
L2

)1/r

for s ∈ R and 1 ≤ r ≤ ∞. If r = ∞, then the summation over q is replaced
by the L∞ norm.

Lemma 5.1 For 0 < α < 1, we have

‖w‖Ḃ1−α
2,1

≤ C‖w‖α
L2‖∇w‖1−α

L2 . (62)

Proof:
This inequality can be easily deduced from real interpolation. We give

here a direct proof. Actually, we will prove a stronger estimate, namely

‖w‖Ḃ1−α
2,1

≤ C‖w‖α
Ḃ0

2,∞
‖∇w‖1−α

Ḃ0
2,∞

. (63)

Indeed, we have

‖∆qw‖L2 ≤ C‖w‖Ḃ0
2,∞

(64)

‖∆qw‖L2 ≤ C2−q‖w‖Ḃ1
2,∞

. (65)

We take N such that

2N‖w‖Ḃ0
2,∞

≤ ‖w‖Ḃ1
2,∞

≤ 2N+1‖w‖Ḃ0
2,∞

.

Hence

∞∑
q=−∞

2(1−α)q‖∆qw‖L2 ≤ C
∑
q≤N

2(1−α)q‖w‖Ḃ0
2,∞

+ C
∑
q≥N

2−αq‖w‖Ḃ1
2,∞

≤ C2(1−α)N‖w‖Ḃ0
2,∞

+ C2−αN‖w‖Ḃ1
2,∞

.

(66)

From which (63) follows.
In the next two lemmas, we prove that if u0 is a Cr vortex patch then

curl(u) ∈ L∞
loc(0, T

∗; Bα
2,∞) where α = min(r, 1/2).
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Lemma 5.2 If P is bounded open set of Rd of class C1+r then χ
P
∈ Ḃ

1/2
2,∞

The proof is based on interpolation. Indeed, since P is C1+r, it is Liptchiz
and hence χ

P
∈ L∞ ∩BV . Then

‖∆qχP
‖L∞ ≤ C‖χ

P
‖L∞ (67)

‖∆qχP
‖L1 ≤ C2−q‖χ

P
‖BV . (68)

interpolating between L1 and L∞, we deduce that

‖∆qχP
‖L2 ≤ C2−q/2‖χ

P
‖BV ‖χP

‖L∞ . (69)

and hence, χ
P
∈ Ḃ

1/2
2,∞.

Lemma 5.3 If u is a Cr vortex patch then curl(u) ∈ Ḃα
2,∞ where α =

min(r, 1/2).

The proof uses the para-product decomposition of Bony ([6])

uv = Tuv + Tvu + R(u, v)

where
Tuv =

∑
q∈Z

Sq−1u∆qv and R(u, v) =
∑

|q−q′|≤1

∆q′u∆qv.

We decompose
χ

P
ωi = Tωi

χ
P

+ R(χ
P
, ωi) + Tχ

P
ωi (70)

and notice that since χ
P

and ωi are both in L∞, we get

‖Tωi
χ

P
+ R(χ

P
, ωi)‖Ḃα

2,∞
≤ C‖ωi‖L∞‖χP

‖Ḃα
2,∞

(71)

‖Tχ
P
ωi‖Ḃα

2,∞
≤ C‖χ

P
‖L∞‖ωi‖Ḃα

2,∞
(72)

Since, ωi is in Cr and is compactly supported, we deduce that ωi ∈ Ḃα
2,∞.

Hence χ
P
ωi ∈ Ḃα

2,∞
The same proof holds for χ

Pc ωe and hence, curl(u) ∈ Ḃα
2,∞.
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