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Remarks on a theorem by N. Yu. Antonov

by

Per Sjölin (Stockholm) and Fernando Soria (Madrid)

Abstract. We extend some results of N. Yu. Antonov on convergence of Fourier se-
ries to more general settings. One special feature of our work is that we do not assume
smoothness for the kernels in our hypotheses. This has interesting applications to con-
vergence with respect to general orthonormal systems, like the Walsh–Fourier system, for
which we prove a.e. convergence in the class L logL log log logL. Other applications are
given in the theory of differentiation of integrals.

1. Introduction. Let T = R/Z denote the one-dimensional torus, which
we identify with the interval [0, 1). We set

Dm(x) =
sin (2m+ 1)πx

sinπx
, m = 0, 1, . . . ,

the mth Dirichlet kernel, so that for a function f ∈ L1(T),

Smf(x) = Dm ∗ f(x)

denotes its Fourier mth partial sum. Given N ∈ N, we define

S∗Nf(x) = sup
0≤m≤N

|Smf(x)|, S∗f(x) = sup
m≥0
|Smf(x)|.

S∗ is called the Carleson maximal operator .
Extending the celebrated theorem of Carleson [4] on the a.e. convergence

of Fourier series for functions in L2(T), R. Hunt [7] proved the remarkable
inequality for 1 < p <∞,

(1) λ|{x ∈ T : S∗χA(x) > λ}|1/p ≤ C p2

p− 1
|A|1/p, λ > 0,

where A is any measurable subset of T and χA denotes its characteristic
function. From this, using arguments close to Yano’s extrapolation theorem
(see [13]) he went on and proved the norm estimate
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‖S∗f‖L1(T) ≤ C
�
T
|f(x)|(log+ |f(x)|)2 dx+ C.

This inequality, of course, implies the a.e. convergence of Fourier series of
functions in L(logL)2(T).

In [8], the first author used (1) in a more efficient way and showed that in
fact the a.e. convergence is true for functions in L logL log logL(T). He also
presented a more abstract approach valid for maximal operators associated
to summability kernels satisfying an inequality like (1). In particular, his
result was also applicable to the a.e. convergence of Walsh–Fourier series.
(See also [11].)

In [1], N. Yu. Antonov strengthened the information contained in in-
equality (1) and proved that from it one can in fact obtain a.e. convergence
of the Fourier series of functions in L logL log log logL(T). In this paper we
extend this result to other maximal convolution and non-convolution oper-
ators for which an inequality like (1) holds. Among other results, we prove
the a.e. convergence of Walsh–Fourier series in the same class. Other appli-
cations include an improvement of estimates associated with the so called
halo conjecture in differentiation of integrals.

Let us first summarize the approach presented in [1].

Lemma 1 (Antonov). Given ε > 0, a > 0, N ∈ N and a measurable
function f on T with 0 ≤ f(x) ≤ a, there exists a set F ⊂ supp f such that

(i) ‖S∗N (f − aχF )‖∞ ≤ ε,
(ii) � f = a|F |.
This lemma is the key ingredient of the paper of Antonov. For its proof,

he uses the fact that the Dirichlet kernels Dm are in the class C1 with

‖D′m‖∞ ≤ m‖Dm‖∞ ∼ m2

(Bernstein’s inequality).
An iteration of Lemma 1 then gives the following.

Lemma 2 (Antonov). Let ψ : [0,∞)→ [0,∞) be a non-decreasing func-
tion such that ψ(u2) ≤ Cψ(u) for u ≥ 4. Define φ(u) = uψ(u). Given ε > 0,
N ∈ N and G ∈ φ(L) (this simply means that � φ(|G(x)|) dx < ∞) with
G(x) ≥ 4 or G(x) = 0 otherwise, there exists a sequence {Fk} of disjoint
sets such that the function

g(x) =
∑

k≥1

22kχFk

satisfies

(i) ‖S∗N (G− g)‖∞ < ε,
(ii) � φ(g) ≤ 4 � φ(G).
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For the conclusion on the a.e. convergence, we have not used estimate
(1) so far. This is done in the following lemma.

Lemma 3. Assume that M is a positive sublinear operator acting on
simple functions of a measure space (X, dµ) and satisfying the condition

(2) µ({x ∈ X : MχA(x) > λ})1/p ≤
(

C

p− 1

)m |A|1/p
λ

for some m ≥ 0 and for all 1 < p ≤ 2, with C independent of p, λ > 0 and
of the measurable set A ⊂ X (that is, M is of restricted weak type p with a
constant which grows like (p− 1)−m as p→ 1+). Let {ak}k be an increasing
sequence of positive numbers, with ak ≥ 2. Then, given a subset X0 ⊂ X of
finite measure and ε > 0 small there is a positive, finite constant Cε such
that for any simple function of the form

g =
L∑

k=1

akχFk ,

one has

µ({x ∈ X0 : Mg(x) > 1}) ≤ Cε
L∑

k=1

ak(log (k + 2)2ak)m log (2 + k)|Fk|+ ε.

(Cε might also depend on the value of µ(X0).)

In the statement of the lemma and in what follows, we write |A| for the
µ-measure of a measurable set A. As we will see, the assumption that g is
given by a finite sum may be removed if we know in advance that M has the
sublinearity property M(

∑
k akχAk) ≤∑k akM(χAk) for sums of infinitely

many terms, whenever
∑
k akχAk is in the domain of definition of M .

Application of these results is then contained in the following theorem.

Theorem 4. Let φ(u) = u(1+log+ u)(1+log+ log+ log+ u), where log+ u
= log u if u ≥ 1 and log+ u = 0 otherwise. Then for all ε > 0 there is a
constant Cε such that

|{x ∈ T : S∗f(x) > λ}| ≤ Cε
�
φ(|f |/λ) + ε.

Lemma 3 for m = 1 and Theorem 4 are of course implicit in the work of
Antonov, although they are not stated in such explicit form. For that reason
we briefly sketch their proofs.

Proof of Lemma 3. We start with the observation that if for a given λ
with 0 < λ < 1/2 we take p = 1 + (1 + log 1/λ)−1 then (2) gives

(3) µ({x ∈ X : MχA(x) > λ}) ≤ C

λ

(
log

1
λ

)m
|A|, 0 < λ < 1/2.
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This is the only information from inequality (2) that we will use at this
point.

Set Ek = {x : MχFk(x) > 1/ak} and E =
⋃
Ek. From (3) we get

µ(E) ≤ C
∑

k≥1

ak(log ak)m|Fk|.

Now,
µ({x ∈ X0 : Mg(x) > 1}) ≤ µ(E) +

�
X0−E

Mg dµ,

and �
X0−E

Mg dµ ≤
∑

k≥1

ak
�

X0−Ek
MχFk dµ

≤
∑

k≥1

ak

1/ak�
0

µ({x ∈ X0 : MχFk(x) > λ}) dλ

≤ C
∑

k≥1

ak

1/ak�
0

min
(

1,
1
λ

(
log

1
λ

)m
|Fk|

)
dλ,

where we have used (3) again and the hypothesis that µ(X0) is finite. Hence,
for 0 < ε < 1/2,

�
X0−E

Mg dµ ≤
∑

k≥1

ε

(k + 2)2 +
∑

k≥1

ak

1/ak�
ε/(k+2)2ak

min
(

1,
1
λ

(
log

1
λ

)m
|Fk|

)
dλ

∼ ε+
∑

k≥1

ak

(
log

(k + 2)2ak
ε

)m
log

(k + 2)2|Fk|
ε

≤ ε+ 2
(

log
1
ε

)m+1 L∑

k=1

ak(log (k + 2)2ak)m log (k + 2)|Fk|,

and the conclusion follows with Cε ∼ (log 1/ε)m+1.

Proof of Theorem 4. We fix ε > 0 and f ∈ φ(L) with f ≥ 0. Given λ > 0
write fλ(x) = f(x) if f(x) ≤ λ and fλ(x) = 0 otherwise. Set fλ = f − fλ
and

G(x) = 4fλ(x)/λ.

Then

|{x : S∗f(x) > λ}| ≤ |{x : S∗fλ(x) > λ/2}|+ |{x : S∗G(x) > 2}|.
For the first term we use the boundedness of S∗ on L2(T) to obtain

|{x : S∗fλ(x) > λ/2}| ≤ C

λ2

�
(fλ)2 ≤ C

�
f/λ ≤ C

�
φ(f/λ).
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For the second term we use Lemma 2 with

ψ(u) = (1 + log+ u)(1 + log+ log+ log+ u),

ak = 22k , ε = 1 and N arbitrary. We then find g of the form g(x) =∑
k akχFk with the {Fk} disjoint and so that ‖S∗N (G−g)‖∞ < 1 and � φ(g) ≤

4 � φ(G). Observe that g may also depend on N . Using this, Lemma 3 and
the fact that ak ≥ k + 2 we obtain

|{x : S∗NG(x) > 2}| ≤ |{x : S∗Ng(x) > 1}|

≤ Cε
∑

ak log ak log (k + 2)|Fk|+ ε

∼ Cε
�
φ(g) + ε ≤ Cε

�
φ(G) + ε ≤ C ′ε

�
φ(f/λ) + ε.

Since the last term does not depend on N we conclude, by the monotonicity
of the sequence {S∗N}N , that

|{x : S∗G(x) > 2}| ≤ C ′ε
�
φ(f/λ) + ε,

and the theorem follows.

2. A general approximation principle. As we have mentioned be-
fore, Antonov uses the fact that the convolution kernels defining S∗, in this
case the Dirichlet kernels, are smooth. For the applications that we have in
mind this is perhaps a strong condition. Our first remark in this regard is
that one can approximate a given function in the spirit of Lemmas 1 and 2
but with no smoothness assumption at all on the kernels. This is better
described in the following result.

Lemma 5. Given a sequence {Kj}j≥0 ⊂ L1(Rn) of integrable functions
we define for N = 0, 1, 2, . . . the maximal operators

K∗Nf(x) = sup
0≤j≤N

|Kj ∗ f(x)|.

Then, given ε > 0, N , a positive function H ∈ L1(Rn) and an increasing
sequence {ak}k≥1 of positive numbers with lim ak =∞, there exists a simple
function h of the form

h =
k0∑

k=1

akχFk ,

for some k0, so that

(i) Fk ⊂ Gk := {x : ak−1 < H(x) ≤ ak}, k = 1, 2, . . . (a0 = 0), with
�
Gk
H(x) dx = ak|Fk|,
(ii) � K∗N (H − h)(x) dx ≤ ε.
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Proof. Given β, we write as before Hβ(x) = H(x) whenever H(x) ≥ β
and Hβ(x) = 0 otherwise. Since

�
|K∗NHβ(x)| dx ≤

N∑

j=0

�
|Kj ∗Hβ(x)| dx

tends to zero as β tends to infinity by the dominated convergence theorem,
we may assume with no loss of generality that H(x) is bounded, say H(x)
≤ ak0 for all x.

Consider a grid {Qi}i of cubes covering Rn, with disjoint interiors, whose
diagonals have all length δ, for some value of δ > 0 to be chosen later. Clearly,

�
Qi∩Gk

H(x) dx ≤ ak|Qi ∩Gk|,

and so there exists a set F ik ⊂ Qi ∩Gk such that
�

Qi∩Gk
H(x) dx = ak|F ik|.

Define Fk =
⋃
i F

i
k and h(x) =

∑k0
k=1 akχFk . Thus, h is of the form stated

in the lemma and moreover,

�
K∗N (H − h)(x) dx ≤

N∑

l=0

�
|Kl ∗ (H − h)(x)|dx

≤
N∑

l=0

k0∑

k=1

∑

i

�
Rn

∣∣∣
�

Qi∩Gk
Kl(x− y)(H(y)− akχF ik(y)) dy

∣∣∣dx.

Observe that, by construction,
�

Qi∩Gk
(H(y)− akχF ik(y)) dy = 0,

and therefore if we write yi for the center of the cube Qi, we obtain
�
K∗N (H − h)(x) dx

≤
N∑

l=0

k0∑

k=1

∑

i

�
Rn

∣∣∣
�

Qi∩Gk
(Kl(x− y)−Kl(x− yi))(H(y)− akχF ik(y)) dy

∣∣∣dx

≤
N∑

l=0

k0∑

k=1

∑

i

�
Qi∩Gk

(H(y) + akχF ik(y))
( �
Rn
|Kl(x− y)−Kl(x− yi)|dx

)
dy.

Well known properties of the translation operator tell us that if we choose
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δ sufficiently small, then�
Rn
|Kl(x− z)−Kl(x)| dx ≤ ε0, l = 1, . . . , N,

whenever |z| < δ, with ε0 to be determined. Hence, for such δ,

�
K∗N (H − h)(x) dx ≤

N∑

l=0

k0∑

k=1

∑

i

2ε0

�
Qi∩Gk

H(y) dy = 2ε0(N + 1)
�
H(y) dy.

Choosing
ε0 =

ε

4(N + 1)(1 + ‖H‖1)

completes the proof.

Part (i) in the conclusion of Lemma 5 produces the following nice con-
nection between the norms of h and H in certain φ(L)-spaces.

Lemma 6. In the hypotheses of Lemma 5 and with the same notation,
if φ̃(u) = uψ̃(u) with ψ̃(u) increasing in [0,∞), ψ̃(0) > 0 and satisfying the
condition

(4) ψ̃(ak) ≤ C1ψ̃(ak−1), k = 1, 2, . . . ,

for the given sequence {ak}k, then�
φ̃(h) ≤ C1

�
φ̃(H).

Proof. We observe, from the construction of the sequence {Fk}k, that�
φ̃(h) =

∑

k

φ̃(ak)|Fk| =
∑

k

ak|Fk|ψ̃(ak)

=
∑

k

�
Gk

H(x) dx ψ̃(ak).

Now, our hypothesis (4) and the fact that ψ̃ is increasing gives, for every
x ∈ Gk,

ψ̃(ak) ≤ C1ψ̃(ak−1) ≤ C1ψ̃(H(x)).

Hence, �
φ̃(h) ≤ C1

∑

k

�
Gk

H(x)ψ̃(H(x)) dx = C1

�
φ̃(H).

3. Boundedness of the maximal operator. In this section we pre-
sent the generalization of Antonov’s work announced in the introduction.
Our setting will be Rn and a sequence {Kj}j of kernels in L1(Rn). We
define the associated maximal operator

K∗f(x) = sup
j
|Kj ∗ f(x)|,
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and we assume that K∗ has the following behavior on characteristic func-
tions of sets:

(5) |{x : K∗χA(x) > λ}|1/p ≤
(

C

p− 1

)m |A|1/p
λ

for some m ≥ 0 and for all 1 < p ≤ 2, with C independent of p, λ > 0 and
of the measurable set A. Set ψm(u) = (1 + log+ u)m, φm(u) = uψm(u) and
φ̃m(u) = φm(u)(1 + log+ log+ log+ u).

Theorem 7. With the above notation and assuming that K∗ satisfies
(5), given ε > 0 and R > 0 there exists a constant Cε, which may also
depend on R, so that

(6) |{x ∈ Rn : |x| ≤ R, K∗f(x) > λ}| ≤ Cε
�
φ̃m(|f |/λ) + ε.

We say that the sequence {Kj}j is a pointwise summability system for
smooth functions if the limit

lim
j→∞

Kj ∗ f(x)

exists for every f in the Schwartz class S, a.e. x.

Corollary 8. If {Kj}j is a pointwise summability system for smooth
functions and its associated maximal operator satisfies condition (5), then
the limit

lim
j→∞

Kj ∗ f(x)

exists a.e. x for all f ∈ φ̃m(L).

Proof of Theorem 7. The argument is similar to that in the proof of
Theorem 4 but with the modifications given by Lemmas 5 and 6. First of all
we observe that condition (5) says that K∗ is of restricted weak type p for
1 < p ≤ 2. Therefore, well known results in interpolation theory (see [12])
tell us that it is also of strong type p for 1 < p < 2. That is,

‖K∗f‖p ≤ Cp‖f‖p
for some Cp. Fix R > 0. In order to prove (6), it suffices to consider f ≥ 0
and, by homogeneity, we may as well take simply λ = 2. Write as usual

f = f1 + f1,

where f1(x) = f(x) if f(x) ≤ 1 and f1(x) = 0 otherwise. Then

|{x : |x| ≤ R, K∗f(x) > 2}| ≤ |{x : K∗f1(x) > 1}|
+ |{x : |x| ≤ R, K∗f1(x) > 1}|.

For the first term we use the boundedness of K∗ on, say, L3/2 to obtain

|{x : K∗f1(x) > 1}| ≤
�
(K∗f1)3/2 ≤ C

�
(f1)3/2 ≤ C

�
f ≤ C

�
φ̃m(f).
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For the second term, given ε > 0 and N fixed we use Lemma 5 with H = f 1

and ak = ee
k

. We then find g of the form g(x) =
∑
k akχFk with the {Fk}

disjoint and such that

(9) ‖K∗N (f1 − g)‖1 < ε/2.

Observe that

ψm(ak) log(k + 2) ≤ Cψm(ak−1) log(k + 1),

and since log k = log log log ak we see that condition (4) in Lemma 6 is
satisfied with

ψ̃(u) = ψm(u)(1 + log+ log+ log+ u).

Hence

(10)
�
φ̃m(g) ≤ C

�
φ̃m(f1) ≤ C

�
φ̃m(f).

Finally, (9), Lemma 3 and (10) give

|{x : |x| ≤ R, K∗f1(x) > 1}|
≤ |{x : K∗(f1 − g)(x) > 1/2}|+ |{x : |x| ≤ R, K∗g(x) > 1/2}|

≤ ε+ Cε
∑

akψm(ak) log (k + 2)|Fk|

≤ ε+ Cε
�
φ̃m(g) ≤ ε+ Cε

�
φ̃m(f).

This finishes the proof of Theorem 7.

Proof of Corollary 8. The proof is standard. We want to show that

lim sup
j→∞

Kj ∗ f(x) = lim inf
j→∞

Kj ∗ f(x) a.e.

To do that, it suffices to prove that for every R > 0 and λ > 0, if we define

mR = |{x : |x| ≤ R, lim sup
j→∞

Kj ∗ f(x)− lim inf
j→∞

Kj ∗ f(x) > λ}|

then we have mR = 0. Now, if we take a smooth function g ∈ S, our
hypothesis on {Kj}j gives

mR = |{x : |x| ≤ R, lim sup
j→∞

Kj ∗ (f − g)(x)− lim inf
j→∞

Kj ∗ (f − g)(x) > λ}|.

Moreover, from Theorem 7, given ε > 0, there exists Cε such that

mR ≤ |{x : |x| ≤ R, 2K∗(f − g)(x) > λ}| ≤ ε+ Cε
�
φ̃

(
2
f − g
λ

)
.

Since we can make the second term in the last inequality as small as we
want for appropriate g ∈ S, the corollary follows.
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Remark. As the reader can easily see, Theorem 7 and Corollary 8 work
for periodic kernels {Kj}j . In that case, estimate (6) concerns the level set
restricted to the corresponding torus Tn = [0, 1)n.

4. Some examples

4.1. A.e. convergence of Fourier series. In dimension n = 1, this is of
course the example which motivated Antonov’s result. In higher dimensions,
if Kj ∗ f denotes the Fourier partial sum of the function f in Tn associated
to the frequencies k = (k1, . . . , kn) ∈ Zn with |ki| ≤ j, i = 1, . . . , n, then the
first author [9] showed that the associated maximal operator, K∗, satisfies
(essentially) the pointwise inequality

K∗f(x) ≤
n∑

i=1

Ti(Lif)(x1 + . . .+ xn) + πn|f(x)|,

where Ti is the 1-dimensional maximal Carleson operator acting on the
variable i and Lif is the composition of n − 1 Hilbert transforms, each
acting on one of the variables 1, . . . , i− 1, i+ 1, . . . , n of the function

gi(u1, . . . , un) = f
(
u1, . . . , ui−1, ui −

∑

j 6=i
uj , ui+1, . . . , un

)
.

For m > 0 define φ̃m(u) = u(1 + log+ u)m(1 + log+ log+ log+ u) as in Sec-
tion 3. From Theorem 4, we know that given ε > 0 there exists Cε such that
for each i = 1, . . . , n,

|{x ∈ Tn : TiF (x) > λ}| ≤ Cε
�
Tn
φ̃1(|F (x)|/λ) dx+ ε.

We also know (see [13]) that if H denotes the ordinary Hilbert transform
then for m = 1, 2, . . . and ε > 0 there exists Cε such that�

T
φ̃m(|Hg(x)|) dx ≤ Cε

�
T
φ̃m+1(|g(x)|) dx+ ε.

So, we conclude that

|{x ∈ Tn : K∗f(x) > λ}| ≤ Cε
�
Tn
φ̃n(|f(x)|/λ) dx+ ε.

Corollary 8 then gives the a.e. convergence of multiple Fourier series under
summation over cubes, for every function in the class L(logL)n log log logL.
(This was also announced in [1].)

4.2. Differentiation of integrals and the halo conjecture. This is perhaps
an area where our results fit better. Let us begin with some definitions and
notation. A collection B of bounded measurable subsets of Rn is called a
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differentiation basis if we can write

B =
⋃

x∈Rn
B(x),

so that for all x ∈ Rn and A ∈ B(x) we have x ∈ A and we can index
B(x) = {Axα}α∈(0,1) in such a way that

(11) lim
α→0+

diam(Axα) = 0.

The theory of differentiation of integrals studies the problem of determin-
ing those classes of functions φ(L) for which one has the extension of the
Lebesgue differentiation theorem, that is,

(12) lim
α→0+

1
|Axα|

�
Axα

f(y) dy = f(x) a.e., ∀f ∈ φ(L).

Whenever (12) holds we say that B differentiates φ(L).
As usual this problem is directly related to proving the boundedness of

the maximal operator

(13) MBf(x) = sup
x∈A∈B(x)

1
|A|
∣∣∣

�
A

f(y) dy
∣∣∣.

B is called a Busemann–Feller basis if, in addition, it is invariant under
translations and dilations. The so called halo conjecture states that if B is
a Busemann–Feller basis and there exists a constant C so that

(14) |{x : MBχD(x) > 1/u}| ≤ Cφ(u)|D|
for every measurable subset D ⊂ Rn, then B differentiates φ(L). Here one
assumes that φ is increasing and that φ(u) ≥ cu.

The conjecture has been proved so far only in the special case φ(u) ∼ u
(see the monograph [6] by Miguel de Guzmán for a complete description of
the theory of differentiation of integrals and of this particular problem).

In [10], the second author found partial results in the general case by
showing that if (14) holds then B differentiates φ̃(L) for φ̃(u) = φ(u)(1 +
log+ log+ u). We can now improve this using the tools developed in the
previous sections. As in [10] we only assume that B is invariant under trans-
lations, that is,

A ∈ B(x) ⇔ A− x ∈ B(0), ∀x ∈ Rn.
Thus, if B(0) = {Aα}α∈(0,1) andKα = |Aα|−1χAα , we can write the maximal
operator in (13) as

MBf(x) = sup
0<α<1

|Kα ∗ f(x)|.

Let us consider now a function φ(u) = uψ(u) where ψ(u) is a non-
decreasing function on [0,∞) with ψ(0) > 0. Assume that E : [0,∞) →



90 P. Sjölin and F. Soria

[0,∞) is continuous, strictly increasing, unbounded, and there exists a con-
stant C so that if we define ak = E(k), k = 1, 2, . . . , then

(15) ψ(ak) ≤ Cψ(ak−1), ψ

(
(k + 1)2ak

ε

)
≤ Cεψ(ak).

Define also the function

(16) φ̃(u) = φ(u)(1 + log+E−1(u)), u ≥ 0.

(E−1 may not be defined for small values of u. By convention we let E−1(u)
= 0 if 0 ≤ u ≤ E(0).) Then we have

Theorem 9. With the previous notation and definitions, if B is a dif-
ferentiation basis invariant under translations and the associated maximal
operator satisfies (14) for φ(u), then B differentiates φ̃(L) where φ̃ is defined
in (16).

Before we proceed, some examples are in order. Take φ(u) = φm(u) =
u(1 + log+ u)m. (Observe that in this case inequality (14) is the same as (3)
with M replaced with MB.) Our choice of the function E for (15) to hold is

E(u) = ee
u

,

and so E−1(u) = log log u (u > e). Theorem 9 then tells us that B differen-
tiates L(log+ L)m(log+ log+ log+ L).

Also, for φ(u) = u(1 + log+ . . .α . . . log+ u)m =: u(log(α)(u))m, for some
α ∈ N, we can take E(u) = exp(. . .α+1 . . . exp(u)) and (15) holds. Since
E−1(u)∼ log(α+1)(u) for u large, Theorem 9 says that ifMB satisfies inequal-
ity (14) for this φ then B differentiates φ̃(L) with φ̃(u) = φ(u) log(α+2)(u).
The best known result to date in this case was that B differentiated φ̃(L)
with φ̃(u) = φ(u) log(2)(u).

Proof of Theorem 9. As in Section 3, our goal is an estimate of the sort

(17) |{x : |x| ≤ R, MBf(x) > λ}| ≤ Cε
�
φ̃(|f |/λ) + ε.

Once this is done, the rest is easy. For if (11) holds then the limit (12) holds
everywhere for continuous functions. This says in particular that the family
of kernels

Kα = |Aα|−1χAα , 0 < α < 1,

is a pointwise summability system for smooth functions, and so the argu-
ments of Corollary 8 apply.

Consider an arbitrary finite subset Γ ⊂ (0, 1) and define

MΓ f(x) = sup
α∈Γ
|Kα ∗ f(x)|.

If we can prove (17) with MΓ replacing MB, with a constant Cε indepen-
dent of Γ , it is clear that the same will hold, by monotonicity, for MB. By



Remarks on a theorem by N. Yu. Antonov 91

homogeneity, we can assume that λ = 2 and that f(x) ≥ 4 in its support.
Invoking Lemma 5, given ε > 0 we find a simple function of the form

g =
k0∑

k=1

akχFk

with
Fk ⊂ Gk = {x : ak−1 < f(x) ≤ ak}, k = 1, 2, . . . (a0 = 0),�

Gk

f = ak|Fk|,
�
MΓ (f − g)(x) dx ≤ ε.

Thus, we only need to estimate
∣∣∣
{
x : |x| ≤ R, MΓ

( k0∑

k=1

akχFk

)
(x) > 1

}∣∣∣.

But this is done, basically, in the proof of Lemma 3. Here we replace (3)
with (14), that is,

|{x : MBχA(x) > λ}| ≤ C0φ

(
1
λ

)
|A| = C0

1
λ
ψ

(
1
λ

)
|A|,

and obtain, following the same steps,
∣∣∣
{
x : |x| ≤ R, MΓ

( k0∑

k=1

akχFk

)
(x) > 1

}∣∣∣

≤ C0

∑

k

φ(ak)|Fk|+ ε+ C
∑

k

ak

1/ak�
ε/(k+2)2ak

1
λ
ψ

(
1
λ

)
|Fk| dλ

≤ ε+ C
∑

k

ak|Fk|ψ
(

(k + 2)2ak
ε

)
log

(k + 2)2

ε

≤ ε+ Cε
∑

k

ak|Fk|ψ(ak) log(k + 2)

= ε+ Cε
∑

k

�
Gk

f(x)ψ(ak) log(k + 2) dx.

Since, by hypothesis, ψ(ak) ∼ ψ(ak−1), log(k+2) ∼ 1+log(E−1(ak−1)) and
f(x) ≥ ak−1 for all x ∈ Gk, we obtain

∣∣∣
{
x : |x| ≤ R, MΓ

( k0∑

k=1

akχFk

)
(x) > λ

}∣∣∣

= ε+ Cε
�
f(x)ψ(f(x))(1 + log(E−1f(x))) dx ∼ ε+ Cε

�
φ̃(f(x)) dx,

and the theorem follows.
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4.3. Restricted weak type 1 implies weak type 1 for a maximal convolution
operator

Theorem 10. Let {Kj}j be a sequence of integrable kernels in Rn and
assume that the maximal operator

K∗f(x) = sup
j
|Kj ∗ f(x)|

satisfies the inequality

(18) |{x : K∗χA(x) > λ}| ≤ C

λ
|A|

for all λ > 0 and every measurable set A. Then

(19) |{x : K∗f(x) > λ}| ≤ C

λ

�
|f |.

The theorem tells us that for an operator of this sort, the restricted weak
type 1 boundedness (18) is indeed equivalent to its weak type 1 boundedness
(19). This is reminiscent of what we have said before about the halo con-
jecture when the function φ(u) of inequality (14) is φ(u) ∼ u. The original
result is due to Moon (see [3]). However we have not been able to find in
the literature a proof more direct than the one presented here.

Proof of Theorem 10. As usual, we only need to prove (19) for the trun-
cated maximal operator

K∗Nf(x) = sup
j≤N
|Kj ∗ f(x)|,

with constant C independent ofN . We may also take f positive and bounded,
say 0 ≤ f(x) ≤ β. Now, the initial argument in the proof of Lemma 5 (with
ak0 = a1 = β) says that given ε > 0 there exists a set F so that�

f(x) dx = β|F |,
�
K∗N (f − βχF )(x) dx ≤ ε.

Therefore

|{x : K∗Nf(x) > λ}| ≤ 2
λ

�
K∗N (f − βχF )(x) dx+ |{x : K∗NβχF (x) > λ/2}|

≤ 2
λ
ε+ C

β

λ
|F | = 2

λ
ε+ C

� f(x)
λ

dx,

and since ε is arbitrary, the conclusion follows.

5. Non-convolution case. The main idea behind the results presented
in this work, or in the work of Antonov [1], is that we can approximate
in the L1-norm (or in the L∞-norm in the case of Antonov) the action
of the truncated maximal operators K∗N on certain classes of functions by
simple functions for which we then have a nice weak type estimate. This
approximation is possible due to the convolution structure of our operators
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and the continuity of the translation operator. The extension to the non-
convolution case is also possible, provided some additional assumptions are
considered. This is presented in the following result.

Theorem 11. Let X denote either the Euclidean space Rn or the n-
dimensional torus Tn. Let {Kj(x, y)}j be a sequence of measurable kernels
defined on X ×X satisfying the conditions

(i) Kj(x, ·) ∈ L1(X), a.e. x,
(ii) Kj(·, y) ∈ L1(X), uniformly in y,

(iii) for all ε > 0 and j, there exists δ > 0 and a grid {Qi}i of disjoint
cubes in X whose diagonals have all length δ, so that if y1, y2 belong to the
same cube, one has

�
X

|Kj(x, y1)−Kj(x, y2)| dx ≤ ε.

Then, if the maximal operator

K∗f(x) = sup
j

∣∣∣
�
Kj(x, y)f(y) dy

∣∣∣

satisfies estimate (5) for some m ≥ 0 (restricted weak type p with constant
(p− 1)−m as p→ 1+) then K∗ also satisfies (6) (weak type on φ̃m(L)).

The proof follows step by step the same argument given in the proof
of Theorem 7. Here, we only have to justify the existence of the function
g =

∑
k akχAk with ak = ee

k

, for which the approximating estimate (9)
holds. This, in turn, follows from a simple modification of the construction
given in Lemma 5, where the L1-continuity of the translation operator is
replaced by condition (iii) in the hypotheses. The details are left to the
reader.

As in the case of convolution maximal kernels, the case m = 0 (restricted
weak type 1) of Theorem 11 can be improved.

Theorem 12. Under the same hypotheses on the kernels {Kj(x, y)}j in
Theorem 11, if K∗ is of restricted weak type 1, then it is also of weak type 1.

The proof is the same as that of Theorem 10 with the modifications of
Lemma 5 indicated above.

5.1. A.e. convergence of Walsh–Fourier series. An interesting applica-
tion of Theorem 11 is given here.

Theorem 13. The Walsh–Fourier series of functions in the class
L logL log log logL converge a.e.
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Proof. The jth partial sum of the Walsh–Fourier series of a function f
is given by the operator

S̃f(x) =
�
T
Kj(x, y)f(y) dy,

where

Kj(x, y) =
j∑

l=0

ωl(x)ωl(y),

and {ωl}l is the Walsh system. It is clear that Kj satisfies conditions (i)
and (ii) of Theorem 11 since, in fact, each ωl is a bounded function. Now,
estimate (5) for m = 1 was proved by the first author in [8]. So, we only
have to check the continuity condition (iii). It turns out that this follows
from the following trivial observation: the Walsh function ωl is constant on
dyadic intervals of the form ∆i,N = [(i− 1)/2N , i/2N ) if 2N ≥ 2l. Hence,
Kj(x, ·) is constant, for fixed x, on the intervals ∆i,N if N ≥ j. If we take
Qi = ∆i,N , i = 1, . . . , N , with N ≥ j, and y1, y2 ∈ Qi then

Kj(x, y1)−Kj(x, y2) = 0, ∀x.
This is of course stronger than condition (iii) and the theorem follows.

Observe that this result could not be obtained directly from the argu-
ments in [1], since the kernels here are neither convolutors nor Lipschitz.

6. Further results and comments. There is a different approach to
some of the results in this paper that we would like to present here and which
is close in spirit to some recent results by Arias de Reina [2] (see [5] for yet
another approach). For simplicity we will only consider the convolution case
on T. Let {Kj}j be a sequence of kernels in L1(T). Suppose that there exists
a class of functions B, endowed with a homogeneous functional ‖ · ‖B (so
that f ∈ B ⇔ ‖f‖B < ∞) and that the maximal operator K∗ sends B
boundedly into the space L1,∞; that is,

(20) |{x : K∗f(x) > λ}| ≤ C0‖f‖B/λ.
Then we can improve this estimate to a larger space defined as follows:

Definition. We say that f ∈ L1(T) is in the class [B] = L if there is a
finite constant C so that for all ε > 0 and N ∈ N we can find g ∈ B so that

‖K∗N (f − g)‖L1 ≤ ε,(21)

‖g‖B ≤ C.(22)

Observe that the class L depends on both B and the sequence {Kj}j of
kernels.
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We define ‖f‖L as the infimum of the above constants C; that is,

(23) ‖f‖L = sup
ε>0

sup
N∈N

inf{‖g‖B : ‖K∗N (f − g)‖L1 ≤ ε}.

L and ‖ · ‖L inherit the properties of B and ‖ · ‖B , respectively. In
particular we have the following result.

Theorem 14. If K∗ satisfies (20) with constant C0, and L = [B] is as
defined before, then

(24) |{x : K∗f(x) > λ}| ≤ C0‖f‖L/λ.
Proof. This is a simple exercise. As usual, it suffices to prove (24) with

K∗ replaced by K∗N , for all N . Fix λ and let 0 < η < λ. Given ε we can
take, by the definition of L, a function g ∈ B so that

‖K∗N (f − g)‖L1 ≤ η ε, ‖g‖B ≤ ‖f‖L + ε.

Then
|{x : K∗Nf(x) > λ}| ≤ |{x : K∗N (f − g)(x) > η}|+ |{x : K∗Ng(x) > λ− η}|

≤ ε+ C0
‖g‖B
λ− η ≤ ε+ C0

‖f‖L + ε

λ− η .

Since ε and η can be taken arbitrarily small, the result follows.

If K∗ satisfies estimate (5) for some m ≥ 0 (restricted weak type p with
constant (p− 1)−m as p→ 1+) then it was proven in [11] that K∗ satisfies
(20) for a certain class B∗m of functions close to L(logL)m. Define

Lm = [B∗m].

Theorem 15. For m≥0, independently of the sequence of kernels {Kj}j
given, we always have

L(logL)m log log logL ⊂ Lm,
with inclusion continuous in the norm.

As before, the case m = 0 leads to a better result.

Theorem 16. For any sequence of kernels {Kj}j given, we always have

L1 = L0, ‖ · ‖L1 ∼ ‖ · ‖L0 .

These results are simple reflections of the approximating result in Sec-
tion 2 (Lemma 5). It seems plausible that Lm = L(logL)m, but this is far
from being established, even if we replace in the definition of L the L1-norm
in (21) by the weaker “norm” of L1,∞ (Theorem 14 is still true with this
definition of L, of course).

Let us point out that once we have fixed the class B, the process of defin-
ing L cannot be iterated (so that we would obtain an increasing sequence of
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“better” spaces). In fact, it is very easy to see that [L] = L. The remarkable
observation made by Antonov is that for the a.e. convergence of Fourier
series it is still possible to obtain a non-trivial self-improvement result like
the one described (replacing the L1-norm in (21) by the L∞-norm in this
case) and which corresponds to the case m = 1 in Theorem 15.

Starting with inequality (20) for a certain space Q, Arias de Reina [2]
has constructed another space, QA, so that S∗ (Carleson’s maximal opera-
tor) maps QA boundedly into L1,∞. It is easily seen, by that construction,
that QA ⊂ [Q]∞, where [Q]∞ is the corresponding space defined by replac-
ing the L1-norm in (21) with the L∞-norm. It turns out that Q happens
to be equal to the space B∗1 defined in [11], so that QA ⊂ [B∗1 ] = L1.
The proof of Theorem 14 shows that the boundedness of S∗ still holds on
the larger space [B∗1 ]1,∞ (the one defined by replacing the L1-norm in (21)
with the L1,∞-norm), although it might just happen that the three spaces,
QA, L1 and [B∗1 ]1,∞, all coincide. It would be very interesting to study
the functional-analytic properties of the spaces [ · ] to see how far one can
go in this direction. In the case of the partial sums of Fourier series, this
amounts to studying the approximating properties of the Dirichlet kernels.
We plan to study some of the questions raised here and give the details of
the statements presented in this section in a forthcoming paper.
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