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ABSTRACT 

A version of the Krohn-Rhodes decomposition theorem for finite automata is proved 
in which capabilities as well as semigroups are preserved. Another elementary proof of 
the usual Krohn-Rhodes theorem is also presented. 

1. Introduction 

The constructive half of Krohn and Rhodes' decomposition theorem for 
finite automata states that any finite automaton can be simulated by a cascade 
of reset and permutation automata. Moreover, the groups of the permutation 
automata in the cascade need be only simple groups which divide the semigroup 
of the original automaton. Assorted proofs of this theorem appear in [1, 2, 3, 4, 
5, 7] and we include our own elementary proof  in Section 5. 

Our object in this paper is to supply the few extra steps necessary to prove a 
corrected version of a slightly stronger decomposition theorem stated by 
Hartmanis and Stearns [4]. This theorem appears in Section 3. In Section 4 we 
exhibit a counter-example to the theorem as originally stated by Hartmanis and 
Stearns, and briefly consider cascades of "half-reset" automata. 

2. Preliminaries 

Our notation follows Ginzburg [3]. In particular, function arguments 
appear on the left (so that x f  is the value of the function f at the argument x). 
Composition of functions is designated by concatenation, with the leftmost 
function understood to apply first [so that xfg = (xf)g]. For a function f and a 
set S, the restriction o f f  to S is denoted b y f r S .  The cardinality of S is given by 
IS I. We use c to mean improper inclusion. For a set S and a family ~" of  
functions with domains including S, S~-denotes  {sf[ s ~ S , f  e ~ } .  As usual, s~" 
means {s}~-, and Sf  means S { f } .  

A semi-automaton (or state machine) A consists of a finite set QA (of states), 
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a finite set ~A (of inputs), and a set of  (transition) functions from QA into QA 
indexed by y A. The function from QA into Q~ indexed by g e EA is gA. When 
the context is unambiguous, we shall frequently omit superscripts and identify 

with ~A. 
Let A and B be semi-automata. B is a subautomaton of A if and only if y B 

c Z  "t, QBcQA and ~B = aAFQB for each a e y B. A subautomaton B of A is 
non-trivial if Z B = E A and IQA[ > IQB[ > 1. We say that B is an image of A if 
there are functions 7/: QA~QB and ~:: Z B ~ Z  a such that V is onto and v~B = 
(~)AV for each ~ ~ Z ~. The function ~/is then called a homomorphism from A 
(on)to B. We say that A covers B, in symbols A > B, if and only if B is an image 
of a subautomaton of  A. Covering is transitive. We shall say that A and B are 
equivalent if and only if A > B and B > A. 

A partition ~ of Qa is an admissible partition of A if and only if for every 
X ~ ~ and ~ ~ Z A there is a Y ~ 7r such that X~ c y. The quotient semi-automaton 
A/~r (defined for admissible ~r) has state set ~r, inputs Z A, and transitions given 
by X~ A/= = Ywhere Yis the (necessarily unique) elemefit of~r such that X~ c y. 
The semi-automaton A/~r is an image of  A. 

Given a (connecting) function oJ: QA × y A+EB ' the cascade product ( A o B )~ 
is the semi-automaton with state set QA× QB, inputs Z A, and  transitions given 
by (p, q)~ -- (p~, q((p, ~)o~)) for (p, q) ~ QA × QB and ~ cEa.  We usually suppress 
mention of  the connecting function and simply write AoB. Cascade product is 
associative in the sense that given (AoB)oC, there is an equivalent semi- 
automaton Ao(BoC). A cascade product of  a sequence of three or more semi- 
automata  is any parenthesization of the sequence into a cascade product of  
pairs of  semi-automata. 

I f  B > D, then for every connecting function o~ there is a connecting function 
oJ' such that (AoB),o, > (AoD),~. Similarly, if A > C, there is an A' equivalent to A 
such that A'oB>_ CoB. 

We say that A is apermutation semi-automaton if and only if every a ~ Z A is a 
permutation of QA, and that A is a reset if and only if every a ~ Z a is a constant 
or identity function on Qa; constant functions are also called resets. We call A 
an identity semi-automaton if and only if every a ~ Z a is the identity on QA. 

We assume the reader is familiar with the elementary facts about  groups and 
semigroups. Let S and T be semigroups. Then S is a subgroup of T if and only if 
S is a subsemigroup of T, and S is (abstractly isomorphic to) a group. We say 
that S divides T, in symbols SIT, if and only if S is a homomorphic  image of a 
subsemigroup of 7'. Division is transitive. By T ~ S  we mean that S is a homo- 
morphic image of T, and by S = T we mean that S and T are isomorphic. Most 
of  the semigroups in this paper are transformation semigroups, but we use -+ 
and = to mean homomorphism and isomorphism of abstract semigroups 
(though it will usually be clear when an abstract homomorphism is actually a 
transformation homomorphism).  When T is a group, S • T means S is a normal 
subgroup. 

The semigroup of a semi-automaton A is the transformation semigroup 
generated by {~A[ ~ c Z A ) under composition. The monoid G A is the semigroup 
of  A with A A, the identity on QA, added if it is not already in the semigroup. I f  
A >B,  then Gn]G A. The converse is not true. A is an identity semi-automaton 
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if and only if ]GA[ ---- l, and a permutation semi-automaton if and only if G a 
is a group. Corresponding statements with the semigroup of A in place of G A 
are not true. 

3. The Decomposit ion Theorem 

The following version of the Krohn-Rhodes decomposition theorem is 
proved in [2, 3, 4, 7]. 

T H E O R E M  1. For any semi-automaton A, there is a cascade product o f  semi- 
automata Ax, A2, • • • , A ,  which covers A such that f o r  all i (1 <_ i <_n) either 

(I) G A' is a simple group* and GA'[G A, or 

(2) A i is a two-state reset. 

Moreover, i f  G a is a group, those A~ which are resets will actually be identity 
semi-automata. 

The components Ai of the cascade covering A are no more complicated t h a n  
A, insofar as semigroups reflect the complexity of semi-automata. On the other 
hand, Theorem 1 does not prohibit the A z from being larger than A, and in fact 
the usual decomposition techniques applied to a five-state machine whose semi- 
group consists of resets and the alternating group of degree five yields an A i with 
sixty states. The following theorem eliminates this flaw. 

Definition. Let A be a semi-automaton. The completion of A is the semi- 
automaton A such that Q~ = Qa, E~ = G A, and for g ~ G A, g2 = g. 

T H E O R E M  2. Theorem 1 is true when (1) is replaced by 

(1') G A' is a simple group and A >  A,. 

Clearly G 2 = G a and since A > B implies GB[G ~, we observe that Theorem 2 
implies Theorem 1. 

We take Theorem 1 as our starting point and prove Theorem 2 from the 
following lemmas. A proof  of  Theorem 1 appears in Section 5. 

LEMMA 1. Let  C be a semi-automaton such that G c is a group and N ,  G c. 
Let  7r = {qNl q ~ Q c}. Then zr is an admissible partition and GC/N---~ G c/~. 

Proof. The elements of zr are the orbits of QC under the group of trans- 
formations N, and so 7r is clearly a partition of QC. Moreover, zr is admissible: 
Ng = g N  for all g E G c since N is normal, and so for all q N  ~ ~ it follows that 
(qN)g  = q(Ng) = q(gN)  = (qg)N ~ zr. Observe that the elements of Gc/= are 
simply the elements of G c acting on ~r. Hence, GC-+ G c/~ and N is trivially 
included in the kernel of the homomorphism. Therefore GC/N-+ G c/~. 

LEMMA 2. Let  A be a semi-automaton such that H is a simple group and 
and H[G A. Then there is a semi-automaton B such that .~ > B and G B = H. 

*We remind the reader that A i is a permutation semi-automaton if and only if G "4~ is a 
group. 
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Proof. It is easy to show (cf. Ginzburg [3], Section 1.16) that if a group 
divides a semigroup, then the group is actually a homomorphic image of a 
subgroup of the semigroup. Let K be a subgroup of G a of minimum size such 
that K--->H, and let N •  K be the kernel of the homomorphism. Let C be the 
subautomaton of ,4 such that QC = QA K and Ec = K. Then G c = K (as the 
reader may verify)* and by Lemma 1, ~r = {qN[ q ~ QC} is an admissible parti- 
tion of  C. Finally, let B = C/zr. 

Clearly ,4 > B. 
Lemma 1 also implies that GC/N--->G B. But GC/N = K I N  = H, and H is 

simple, so that if ]aal ~ 1, it must be that G B = H as required. 
On the other hand, suppose that [GBI = 1. Then every element of K = G c 

acts as an identity on zr, i.e., (qN)k  = qN  for every k ~ K and qN ~ zr. For q ~ QC, 
let Kq = {k ~ K[ qk = q}. Since q E q N  = qNk  for q ~ QC, it follows that Kq 
intersects every coset of N in K, and so the restriction to Kq of the canonical 
homomorphism from K onto K I N  is also onto. Therefore, Kq--->K/N = H 
(obviously Kq is a group), and since Kis  of minimum size, K = Kq for all q c QC. 

But this implies that K = {AC}, which is absurd, since H is a non-trivial image 
of K. 

LEMMA 3. I f  A and B are semi-automata such that G a = G B, then there is a 
cascade product o f  copies o f  B and an identity semi-automaton which covers A. 

Proof. For convenience assume that QB = {1, 2, • • - ,  n). The cascade 
covering A will consist of an identity machine with state set Qa and n copies of 
B, all acting in parallel. For  qo E QA, q~ ~ QB, 1 < i <_ n, and g ~ G B, the transitions 

in the cascade are defined by (qo, ql, " " " , qn)g = def (qo, qlg, " " " , qng). 
The states qi E QB uniquely determine a function f :  Q B ~ Q a  by the condition 

f (i) = qi, 1 < i < n. I f f  ~ G B, then the state qo f ~ QA is also uniquely determined 
by the isomorphism between G B and G A. 

The states of the cascade which determine funct ionsf  ~ G B obviously form a 
subautomaton of the cascade, and the mapping of <q0, ql, " " " , q ,>  to q o f  
defines a homomorphism from this subautomaton onto _~ (and hence onto A), 
as is easily verified. 

Lemma 3 emphasizes the difficulty in interpreting the Krohn-Rhodes 
theorem as a "pr ime" decomposition theorem fo r  machines (as-0pposed to semi- 
groups). We might tentatively define A to be prime if (1) G A is simple, and (2) 

>_ B implies either B_> A or G ~ # G a. Then there will be prime machines for the 
same simple group which are incomparable under covering. Lemma 3 then 
leads to the unsatisfactory situation of  two primes each of which divides (is 
covered by) a power (cascade product of copies) of the other prime. 

The proof  of Theorem 2 is now straightforward. Each A i such that G a' is a 
simple group can be covered according to Lemma 3, by a cascade of copies of  
B and an identity semi-automaton, for any B such that G B = G A'. Since GA'IG A, 
Lemma 2 implies that such an automaton B can be found for which ,4 > B (and 

t This is not quite immediate, since one must argue that the identity of K restricted to QC is 
actually A c. A proof appears in Ginzburg [3], Section 1.16. 
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hence A > B). The identity semi-automata which are introduced can trivially be 
replaced by cascades of two-state identity semi-automata, and the proof  is 
complete. 

Hartmanis and Stearns' notion that "A has the capability of B" is equivalent 
to ,4 > B. Theorem 2 above is thus a restatement of Theorem 7.10 of Hartmanis 
and Stearns [4], except that their Theorem 7.10 contains the additional assertion 
that _A > A ~ even when A i is a reset. This is false, as we show in the next section. 

4. Half-resets 

Let R o be the semi-automaton whose state set and input set equals {0, 1} and 
whose transitions are given by ordinary multiplication. Any semi-automaton 
covered by Ro will be called a half-reset. Except for permutation semi-automata, 
every semi-automaton has the capability of Ro. 

Definition. Let A be a semi-automaton and let p, q ~ Qa. Then q is accessible 
from p if and only if q = pg for some g E G a, and A is partially ordered (p.o.) 
if and only if accessibility is a partial order on Qa. 

R o is trivially p.o., and it is easy to show that if A is p.o. and A > B, then B is 
p.o. Likewise, if A and B are p.o., then so is A oB. Conversely, if A is p.o. (and 
not already a half-reset), then A has a non-trivial subautomaton which is a half- 
reset. We let the reader convince himself that A can then be covered by a p.o. 
semi-automaton with one fewer state followed by a half-reset (cf. Method I of 
Section 5). In short, we have 

T H E O R E M  4. A semi-automaton is covered by a cascade of  half-resets if  and 
only if  it is partially ordered. 

The regular events associated with p.o. semi-automata are obviously finite 
unions of events of the form F~crlF]~2 • • • F* such that F~ is a finite set of 
input symbols and cri¢ F i (1 < i <n). These events form a Boolean algebra, and 
can also be  characterized by an inductive definition resembling that of the star- 
free events [6]. One can also define partially ordered semigroups in the obvious 
way, and conclude that A is p.o. if and only if G a is p.o. 

Consider a semi-automaton A with state set {1, 2, 3} and inputs x and y such 
that lx  = 2, 2y = 1 and the remaining transitions lead to 3. No non-trivial 
groups divide G a, so that in the decomposition of A satisfying Theorem 2, only 
two-state resets appear. By Theorem 4, not all of these two-state resets can be 
half-resets (because states 1 and 2 are mutually accessible, i.e., A is not p.o.). 
But the only two-state resets covered by 7. are half-resets (as can be verified by 
exhaustion), and so A cannot have the capability of  all the components in its 
decomposition. 

5. Proof of  Theorem 1 

There are at least three elementary proofs of Theorem 1 in the literature: 
Ginzburg's [3] corrected version of Zeiger's proof  using set systems or covers, 
Arbib's [2] version of Krohn-Rhodes'  proof, and the elegant proof  of Zeiger 
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[7]. Nevertheless, none o f  these proofs  is very simple,* and so we feel another  
p roo f  may  still be o f  interest. Readers familiar with the other proofs  will note 
that  our  Me thod  I is essentially dual to that  o f  Zeiger [7], and our  Method  I I I  

is almost  the same as that  o f  Arbib  [2]. 
The following lemma appears in [2, 3, 4] and we shall not  repeat the proof.  

L E M M A  4. Let A be a permutation semi-automaton. Then A can be covered 
by a cascade of  two-state identity semi-automata and permutation semi-automata 
whose monoids are the factor groups in a composition series for G A (and hence are 
simple groups dividing GA). 

We refer to  permutat ion semi-automata and two-state resets as basic. 
Theorem 1 follows immediately f rom Lemma 4 and 

T H E O R E M  5. For any semi-automaton A, there is a cascade product of basic 
semi-automata A 1, A2, • • • , An which covers A such that for all i (1 < i < n ) , / f  
G Ai is a group, then GA'IG A. 

A natural  way to prove Theorem 5 is to show that any semi-automaton can 
be covered by a product  o f  two "smaller"  semi-automata,  and then use induc- 
tion. (A disadvantage o f  the p roof  using set systems [3, 4] is that  it does not  
conform to this description.) The proper  interpretation of  "smaller"  is neces- 

sarily a little devious. 

Definition. For  any t ransformat ion monoid  S, N(S) is the submonoid  
generated by the nonconstant  ~ (i.e., non-reset) elements o f  S. For  any semi- 
au toma ton  A, the measure of A is the triple o f  positive integers Ix(A) = def 

([N(GA)t, Iaal, IGAI). 
Measures will be well-ordered lexicographically in the usual manner :  

Definition. I f  x = (xl,  x2, x3) and y = (Yl, Y2, Y3) are triples o f  integers, 
then x > y  if and only if x x > y l ,  or x~ = y~ and x2>y2, or xx = yl  and 

x2 = y z a n d x  3>y3 .  

L E M M A  5. For any semi-automaton A which is not basic, there are semi- 
automata B and C such that 

(1) BoC>_A, 
(2) N(GB)IG a, and either IX(B)<Ix(A) or B is basic, and 
(3) N(GC)IG A and Ix(C) <Ix(A). 

The proof of Zeiger [7] is given in only two and a half pages, and separates non-permuta- 
tion semi-automata into only two cases. Unfortunately, Zeiger's remark that his method 
applies to permutation-reset semi-automata is false, as can be seen by applying it to any 
permutation-reset semi-automaton. Moreover, a semi-automaton with state set {1, 2, 3}, 
reset inputs to each state, and an additional input leaving states 1 and 3 fixed and sending state 
2 to state 3 is a counter-example to Zeiger's assertion that his second method reduces the 
number of non-permutation, non-reset elements. This counter-example invalidates the proof 
that his method terminates. When these errors are corrected, Zeiger's proof turns out to be 
no simpler than ours. 

*By convention N(S) is the identity when S acts on a singleton set. 
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Proof of Theorem 5. Let A be a semi-automaton. If  A is basic (and in particu- 
lar if/z(A) = (1, 1, 1) is minimum), then Theorem 5 is trivially true. Proceeding 
by (transfinite) induction, suppose that Theorem 5 is true for all semi-automata 
with measures smaller than ~(A). Theorem 5 is then true by hypothesis for the 
semi-automata B and C produced by Lemma 5. Let B i, 1 < i < n, be the basic 
semi-automata in the cascade covering of B, and likewise for C~, 1 < i < m. Since 
BoC> A, a cascade of the Bi (or semi-automata equivalent to the B~)followed 
by the C i covers A. Suppose G n~ is a group, then GB'[G B. But if a group G 
divides a transformation monoid S, then it must be that GIN(S). Hence G B~. 
N(GB), by Lemma 5 we have N(GB)IG A, and by transitivity we have GB'[Ga[ 
The same reasoning applies to the Ci, and it follows that Theorem 5 is true for A. 

Proof of Lemma 5. We describe three decomposition methods, one of which 
will yield appropriate B and C for any semi-automaton A which is not basic. 

Definition. For any semi-automaton A, let N(A) be the subautomaton of A 
obtained by eliminating all reset inputs from Z A. 

Method I. N(A) has a non-trivial subautomaton. 
Let QC equal the states of the non-trivial subautomaton of N(A), and let 

QB = (Qa_ QC) ~3 {d} for d ¢ QA. Transitions in BoC are given by: 

((ba, c) if b:~ d and ba ¢ QC, 
= ~(d, ba) i f b ~ d a n d b ~ Q C ,  

(b, e)a }(r, c) if a is a reset to r ~ Qa_ QC, 
k(b, ca) otherwise. 

Since Qc is the state set of a subautomaton of N(A), it is closed under non- 
reset inputs. Hence the fourth case applies only when b = d and ca ~ QC, so that 
the transitions of BoC are well defined. 

When b # d map (b, c) to b, and when b = d map (b, e) to c. This mapping 
defines a homomorphism from BoC onto A (as is immediately verified by 
checking the four types of transitions in BoC), so that part (1) of the lemma is 
satisfied. 

Note that the singletons in QA_ QC together with QC form an admissible 
partition 7r of A, and that Afir is isomorphic to B. We conclude that GA-~G B and 
consequently that N(GB)[G A. Moreover, IQ B] = [Qa_ QC[+ 1 < IQA[ since the 
sub-automaton on QC is non-trivial. This guarantees that part (2) is satisfied. 

The only non-identity, non-reset transitions in G c arise from the fourth case 
in the definition of transitions of Bo C. It follows that N(G c) = {g ~' QC I g ~ N(GA)}. 
Hence N(G A) -+N(GC), and since [QC I < [Qa], part (3) is satisfied. 

Method II. G a contains a non-identity permutation. 
Let P be the subgroup of G A generated by the permutations, and let T be 

G A-P.  Note that T ~- ~ (otherwise G a is a group and A is basic) and that T 
is a two-sided ideal. Let QB = p, and QC = Qa. Transitions in BoC are 
given by: 

'(pa, q) if ~ ~ P, 

(p, q),r = ~(P' qpap- 1) if cr ~ T. 
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Since G A is the disjoint union of P and T, the transitions of BoC are well 
defined. The mapping of (p, q) to qp defines a homomorphism from BoC onto A. 

Clearly G B = P, so that N(GB)IG A and B is basic. Likewise G c = T, so that 
N(GC)[G a and N(G c) does not contain the non-identity permutation in N(Ga). 
Therefore IX(C) < Ix(A). 

Method III. G a = V w T where V is a subsemigroup such that IN(V)I < 
[N(GA)[ and Tis a proper left ideal of G a-{A}.  

Let QB = Vand QC = QA. Transitions in BoC are given by: 

~'(w, q) 
(v, q)~r = [(A, qw) 

i f a e  V - T ,  

i f a  eT .  

The mapping of (v, q) to qv defines a homomorphism from Bo C onto A. 
Clearly G c = T u  {A}, so that GC[G A and N(GC)< N(GA). Moreover, QC = 

QA and IGCl < Iaal because T is proper. Hence IX(C)<IX(A). 
Note that N(G B) is a submonoid (generated by V -  T) of V acting on itself 

by right multiplication, and so N(Ga)I V. Moreover, any r e V which is a reset (on 
QA) is certainly a reset when V acts on itself. Therefore N(G B) is isomorphic to a 
submonoid of N(V), and we actually have N(GB)[N(V). In particular, IN(G")I 
_< IN(V)I. By hypothesis, IN(V)] < ]N(GA)[, so that Ix(B)<ix(A). 

Let A be a semi-automaton such that neither Method I nor Method II 
applies to A, and such that A is not basic. We claim that Method III applies to 
A, which completes the proof of Lemma 5. 

To verify the claim, let S = Ga-{A}.  Now S is a subsemigroup because G a 
contains no non-identity permutations. There is a non-reset element s e S 
(otherwise A is a reset and Method I applies). If  GAs W {resets} = S, then N(A) 
has a non-trivial subautomaton on the states in the range of s, and Method I 
applies. Therefore Gas w {resets} ~ S, and in particular S has proper left ideals 
(e.g., GAs). 

Let T be a maximal left ideal of  S, and let V = Gax u {A} for any x s S -  T. 
Then (V-{A}) w T is a left ideal of S properly containing T, which implies 
(V-{A}) t.) T = S and V w T = G a. If  x = s, we have observed that V w  
{resets} ¢ G a, and so IN(V)] < ]N(Ga)I. Alternatively, x is a reset, hence Gax 
contains only resets, and [N(V)I = 1 < ]N(GA)I. 

There are usually many ways to decompose a semi-automaton into two 
semi-automata with smaller measures, and it is far from clear which choices 
ultimately yield the most satisfactory decomposition into basic semi-automata. 
It may even be desirable at times to cover a semi-automaton with semi-automata 
which have larger measures (but which presumably are "smaller" in some more 
general sense). 
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