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LetM be an almost cosymplectic 3-h-a-manifold. In this paper, we prove that the Ricci operator ofM is transversely Killing if and
only ifM is locally isometric to a product space of an open interval and a surface of constant Gauss curvature, or a unimodular Lie
group equipped with a left invariant almost cosymplectic structure. Some corollaries of this result and some examples illustrating
main results are given.

1. Introduction

An almost cosymplectic manifold can be regarded as an odd-
dimensional analogy of almost Kähler manifolds from to-
pological points of view (see [1]) and was first introduced by
Goldberg and Yano in [2]. In some recent literature, such
kind of manifolds was also referred to as almost coKähler
manifolds (see [3–9]); for some differences between these
two types of manifolds, we refer the reader to a survey [1]. In
this paper, we aim to investigate symmetry classification
problems of almost cosymplectic manifolds and we adopt
those notations and formulas introduced by Blair [10].

-e curvature properties of cosymplectic manifolds were
first studied by Blair who in [11] proved that a cosymplectic
manifold of constant sectional curvature is locally flat. Olszak, in
[12], extended this result and proved that an almost cosym-
plectic manifold of nonzero constant sectional curvature does
not exist in dimensions ≥5. Later, such a result was generalized
to dimension three by Olszak in [13]. Perrone, in [14], extended
Olszak’s results and proved that a locally symmetric almost
cosymplecticmanifold of dimension three is cosymplectic and is
locally isometric to a Riemannian product of a one-dimensional
manifold and a Kähler surface of constant sectional curvature.
Wang, in [5], studied locally symmetric almost cosymplectic

manifolds and in particular, in [7], studied locally symmetric
almost cosymplectic 5-manifolds. In recent years, many clas-
sification results on almost cosymplecticmanifolds of dimension
three emerged. For example, Cho, in [15], studied Reeb flow
symmetry (that is, the Ricci tensor is invariant along the Reeb
flow) on almost cosymplectic 3-manifolds. Moreover, semi-
symmetry, local ϕ-symmetry, curvature, and ball homogeneities
on almost cosymplectic 3-manifolds were considered in
[3, 4, 8, 9], respectively. Some other symmetry properties in
terms of the Ricci operators on suchmanifolds were also studied
in [6, 16]. For many symmetry properties on cosymplectic 3-
manifolds, we refer the reader to [17–19].

-e notion of a Killing tensor field T of type (1, 1) was
introduced by Blair in [20], which is defined by

∇XT( )X � 0, (1)

where X and ∇ denote an arbitrary vector field and the Levi-
Civita connection on a Riemannian manifold (M,g), re-
spectively. Relation (1) is much weaker than parallelism of
Blair. In [20], Blair applied (1) for the structure tensor field to
give a characterization for an almost contact metric manifold
to be cosymplectic. In this paper, applying relation (1) for the
Ricci operator, we obtain some local classification results of
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almost cosymplectic 3-manifolds and they are extensions of
those in [6, 14].

2. Almost Cosymplectic Manifolds

By an almost contact metric manifold, we mean a Rie-
mannian manifold (M,g) of dimension 2n + 1 on which
there exists a quadruple (ϕ, ξ, η, g) satisfying

ϕ2
� − id + η⊗ ξ,

η ∘ ϕ � 0,

η(ξ) � 1,

g(ϕX, ϕY) � g(X, Y) − η(X)η(Y),

(2)

for any vector fields X andY, where ϕ is a (1, 1)-type tensor
field, ξ is a vector field called the Reeb vector field, and η is a
global 1-form called the almost contact 1-form and g is a
Riemannian metric (see Blair [10]). By an almost cosym-
plectic manifold we mean an almost contact metric manifold
on which there holds dη � 0 and dΦ � 0, where Φ is the
fundamental 2-form defined by Φ(X,Y) � g(X, ϕY) (see
[10, 12]). We consider the product M2n+1 × R of an almost
contact metric manifold M2n+1 and R and define on it an
almost complex structure J by

J X, f
d

dt
( ) � ϕX − fξ, η(X)

d

dt
( ), (3)

where X denotes a vector field tangent to M2n+1, t is the
coordinate of R, and f is a C∞-function onM2n+1 × R. -e
almost contact metric manifold is said to be normal if J is
integrable, or equivalently,

[ϕ, ϕ] � − 2dη⊗ ξ, (4)

where [ϕ, ϕ] denotes the Nijenhuis tensor of ϕ. A normal
almost cosymplectic manifold is said to be a cosymplectic
manifold (cf. [10]). An almost cosymplectic manifold is a
cosymplectic manifold if and only if

∇ϕ � 0. (5)

Let M2n+1 be an almost cosymplectic manifold. We
consider three tensor fields l � R(·, ξ)ξ, h � (1/2)Lξϕ, and
h′ � h ∘ ϕ on M2n+1, where R is the Riemannian curvature
tensor of g and L is the Lie differentiation. From [10], we
know that the three (1, 1)-type tensor fields l, h′, and h are
symmetric and satisfy

hξ � 0,

lξ � 0,

trh � 0,

tr h′( ) � 0,

hϕ + ϕh � 0,

(6)

and

∇ξ � h′. (7)

3. Main Results

It is known that an almost cosymplectic manifold of dimension
three is cosymplectic if and only if h � 0 identically. -us, we
have to discuss our main theorems from two cases and first we
consider the non-Kenmotsu case. LetM3 be a three-dimensional
almost cosymplectic manifold. Following Perrone [21], letU1 be
the open subset ofM3 on which h≠ 0 and U2 the open subset
defined by U2 � p ∈M3

: h � 0{ in a neighborhood of p}.
-erefore,U1 ∪U2 is an open and dense subset ofM3. For any
point p ∈ U1 ∪U2, we find a local orthonormal basis
ξ, e1, e2 � ϕe1{ } of three distinct unit eigenvector fields of h in
certain neighborhoodof p.OnU1, we assume thathe1 � λe1 and
hence he2 � − λe2, where λ is assumed to be a positive function.
Note that λ is continuous on M3 and smooth on U1 ∪U2.

Lemma 1 (see [21]). On U1, we have

∇ξe1 � ae2,

∇ξe2 � − ae1,

∇e1ξ � − λe2,

∇e2ξ � − λe1,

∇e1e1 �
1

2λ
e2(λ) + σ e1( )( )e2,

∇e2e2 �
1

2λ
e1(λ) + σ e2( )( )e1,

∇e2e1 � λξ −
1

2λ
e1(λ) + σ e2( )( )e2,

∇e1e2 � λξ −
1

2λ
e2(λ) + σ e1( )( )e1,

(8)

where f is a smooth function, σ is the 1-form defined by
σ(·) � S(·, ξ), and S is the Ricci tensor.

Applying Lemma 1, we obtain the Ricci operator Q
associated to the Ricci tensor given by (see [21])

Q � αid + βη⊗ ξ + ϕ∇ξh − σ ϕ2( )⊗ ξ + σ e1( )η⊗ e1
+ σ e2( )η⊗ e2, (9)

where α � (1/2)(r + tr(h2)), β � − (1/2)(r + 3tr(h2)), and r
denotes the scalar curvature. Now, from (9), we write the
Ricci operator as follows:

Qξ � − 2λ2ξ + σ e1( )e1 + σ e2( )e2,
Qe1 � σ e1( )ξ + 1

2
r + 2λ2 − 4λa( )e1 + ξ(λ)e2,

Qe2 � σ e2( )ξ + ξ(λ)e1 +
1

2
r + 2λ2 + 4λa( )e2,

(10)

with respect to the local orthonormal basis ξ, e1, e2{ }. More-
over, according to Lemma 1, by a simple calculation, we obtain
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∇ξh �(1/λ)ξ(λ)h − 2ah′. (11)

In view of equation (11), Wang, in [6, 9], considered a
special almost coysmplectic 3-manifold determined by the
condition ∇ξh � − 2ah′ with a ∈ R. In this paper, we say that
an almost cosymplectic 3-manifold satisfying the previous
condition is an almost cosymplectic 3-h-a-manifold. In
particular, when a vanishes, an almost cosymplectic 3-h-a-
manifold reduces to an almost cosymplectic 3-h-manifold
(see [4]). Notice that on a cosymplectic manifold such a
condition is meaningless because of h � 0. -ere are many
nontrivial examples of almost cosymplectic 3-manifolds
satisfying such a condition even when a is a smooth function
(see [4, 6]).

As seen in Section 1, the Ricci operator of an almost
cosymplectic manifold is said to be transversely Killing if
there holds

∇XQ( )X � 0, (12)

for any vector field X orthogonal to the Reeb vector field ξ.
Obviously, (12) is much weaker than Ricci parallelism
(∇Q � 0) and local symmetry (∇R � 0).

Now, we are ready to give our first main result.

Theorem 1. ;e Ricci operator of a noncosymplectic almost
cosymplectic 3-h-a-manifold is transversely Killing if and only
if the manifold is locally isometric to the group E(2) of rigid
motions of Euclidean 2-plane, the group E(1, 1) of rigid
motions of Minkowski 2-plane, or the Heisenberg group Nil3
equipped with a left invariant almost cosymplectic structure.

Proof. On an almost cosymplectic 3-h-a-manifold, from the
definition, we have ∇ξh � − 2ah′, and thus from (11), we may
use ξ(λ) � 0 in (10) to obtain

Qξ � − 2λ2ξ + σ e1( )e1 + σ e2( )e2,
Qe1 � σ e1( )ξ + 1

2
r + 2λ2 − 4λa( )e1,

Qe2 � σ e2( )ξ + 1

2
r + 2λ2 + 4λa( )e2.

(13)

□

According to (13) and Lemma 1, by a standard calcu-
lation, we obtain

∇e1Q( )e1 � e1 σ e1( )( ) − 1

2λ
σ e2( ) e2(λ) + σ e1( )( )( )ξ

+
1

2
e1 r + 2λ2 − 4aλ( )e1

− λσ e1( ) + 2a e2(λ) + σ e1( )( )( )e2,

(14)

∇e2Q( )e2 � e2 σ e2( )( ) − 1

2λ
σ e1( ) e1(λ) + σ e2( )( )( )ξ

− λσ e2( ) − 2a e1(λ) + σ e2( )( )( )e1
+
1

2
e2 r + 2λ2 + 4aλ( )e2.

(15)

Because the Ricci operator is transversely Killing, from
(12), we have (∇e1Q)e1 � 0 and (∇e2Q)e2 � 0, which are
compared with (14) and (15), respectively, implying

e1 σ e1( )( ) − 1

2λ
σ e2( ) e2(λ) + σ e1( )( ) � 0,

e1 r + 2λ2 − 4aλ( ) � 0,

λσ e1( ) + 2a e2(λ) + σ e1( )( ) � 0,

(16)

and

e2 σ e2( )( ) − 1

2λ
σ e1( ) e1(λ) + σ e2( )( ) � 0,

λσ e2( ) − 2a e1(λ) + σ e2( )( ) � 0,

e2 r + 2λ2 + 4aλ( ) � 0,

(17)

respectively. On the contrary, applying Lemma 1, we also
have

ξ, e1[ ] �(a + λ)e2,

e2, ξ[ ] �(a − λ)e1,

e1, e2[ ] � 1

2λ
e1(λ) + σ e2( )( )e2 − 1

2λ
e2(λ) + σ e1( )( )e1.

(18)
Putting (18) into the well-known Jacobi identity, we

obtain

e1(λ − a) + ξ
e2(λ) + σ e1( )

2λ
( ) + a − λ

2λ
e1(λ) + σ e2( )( ) � 0,

e2(λ + a) + ξ
e1(λ) + σ e2( )

2λ
( ) − a + λ

2λ
e2(λ) + σ e1( )( ) � 0.

(19)
Recall that, in this situation, a ∈ R and ξ(λ) � 0 and the

abovementioned relations reduce to

e1(λ) +
1

2λ
ξ e2(λ) + σ e1( )( ) + a − λ

2λ
e1(λ) + σ e2( )( ) � 0,

e2(λ) +
1

2λ
ξ e1(λ) + σ e2( )( ) − a + λ

2λ
e2(λ) + σ e1( )( ) � 0.

(20)
Taking into account the last term of (16) (or the second

term of (17)), we have to divide our discussions into the
following two cases.

Case 1. a � 0. Because λ is assumed to be a positive function,
using a � 0 in the last term of (16) and the second term of
(17), we obtain

σ e1( ) � σ e2( ) � 0. (21)

As ξ(λ) � 0 and a � 0, from the first two terms of (18),
we obtain ξ(e1(λ)) � λe2(λ) and ξ(e2(λ)) � λe1(λ). Putting

Journal of Mathematics 3



these two equations into (20), with the aid of (21) and a � 0,
we obtain

e1(λ) � e2(λ) � 0, (22)

where we have used that λ is a positive function. In view of
ξ(λ) � 0, together with the abovementioned relations, we see
that λ is a positive constant. Now (18) reduces to

ξ, e1[ ] � λe2,

e2, ξ[ ] � − λe1,
e1, e2[ ] � 0.

(23)

According to Milnor [22] and the abovementioned re-
lations, it is easily seen that the manifold is locally isometric
to the group E(1, 1) of rigid motions of the Minkowski 2-
space equipped with a left invariant almost cosymplectic
structure.

Case 2. a≠ 0. In this case, replacing X by e1 + e2 in (12), with
the aid of (∇e1Q)e1 � 0 and (∇e1Q)e1 � 0, we obtain

∇e1Q( )e2 + ∇e2Q( )e1 � 0. (24)

On the contrary, with the aid of ξ(λ) � 0, applying (13)
and Lemma 1, we obtain

∇e1Q( )e2 � e1 σ e2( )( ) + 1

2
λ r + 4aλ + 6λ2( ) + 1

2λ
σ e1( ) e2(λ) + σ e1( )( )( )ξ − λσ e1( ) + 2a e2(λ) + σ e1( )( )( )e1

− 2λσ e2( ) − 1

2
e1 r + 2λ2 + 4aλ( )( )e2,

∇e2Q( )e1 � e2 σ e1( )( ) + 1

2
λ r − 4aλ + 6λ2( ) + 1

2λ
σ e2( ) e1(λ) + σ e2( )( )( )ξ − 2λσ e1( ) − 1

2
e2 r + 2λ2 − 4aλ( )( )e1

− λσ e2( ) − 2a e1(λ) + σ e2( )( )( )e2,

(25)

\

which are compared with (24), implying that

e1 σ e2( )( ) + e2 σ e1( )( ) + λ r + 6λ2( ) + 1

2λ
σ e2( ) e1(λ) + σ e2( )( )

+
1

2λ
σ e1( ) e2(λ) + σ e1( )( ) � 0,

(26)

3λσ e1( ) + 2a e2(λ) + σ e1( )( ) − 1

2
e2 r + 2λ2 − 4aλ( ) � 0,

(27)

3λσ e2( ) − 2a e1(λ) + σ e2( )( ) − 1

2
e1 r + 2λ2 + 4aλ( ) � 0.

(28)
Putting the last term of (17) and the second term of (16)

into (27) and (28), respectively, we obtain

(3λ + 2a)σ e1( ) + 6ae2(λ) � 0, (29)

and

(3λ − 2a)σ e2( ) − 6ae1(λ) � 0, (30)

respectively. -e subtraction of (29) from the third term of
(16) multiplied by 3 implies σ(e1) � 0, where we have used
the assumption a≠ 0. Using this relation back in (29), we
obtain

e2(λ) � 0. (31)

Similarly, in view of a≠ 0, the subtraction of (30) from
the second term of (17) multiplied by 3 gives σ(e2) � 0,
which is applied back in (30), implying

e1(λ) � 0. (32)

In view of ξ(λ) � 0, we see that λ is a positive constant.
Moreover, from (26), we see that the scalar curvature of the
manifold is a negative constant. In this case, from (18), we
also have

ξ, e1[ ] �(a + λ)e2,

e2, ξ[ ] �(a − λ)e1,

e1, e2[ ] � 0.

(33)

Finally, according to Milnor [22] and (33), we observe
that the manifold is locally isometric to a unimodular Lie
group G endowed with a left invariant noncosymplectic
almost cosymplectic structure because

trace ei⟶ ei, ej[ ]{ } � 0,

for any e1, e2, e3 � ξ{ }. (34)

More specifically,G is the group E(2) of rigid motions of
Euclidean 2-plane if a> λ or a< − λ; the group E(1, 1) of
rigid motions of Minkowski 2-plane if − λ< a< λ; or the
Heisenberg groupNil3 if a � λ or a � − λ. We refer the reader
to [14] for the constructions of almost cosymplectic struc-
tures on the abovementioned unimodular Lie groups. -e
converse is easy to check. -is completes the proof.

From proof of -eorem 1, we have

Corollary 1. ;e Ricci operator of a noncosymplectic almost
cosymplectic 3-h-manifold is transversely Killing if and only if
the manifold is locally isometric to the group E(1, 1) of rigid
motions of Minkowski 2-plane equipped with a left invariant
almost cosymplectic structure.
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In -eorem 1, the condition “the Ricci operator is
transversely Killing” is essential because we have

Example 1. Let G be a three-dimensional nonunimodular
Lie group equipped with a left invariant metric g whose Lie
algebra is given by

e1, e2[ ] � αe2,

e2, e3[ ] � 0,

e1, e3[ ] � βe2,

(35)

where e1, e2, e3{ } is an orthonomal basis with respect to g
and α, β ∈ R∗. On G, there exists an almost cosymplectic
structure (see [14]). According to [4], we have

∇e1Q( )e1 � 0,

∇e2Q( )e2 � 1

2
αβ2e1.

(36)

It is easily seen that the left-invariant Ricci operator of G
is not transversely Killing even if ∇ξh � βh.

Next, we give the cosymplectic version of -eorem 1 as
follows.

Theorem 2. ;e Ricci operator of a cosymplectic 3-manifold
is transversely Killing if and only if the manifold is locally
isometric to a Riemannian product of an open interval and a
surface of constant Gauss curvature.

Proof. On a cosymplectic 3-manifold, applying h � 0 on (7),
we see that ξ is parallel, and hence we get R(X,Y)ξ � 0 and

Qξ � 0. (37)
□

On a Riemannian 3-manifold, the curvature tensor R is
given by

R(X,Y)Z � g(Y, Z)QX − g(X,Z)QY + g(QY,Z)X

− g(QX,Z)Y −
r

2
(g(Y, Z)X − g(X,Z)Y),

(38)
for any vector fields X,Y, andZ, where r is the scalar
curvature. Replacing Z by ξ in (38), with the aid of (37) and
R(X,Y)ξ � 0, we obtain

QX �
r

2
X −

r

2
η(X)ξ, (39)

for any vector field X. According to (7) and (37), a simple
calculation shows (∇ξQ)ξ � 0. If the Ricci operator is
transversely Killing, from (12), we obtain (∇eQ)e � 0 and
(∇ϕeQ)ϕe � 0, where e, ϕe{ } is an arbitrary local basis of the
contact distribution ξ{ }⊥. -us, applying the previous three
relations in the well-known formula divQ � 1/2grad r, we
obtain that the scalar curvature r is a constant. -erefore,
taking the derivative of (39), we obtain

∇Q � 0. (40)

-at is, the manifold is locally symmetric, and hence fol-
lowing [14], we see that the manifold is locally isometric to a
product space of an open interval and a surface of constant
Gauss curvature. -e converse is easy to check.

An almost cosymplectic 3-manifold is said to be an
almost cosymplectic 3-h-manifold if the Reeb vector field ξ is
principal direction of the Ricci operator, or equivalently, ξ is
harmonic (see [4]).

Lemma 2. If on an almost cosymplectic 3-h-manifold M, the
Ricci operator is transversely Killing, then we have ξ(λ) � 0
and da ∧ η � 0.

Proof. If ξ is harmonic, we have Qξ � S(ξ, ξ)ξ, which is
applied in Lemma 1 implying σ(e1) � 0 and σ(e2) � 0. Using
this, now (10) becomes

Qξ � − 2λ2ξ,

Qe1 �
1

2
r + 2λ2 − 4λa( )e1 + ξ(λ)e2,

Qe2 � ξ(λ)e1 +
1

2
r + 2λ2 + 4λa( )e2.

(41)

□

Taking into account Lemma 1 and (41), we obtain

∇e1Q( )e1 � λξ(λ)ξ + e1(ξ(λ)) − 2ae2(λ)( )e2
+

1

2
e1 r + 2λ2 − 4λa( ) − 1

λ
ξ(λ)e2(λ)( )e1,

(42)
and

∇e2Q( )e2 � λξ(λ)ξ + e2(ξ(λ)) + 2ae1(λ)( )e1
+

1

2
e2 r + 2λ2 + 4λa( ) − 1

λ
ξ(λ)e1(λ)( )e2.

(43)
If the Ricci operator is transversely Killing, from (12), we

have (∇e1Q)e1 � 0 and (∇e2Q)e2 � 0, which are compared
with (42) and (43), implying

ξ(λ) � 0,

ae2(λ) � 0,

e1 r + 2λ2 − 4aλ( ) � 0,

(44)

and

ξ(λ) � 0,

ae1(λ) � 0,

e2 r + 2λ2 + 4aλ( ) � 0,

(45)

respectively, where we have applied that λ is a positive
function. If a vanishes, the proof is completed already. Next
we consider the case that a≠ 0 on some open subset. In this
case, from (44) and (45), we know that λ is a positive
constant. Moreover, from Lemma 1 and (41), we obtain
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∇ξQ( )ξ � 0. (46)

Applying (46), (∇e1Q)e1 � 0, and (∇e2Q)e2 � 0 in the
formula divQ � 1/2grad r, we see that r is also a constant.
-us, according to (44) and (45), we obtain

e1(a) � e2(a) � 0. (47)

It follows directly that da � ξ(a)η and hence by the
definition of almost cosymplectic structure we get
da∧ η � 0. -is completes the proof.

Theorem 3. Let M be a noncosymplectic almost cosymplectic
3-h-manifold such that a is an invariant along Reeb flow.
;en, the Ricci operator is transversely Killing if and only if
the manifold is locally isometric to the group E(2) of rigid
motions of Euclidean 2-plane, the group E(1, 1) of rigid
motions of Minkowski 2-plane, or the Heisenberg group
Nil3 equipped with a left invariant almost cosymplectic
structure.

Proof. On a noncosymplectic almost cosymplectic 3-h-
manifold M, if a is an invariant along the Reeb flow, from
Lemma 2, we see that a is a constant. -us, together with
ξ(λ) � 0, we see thatM is in fact an almost cosymplectic 3-h-
a-manifold. Finally, the proof follows immediately from
-eorem 1. □

Note that the condition “a is invariant along the Reeb
flow and (12) is true” is essential. We show an almost
cosymplectic 3-h-manifold on which previous condition
does not hold (see [4, 23]).

Example 2. Let M3 be an open subset of R
3 defined by

M3
:� (x, y, z) ∈ R3

: z> 0{ }. On M3 there is an almost
cosymplectic structure defined by

ξ �
z

zz
,

η � dz,

ϕ
z

zx
� z2

z

zy
,

ϕ
z

zy
� −

1

z2
z

zx
,

ϕ
z

zz
� 0,

g � z2dx⊗ dx + 1

z2
dy⊗ dy + dz⊗ dz.

(48)

An orthonormal basis for the tangent space at each point
of M is given by ξ, e1 � (1/z)(z/zx), e2 � z(z/zy){ }.
According to [4], we have

Qξ � −
2

z2
ξ,

∇e1Q( )e1 � − 3

z2
ξ,

∇e1Q( )e2 � ∇e2Q( )e1 � 0,

∇e2Q( )e2 � 1

z2
ξ.

(49)

From this, we see that the Reeb vector field is harmonic
but the Ricci operator is not transversely Killing.
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