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Abstract. In [3], a putative framing “attack” against the ACJT group
signature scheme [1] is presented. This note shows that the attack frame-
work considered in [3] is invalid. As we clearly illustrate, there is no

security weakness in the ACJT group signature scheme as long as all
the detailed specifications in [1] are being followed.

Group signature schemes allow a group member to sign messages anony-
mously on behalf of the group. In case of a dispute, the group manager (GM)
can recover the identity of the actual signer. In [1], Ateniese, Camenisch, Joye,
and Tsudik introduced a provably secure group signature scheme, the so-called
ACJT scheme.

In an upcoming paper [3], Cao presents an alleged framing attack against
the ACJT scheme. This attack is based on the assumption that the GM knows
the value t = loga0

a. This assumption is clearly invalid in the verifiable setting
considered in [1] since the parameters a and a0 are verifiably random to GM.
Although a verifiable setting involves no trusted party, evidence that the pa-
rameters are well-formed must be provided. For random parameters this means
that they are generated as the outputs of practical pseudo-random functions
(PRFs) or pseudo-random permutations (PRPs), such as those based on SHA
or AES. This is needed in order to generate an unpredictable output sequence.
The SETUP phase in [1] is assumed to be verifiable. We quote directly from [1]:

“ ... We note that, in practice, components of Y must be verifiable to
prevent framing attacks ... ” (where Y is the group signature public key).

The above is general enough to completely invalidate the assumption underlying
the alleged framing attack in [3]. However, we admit that the original paper [1]



does not describe exactly how GM selects the values a and a0 (e.g., as a function
of h(S) and h(S0), respectively, for a standard hash function h(·) and public
strings S and S0). Refer to IEEE P1363 and ANSI X9.62 standards for prominent
examples of methods used to generate verifiably random parameters.

We further note that a verifiable or trusted SETUP phase is a common
assumption among many group signature schemes in the literature. For instance,
the work of Kiayias and Yung [4], (which provides a full proof of a variant of the
ACJT scheme in a complete security model) assumes the SETUP phase to be a
trusted operation.

However, we stress that the ACJT scheme is secure as long as t = loga0
a is

unknown. As the proof that GM cannot frame users was rather condensed in [1],
we expand it here. Indeed, it is not hard to see that an ACJT group signature
amounts to a proof of knowledge of values u and v such that:

(T1/T2
x)u ≡ ava0 (mod n) ,

where x = logg y (one of GM’s secret keys). Now, we note that, if T1/T2
x ≡ Ai

(mod n) for some user Ui, it follows that:

Ai
u ≡ ava0 (mod n) .

In other words, the party who generated a group signature must know values u
and v such that this equation holds. A group member, Ui, is able to do so using
u = ei and v = xi as witnesses.

GM might be able to do so as well, — provided that it knows t = loga0
a (and

can thus frame any user Ui) — by setting u = k(p′q′), for some k such that u
lies in the required range (and thus u ≡ 0 (mod p′q′)), and v = −1/t mod p′q′

(cf. Cao [3]). We now show that, if GM does not know loga0
a, it is unable to

frame a user Ui, i.e., to compute a group signature with T1/T2
x ≡ Ai (mod n).

For the sake of the argument, let us assume that factorization of n = pq =
(2p′ +1)(2q′ +1) is known. We argue that, if GM can produce a group signature
with T1/T2

x ≡ Ai (mod n) then it can compute either loga0
a or a representa-

tion of C2 w.r.t. random bases a and a0, where C2 is computed as axi (mod n)
during the JOIN protocol by the user corresponding to Ui.

From the JOIN protocol in [1], we know that Ai
ei ≡ C2a0 (mod n) holds.

Therefore, we conclude that u and v must satisfy:

C2
u ≡ (Ai

u)ei a0
−u ≡ avei a0

ei−u (mod n) .

First, we assume that u ≡ 0 (mod p′q′). Then, we have 1 ≡ (ava0)
ei (mod n).

Now, provided that gcd(ei, p
′q′) = 1 (otherwise, GM would leak the factoriza-

tion of n in the JOIN protocol and it can be verified by Ui), we can conclude
that computing a v satisfying ava0 ≡ 1 (mod n) (i.e., v = −1/t mod p′q′)‡ is
infeasible under the discrete logarithm assumption. Thus, we get a contradiction
and can rule out that u ≡ 0 (mod p′q′). W.l.o.g., we now assume that u 6≡ 0

‡ Note that gcd(t, p′
q
′) = 1 since a is of order p

′
q
′.



(mod p′). In this case — since we assume that p′ is known— ei/u mod p′ can be
computed and thus:

C2 ≡ avei/ua
ei/u−1

0
(mod p) ,

i.e., a representation of C2 w.r.t. random bases a0 and a in a group of order a
(known) prime, which is infeasible under the discrete logarithm assumption [2]
since C2 was chosen randomly by Ui.

In all cases, we have a contradiction. ⊓⊔

In conclusion, provided that the discrete logarithm problem is hard and that
loga0

a is unknown, the ACJT group signature scheme is provably secure against
framing by GM. We point out, once again, that loga0

a is unknown in the ver-
ifiable setting, as in [1], where GM provides evidence that a and a0 are indeed
random. It is similarly unknown in a trusted setting, as in [4], where the gener-
ation of a, a0 is trusted.
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