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Abstract

We study various approximation results of solutions of equations f (x, Y) = 0 where f (x, Y) ∈

K[[x]][Y]r and x and Y are two sets of variables, and where some components of the solutions

y(x) ∈ K[[x]]m do not depend on all the variables x j. These problems were highlighted by M.

Artin.

1. Introduction

1. Introduction
Let (R,m) be a Henselian excellent Noetherian local ring, f = ( f1, . . . , fr) a system of

polynomials in Y = (Y1, . . . , Ym) over R and ŷ a zero of f in the completion R̂ of R.

Theorem 1 (Popescu [14], [15], Swan [17]). For every c ∈ N there exists a zero y of f in

R such that y ≡ ŷ modulo mc.

M. Artin proved in [1, Theorem 1.10] the most important case of this theorem, that is

when R is the algebraic power series ring in x = (x1, . . . , xn) over a field K. Usually we

rewrite Theorem 1 saying that excellent Henselian local rings have the Artin approximation

property.

Now suppose that R̂ is the formal power series ring in x = (x1, . . . , xn) over a field K

and some components of ŷ have some constraints, that is they depend only on some of the

variables x j. M. Artin asked if it is possible to find y ∈ Rm such that the corresponding

components depend on the same variables x j (see [2, Question 4]). More precisely, we have

the following question. For a set J ⊂ [n] we denote by K[[xJ]] the ring of formal power

series in the x j for j ∈ J.

Q 2 (A A   [16, Problem 1, page 68]). Let R be

an excellent local subring of K[[x]], x = (x1, . . . , xn) such that the completion of R is K[[x]]

and f ∈ R[Y]r, Y = (Y1, . . . , Ym). Assume that there exists a formal solution ŷ ∈ K[[x]]m of

f = 0 such that ŷi ∈ K[[xJi
]] for some subset Ji ⊂ [n], i ∈ [m]. Is it possible to approximate ŷ

by a solution y ∈ Rm of f = 0 such that yi ∈ R ∩ K[[xJi
]], i ∈ [m]?

If R is the algebraic power series ring in x = (x1, x2, x3) over C then Becker [4] gave a

counterexample. If the set (Ji) is totally ordered by inclusion, that is the so called Nested

Artin Approximation then this question has a positive answer in [14], [15, Corollary 3.7]

(see also [6, Theorem 3.1] for an easy proof in the linear case). However, when R is the con-
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vergent power series ring in x = (x1, x2, x3) over C then Gabrielov [9] gave a counterexample

(see also [10] for a general account on this problem).

A field extension K ⊂ K′ is algebraically pure (see [13], [3]) if every finite system of

polynomial equations has a solution in K if it has one in K′. Any field extension of an alge-

braically closed field is algebraically pure [13]. In connection with Question 2 the following

theorem was proved.

Theorem 3 (Kosar-Popescu [11, Theorem 9]). Let K → K′ be an algebraically pure

morphism of fields and x = (x1, . . . , xn). Let Ji, i ∈ [m] be subsets of [n], and Ai = K〈xJi
〉,

resp. A′
i
= K′〈xJi

〉, i ∈ [m] be the algebraic power series in x jI
over K resp. K′. Set

 = A1 × · · · ×Am and  ′ = A′
1
× · · · ×A′m. Let f be a system of polynomials from K〈x〉[Y],

Y = (Y1, . . . , Ym), and ŷ ∈ ′, such that f (ŷ) = 0. Then there exist y ∈ such that f (y) = 0

and ord(yi) = ord(ŷi) for i ∈ [m].

The goal of our paper is to replace somehow in Theorem 3 the algebraic power series by

formal power series (see Theorem 14) and to state a certain Artin strong approximation with

constraints property of the formal power series ring in x over a field K which is so-called ℵ0-

complete (see Corollary 16). This condition onK is necessary (see Remarks 15, 17). Finally

we apply these results to extend approximation results due to J. Denef and L. Lipshitz for

differential equations with coefficients in the ring of univariate polynomials to the case of

several indeterminates (see Corollaries 18 and 20).

Finite fields, uncountable algebraically closed fields and ultraproducts of fields over N

are ℵ0-complete (see Theorem 5). If (Kn)n is a sequence of fields and  is an ultrafilter of

N we denote by (Kn)∗ the ultraproduct (over the natural numbers) defined as
(∏

n∈NKn

)

/ ,

that is the factor of
(∏

n∈NKn

)

by the ideal {(xn)n∈N ∈
(∏

n∈NKn

)

: {n ∈ N : xn = 0} ∈  }.

When K is a single field, K∗ denotes the ultrapower
(∏

n∈NK
)

/ .

2. Solutions of countable systems of polynomial equations

2. Solutions of countable systems of polynomial equationsD 4. Let K be a field. We say that K is ℵ0-complete if every countable system

 of polynomial equations (in a countable number of indeterminates) has a solution in K if

and only if every finite sub-system of  has a solution in K.

Theorem 5. The following fields are ℵ0-complete:

a) Every finite field.

b) Every uncountable algebraically closed field.

c) Every ultraproduct of fields over the natural numbers.

R 6. Every ultraproduct is either finite or uncountable. So every algebraically

closed field which is an ultraproduct is necessarily uncountable.

Proof. Let  be a system of countably many polynomial equations with coefficients in

a field K. We list the polynomial equations of  as P1, . . . , Pn, . . . which depends on the

variables x1, . . . , xl, . . ..

For any N ∈ N let DN be an integer such that the polynomials Pi, for i ≤ N, depend only on

the x j for j ≤ DN .
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Let us define the canonical projection maps:

πl,k : Kl = Kk × Kl−k −→ Kk
∀l ≥ k ≥ 1

that sends the vector (x1, . . . , xl) onto (x1, . . . , xk). We also define the projection maps

πk : KN −→ Kk
∀k ≥ 1

that send the sequence (x1, . . . , xn, . . .) onto (x1, . . . , xk).

Let

V∞ := {x = (xn)n ∈ K
N | Pi(x) = 0 ∀i ∈ N}

and

VN := {x = (xn)n ∈ K
N | P1(x) = . . . = PN(x) = 0} ∀N ∈ N.

Then we have that V∞ = ∩N∈NVN . By assumption, for every integer N ≥ 1 we have that

VN = πDN
(VN) × KN\{1,...,DN }.

For every positive integers N and k we define

Ck
N = πk(VN).

Now set

Ck :=
⋂

N∈N

Ck
N .

We claim that, if for every k, Ck � ∅, then  has a solution; indeed, by construction

(x1, . . . , xk) ∈ Ck if and only if for every N and k there exists (xk+1, . . . , ) ∈ K
N such that

(x1, . . . , xk, xk+1, . . .) ∈ VN . In particular πk+1,k(Ck+1) = Ck for every k.

Now let x1 ∈ C1. Then there exists x2 ∈ K such that (x1, x2) ∈ C2. By induction we can find

a sequence of elements xn ∈ K such that for every k

(x1, . . . , xk) ∈ Ck.

Thus the sequence x = (xn)n ∈ VN for every N so it belongs to V∞. Hence  has a solution.

a) Let us assume that K is a finite field.

Then the Ck
N

are finite subsets of Kk. Since VN+1 ⊂ VN for every N, the sequence (Ck
N

)N is

decreasing so it stabilizes. Therefore Ck � ∅ and  has a solution.

b) Now let us assume that K is an uncountable algebraically closed field. We have that

Ck
N = πk(VN) = πDN ,k

(

{x = (x1, . . . , xDN
) ∈ KDN | P1(x) = . . . = PN(x) = 0}

)

.

Thus the Ck
N

are constructible subsets of Kk since K is algebraically closed (by Chevalley’s

Theorem). Let us recall that a constructible set is a finite union of sets of the form X\Y

where X and Y are Zariski closed subsets of Kk.

Thus the sequence (Ck
N

)N is a decreasing sequence of constructible subsets of Kk. Let Fk
N

denote the Zariski closure of Ck
N

. Then the sequence (Fk
N

)N is a decreasing sequence of

Zariski closed subsets of Kk. By Noetherianity this sequence stabilizes, i.e. Fk
N
= Fk

N0
for
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every N ≥ N0 and some positive integer N0. By assumption Ck
N0
� ∅ so Fk

N0
� ∅. Let F be

an irreducible component of Fk
N0

.

Since Ck
N

is constructible, Ck
N
= ∪i

(

XN
i
\YN

i

)

for a finite number of Zariski closed sets XN
i

and YN
i

with XN
i
\YN

i
� ∅ and XN

i
is assumed irreducible. Since XN

i
is irreducible the Zariski

closure of XN
i
\YN

i
is XN

i
. Therefore for N ≥ N0 we have that

Fk
N0
= Fk

N = ∪iX
N
i .

But F being irreducible, for every N ≥ N0 one of the XN
i

has to be equal to F. Thus for

every N ≥ N0 there exists a closed proper subset YN ⊂ F such that

F\YN ⊂ Ck
N ∀N ≥ N0.

Since K is uncountable
⋃

N≥N0

YN � F.

This is a well known fact (see for instance Exercice 5.10, [12] p. 76). This implies that

Ck
� ∅ and  has a solution.

Finally c) is given as in Lemma 2.17 [13]. �

R 7. It is quite straightforward to prove that a field K that is ℵ1-saturated is ℵ0-

complete (for the definition of a saturated model see [7, Section 2.3]). One can prove that

the three fields of Theorem 5 are ℵ1-saturated providing an alternative proof of the fact that

these fields are ℵ0-complete.

E 8. Let K = Q be the algebraic closure of Q. Since Q is countable we may list

its elements as α1, α1, . . . , αl, . . . . Let  be the system of equations:

P1 = 0, Pl = (x1 − αl) xl − 1 = 0 ∀l ≥ 2.

For every integer N ≥ 1 the vector
(

αN ,
1

αN − α2

, . . . ,
1

αN − αN−1

)

∈ KN−1

is a solution of

P1 = · · · = PN−1 = 0.

But  has no solution. Indeed if x = (x1, . . . , xn, . . .) ∈ K
N was a solution of  then we

would have that

(2.1) (x1 − αl)xl = 1 ∀l ≥ 2.

But x1 ∈ Q so x1 = αl0 for some l0 ≥ 0. Thus (3.2) for l = l0 would give

0 = (x1 − αl0)xl0 = 1

which is impossible. So Q is not an ℵ0-complete field.
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E 9. Let K = R be the field of real numbers. Let  be the system of equations:

P1 = 0, Pl = x2
l − (x1 − l) = 0 ∀l ≥ 2.

Then P1 = · · · = Pl = 0 has a solution x = (x1, . . . , xn) if and only if x1 − l ≥ 0.

In particular  has no solution. So R is not an ℵ0-complete field.

3. Approximation with constraints

3. Approximation with constraints
We recall some elementary facts on algebraically pure field extensions, referring to [13]

and [3, (2.3)] for details.

R 10. (1) If K −→ L is a field extension of real closed fields then it is alge-

braically pure.

(2) If K is an infinite field and x = (x1, . . . , xn) then K −→ K(x) is algebraically pure.

[13]

(3) If K is a field and x = (x1, . . . , xn), we denote by K〈〈x〉〉 the field of algebraic power

series, and by K{{x}} the field of convergent power series (when K is a complete

valued field). Then K〈〈x〉〉 −→ K{{x}} and K{{x}} −→ K((x)) are algebraically pure by

Artin approximation theorem. [1]

(4) If K1 −→ K2 and K2 −→ K3 are algebraically pure then K1 −→ K3 is algebraically

pure. [13]

Lemma 11. [3] Let K be a field and let K∗ be an ultrapower of K. Then the morphism

K −→ K∗ sending every element a ∈ K onto the constant sequence (a, . . . , a, . . .) is alge-

braically pure.

Proof. Let  = (Pi)i∈I be a finite system of polynomial equations with coefficients in K

in the indeterminates Y1, . . . , Ym. Let us assume that there exists y∗ ∈ (K∗)m such that

Pi(y
∗) = 0 ∀i ∈ I.

Let (yn)n∈N ∈ (Km)N be a sequence whose image in (K∗)m is y∗. Therefore for every i ∈ I

there exists i ∈  (here  denotes the ultrafilter such that K∗ = KN/ ) such that

∀n ∈ Ui, Pi(yn) = 0.

Since I is finite the intersection  := ∩i∈Ii ∈  . Thus for every n ∈  we have that

Pi(yn) = 0 ∀i ∈ I.

Hence  has a solution in Km. Therefore K −→ K∗ is algebraically pure. �

Proposition 12. Let K be a ℵ0-complete field. Let x = (x1, . . . , xn), Y = (Y1, . . . , Ym),

f = ( f1, . . . , fr) ∈ K[[x]][Y]r and Ji ⊂ [n], i ∈ [m].

If for every c ∈ N there exists y(c) ∈ K[[x]]m, with y
(c)

i
∈ K[[xJi

]] for every i, such that

f (y(c)) ≡ 0 modulo (x)c

then there exists y ∈ K[[x]]m, with yi ∈ K[[xJi
]] for every i, such that

f (y) = 0.



436 D. P  G. R

Proof. Let us set

Bi := Nε1,i × · · · × Nεm,i

where εk,i = 1 if k ∈ Ji, εk,i = 0 if k � Ji, and

Yi =
∑

α∈Bi

Yi,αxα ∀i = 1, . . . ,m.

We denote by Pk,β the coefficient of xβ in fk(
∑

α∈B1
Y1,αxα, . . . ,

∑

α∈Bm
Ym,αxα). Let us denote

by  the system of polynomial equations

(3.1) Pk,β = 0, k ∈ [p], β ∈ Nn.

depending on the variables Yi,α for i ∈ [m] and α ∈ Bi.

Since K is a ℵ0-complete field and every finite sub-system of  has a solution,  has a

solution (yi,α)i∈[m],α∈Bi
with coefficients in K. Thus if y = (y1, . . . , ym) with

yi =
∑

α∈Bi

yi,αxα

then we have that f (y) = 0. �

E 13. In [5] two examples are given that show that this statement is no longer

true without the condition of K being ℵ0-complete: the first one is a system of polynomial

equations over the algebraic closure of Fp (see Example (i) p. 200 [5]) and the second one

is an example of polynomial equations over Q (see Example (ii) p. 200 [5]).

Theorem 14. Let K ⊂ K′ be an algebraically pure field extension where K is ℵ0-

complete. We set x = (x1, . . . , xn) and f ∈ K[[x]][Y]r, Y = (Y1, . . . , Ym).

Assume that there exists a solution ŷ ∈ K′[[x]]m of f = 0 such that

ŷi ∈ K
′[[xJi

]]

for some subsets Ji ⊂ [n], i ∈ [m]. Then there is a solution y ∈ K[[x]]m of f = 0 such that

yi ∈ K[[xJi
]] and ord(yi) = ord(ŷi), i ∈ [m].

Proof. Let us write ŷi =
∑

α∈Bi
ŷi,αxα where Bi ⊂ N

n denotes the support of ŷi.

We have that

f (ŷ) = 0⇐⇒ fk(ŷ) = 0 ∀k = 1, . . . , r

⇐⇒ ∀k, ∀β ∈ Nn the coefficient of xβ in fk(ŷ) is 0.

Let us denote by Pk,β the coefficient of xβ in fk after replacing each Yi by the term
∑

α∈Bi
Yi,αxα, and let  be the system of equations

Pk,β = 0 ∀k ∈ N, ∀β ∈ Nn

in the indeterminates Yi,α for i = 1, . . . ,m and α ∈ Bi. Since  has a solution in K′ every

finite sub-system of  has a solution in K′ and, since K −→ K′ is algebraically pure, every

finite sub-system of  has a solution in K. Then, since K is a ℵ0-complete field the system 
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has a solution (yi,α)i∈[m],α∈Bi
with coefficients in K. This means that if y = (y1, . . . , ym) with

yi =
∑

α∈Bi

yi,αxα

then f (y) = 0. Since Bi is the support of ŷi,the support of yi is included in the support of ŷi

for every i. In particular we have that ord(ŷi) ≤ ord(yi) for every i.

Now let us assume moreover that ord(ŷi) = ci and that, for every i = 1, . . . ,m, ŷi,αi
� 0

with |αi| = ci (here for β = (β1, . . . , βn) we set |β| := β1 + · · · + βn). Then there exists, for

i = 1, . . . ,m, an element ẑi ∈ K
′ such that

ŷi,αi
ẑi = 1, ∀i = 1, . . . ,m.

By adding the equations

(3.2) Yi,αi
Zi = 1, ∀i = 1, . . . ,m

to the system  we can suppose that there exists zi ∈ K for every i such that Equations (3.2)

are satisfied. Thus

ord(yi) = ci = ord(ŷi) ∀i = 1, . . . ,m

and the theorem is proven. �

R 15. By Lemmas 5.1 and 5.2 [16] every system  of partial polynomial differ-

ential equations with coefficients in K[[x]] (with x = (x1, . . . , xn)) and indeterminates Y1,

. . . , Ym, provides a system  of polynomial equations with coefficients in K[[x]][t] (with

t = (t1, . . . , tl)) and indeterminates Y1, . . . , Ym, Z1,. . . , Zk such that y ∈ K[[x]]m is a solution

of  if and only if there exists z ∈ K[[x, t]]k such that (y, z) is a solution of  and z satisfies

some constraints conditions as in Proposition 12.

By Corollary 4.7 [8] there exists a system of partial differential equations  defined over Q

having a solution whose components are in C[[x]] but no solution whose components are in

Q[[x]]m. So it shows that there exists a system of polynomial equations  with coefficients

in Q[x] which has no solution y ∈ Q[[x]]m such that yi ∈ Q[[xJi
]] for every i for some Ji ⊂ [n],

but has a solution y′ ∈ C[[x]]m such that y′
i
∈ C[[xJi

]] for every i.

This shows that Theorem 14 is no longer true in general if K is not ℵ0-complete.

Moreover since this system  has a solution with coefficients in C satisfying the constraints

conditions and sinceQ −→ C is algebraically pure, for every c ∈ N there exists y(c) ∈ Q[[x]]m

(satisfying the constraints conditions) such that f (y(c)) ∈ (x)c. But there is no y ∈ Q[[x]]m

(satisfying the constraints conditions) such that f (y) = 0. This also provides an example

showing that Proposition 12 is not true if k = Q.

Corollary 16. Let K be a ℵ0-complete field. Let us set x = (x1, . . . , xn), f = ( f1, . . . , fr) ∈

K[[x]][Y]r, Y = (Y1, . . . , Ym) and Ji ⊂ [n], i ∈ [m]. Then there exists a map ν : Nm → N

such that if y′ = (y′
1
, . . . , y′m), y′

i
∈ K[[xJi

]], i ∈ [m] satisfies f (y′) ≡ 0 modulo (x)ν(c) for some

c = (c1, . . . , cm) ∈ Nm and ord(y′
i
) = ci, i ∈ [m] then there exists yi ∈ K[[xJi

]] for all i ∈ [m]

such that y = (y1, . . . , ym) is a zero of f and ord(yi) = ci for all i ∈ [m].

Proof. Let c be as above. For proof by contradiction suppose that for each q ∈ N there

exists ŷq ∈ K[[x]]m with f (ŷ) ≡ 0 modulo xq, ŷq,i ∈ K[[xJi
]], ord(ŷq,i) = ci, but there exists no
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solution y′ inK[[x]] with y′
i
∈ K[[xJi

]], ord(y′
i
) = ci. Then let us define y∗

i
= [(yqi)q] ∈ K[[xJi

]]∗.

So we have that f (y∗) ∈ ∩qxqK[[x]]∗. Set ȳ = y∗ modulo ∩qxqK[[x]]∗ which corresponds to

an element in K∗[[x]] with f (ȳ) = 0 (see Lemma 3.4 [5]), ord(ȳi) = ci and ȳi ∈ K
∗[[xJi

]].

By Lemma 11 and Theorem 14 there exists y ∈ K[[x]]m with f (y) = 0, ord(yi) = ci and

yi ∈ K[[xJi
]]. We obtain a contradiction, so the theorem is true. �

R 17. In Example (iii) p. 201 [5] an example of a system of polynomial equations

over C with constraints is given for which the following is shown: there is no ν ∈ N such

that if there exists ŷ ∈ C[[x]]m with f (x, ŷ) ∈ (x)ν with the given constraints then there exists

a solution y ∈ C[[x]] of f = 0 with same constraints and such that y ≡ ŷ modulo (x).

4. Approximation for differential equations

4. Approximation for differential equationsCorollary 18. Let K be a ℵ0-complete field. Let F be a system of polynomial equations

in z1, . . . , zq and some of their differentials ∂| j1 |zi1/∂x
j1 , . . . , ∂| js |zis

/∂x js , i1, . . . , is ∈ [q], and

j1, . . . , js ∈ Nn, with coefficients in K[[x]]. If F = 0 has approximate solutions up to any

order then F = 0 has a solution with coefficients in K[[x]].

Proof. Exactly as in Remark 15, Lemmas 5.1 and 5.2 [16] show that for such a system

F = 0 there is a system of polynomial equations G = 0 with coefficients in K[[x]][t] (with

t = (t1, . . . , tl)) and indeterminates Y1, . . . , Ym, Z1,. . . , Zk such that y ∈ K[[x]]m is a solution

of F = 0 if and only if there is z ∈ K[[x, t]]k such that (y, z) is a solution of G = 0 with

constraints.

Moreover y ∈ K[[x]]m is an approximate solution of F = 0 up to order c if and only if there

is z ∈ K[[x, t]]k such that (y, z) is an approximate solution of G = 0 up to degree c with

constraints. This shows that Proposition 12 implies Corollary 18. �

R 19. This theorem has been proven in [8] in the case of a single indeterminate x

under some different hypothesis on K, namely K has to be a characteristic zero field which

is either algebraically closed, a real closed field or a Henselian valued field. Still in [8] they

remark that this theorem is quite easy to prove when K = C.

Again in [8] is given an example of a system of partial differential equations with coefficients

in R[[x1, . . . , xn]] for n ≥ 2 having approximate solution up to any degree, but no exact

solution (see Corollary 4.10 [8]). And Corollary 4.7 [8] provides an analogous example in

the case where K = Q. These examples show that the univariate case and the case of several

variables x are different.

Corollary 20. Let K be a ℵ0-complete field. Let F be a system of differential equations

in z1, . . . , zq and some of their differentials ∂| j1 |zi1/∂x
j1 , . . . , ∂| js |zis

/∂x js , i1, . . . , is ∈ [q], and

j1, . . . , js ∈ Nn with coefficients in K[[x]]. Then there exists a map τ : Nq+s → N such that if

z′ = (z′
1
, . . . , z′q), satisfies

F(z′, ∂| j1 |z′i1/∂x
j1 , . . . , ∂| js |zis

/∂x js) ≡ 0 modulo (x)τ(c)

for some c = (c1, . . . , cq, ci1, j1 , . . . , cis, js
) ∈ Nq+s and ord(z′

i
) = ci, i ∈ [q],
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ord

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂| jk |z′
ik

∂x jk

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= cik , jk ,

k ∈ [s] then there exists z = (z1, . . . , zq) ∈ K[[x]]q a solution of F together with its corre-

sponding differentials such that ord(zi) = ci for all i ∈ [q] and

ord

(

∂| jk |zik

∂x jk

)

= cik , jk , k ∈ [s].

Proof. Let f ∈ K[[x]][Y]r, Y = (Y1, . . . , Ym), m > q + s be the transformation of F in an

algebraic system of equations with constraints as done in the proof of Corollary 18. Assume

that zi corresponds to Yi and ∂| jk |zik/∂x
jk corresponds to Yq+k. Then applying Corollary 16 to

f we get a function τ : Nq+s → N which works also in our case F. �
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CNRS, UMI 2001

Universidad Nacional Autónoma de México (UNAM)
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