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Abstract. Error estimates of finite element methods for reaction-diffusion problems are
often realized in the related energy norm. In the singularly perturbed case, however, this
norm is not adequate. A different scaling of the H1 seminorm leads to a balanced norm
which reflects the layer behavior correctly. We discuss the difficulties which arise for systems
of reaction-diffusion problems.
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1. Introduction

We will examine the finite element method for the numerical solution of systems

of reaction-diffusion equations

−Eu′′ +Au = f in Ω = (0, 1),(1.1a)

u = 0 on ∂Ω,(1.1b)

where E = diag(ε1, . . . , εl) with small real parameters ε1, . . . , εl. A is a symmetric,

strictly diagonally dominant matrix with sufficiently smooth components aij and

aii > 0; we assume also f to be sufficiently smooth.

The finite element discretization uses the bilinear form

B(u, v) :=
∑

m

εm(u′
m, v′m) +

∑

m

m∑

i=1

(amiui, vm).
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The related energy norm is

‖v‖2e :=
∑

m

εm(v′m, v′m) + ‖v‖20.

Linß [7] proved error estimates for linear elements on Bakhvalov and Shishkin

meshes, for instance,

‖u− uN‖e 6 CN−1 lnN

for a Shishkin mesh.

However, the typical boundary layer function exp(−x/ε
1/2
l ) measured in the norm

‖·‖ε is of order O(ε
1/4
l ). Consequently, error estimates in the energy norm are less

valuable. Therefore, we ask the fundamental question:

Is it possible to prove error estimates in the balanced norm

(1.2) ‖v‖2b :=
∑

m

ε1/2m (v′m, v′m) + ‖v‖20 ?

The first balanced error estimate was presented by Lin and Stynes [5] using a first

order system least squares (FOSLS) mixed method. But it is also possible to use

a direct mixed method [10]. Several further results concerning balanced norm esti-

mates for finite element methods and second order reaction-diffusion problems are

presented in [11] (for instance, weakly nonlinear problems, different classes of layer-

adapted meshes, the 3D case, supercloseness). For the hp-FEM on spectral boundary

layer meshes we refer to [8] and [2].

Convection-diffusion problems with different layers in the x- and y-direction are

examined in [3], fourth order problems discretized by mixed finite element methods

in [4].

As discussed in [11], it is open how to handle problems with different layers in one

coordinate direction or systems of reaction-diffusion equations.

In Section 2 we will repeat a basic idea to prove error estimates in a balanced

norm from [12].

In Section 3.1 we start to discuss systems in the case ε1 = ε2 (for simplicity, we

only discuss two equations, i.e., l = 2), and in Section 3.2 sketch the difficulties for

different parameters.
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2. The basic error estimate in a balanced norm in the scalar case

We consider Shishkin meshes. In the scalar case (replace the matrixA by a scalar c)

the mesh distributes N/4 points (assuming N is divisible by 4) equidistantly within

each of the subintervals [0, λx], [1− λx, 1] and the remaining points within the third

subinterval. For simplicity, assume

λ = λx = λy = min
{
1/4, λ0

√
ε/c∗ lnN

}
with λ0 = 2 and c∗ < c.

We remark that the choice of λ0 mainly depends on the polynomial degree of the

finite element space. For systems, see [7] for the description of a related Shishkin

mesh.

We use the step sizes

h :=
4λ

N
and H :=

2(1− 2λ)

N
.

Let V N ⊂ H1
0 (Ω) be the space of linear finite elements on ΩN . A standard weak

formulation of the scalar version of problem (1.1) reads: Find u ∈ V such that

(2.1) ε(u′, v′) + (cu, v) = (f, v) ∀ v ∈ V.

Replacing V in (2.1) by V N one obtains a standard discretization that yields the

FEM-solution uN .

Certain assumptions on f allow a decomposition of u into smooth components S

and layer terms E such that the following estimates for the interpolation error of the

Lagrange interpolant hold true (see [13]):

(2.2) ‖u− uI‖0 � N−2, ε1/4|u− uI |1 � N−1 lnN

and

(2.3) ‖u− uI‖∞,Ω0
� N−2, ‖u− uI‖∞,Ω\Ω0

� (N−1 lnN)2,

where Ω0 = (λx, 1 − λx). Let us also introduce Ωf := Ω \ Ω0. We have used the

notation that if a � b there exists a constant C independent of ε such that a 6 Cb.

Instead of the Lagrange interpolant we introduce into the error analysis the L2

projection πu ∈ V N from u. Based on

u− uN = u− πu+ πu − uN
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we estimate ξ := πu− uN :

‖ξ‖2e � ε|∇ξ|21 + c ‖ξ‖20 = ε(∇(πu − u),∇ξ) + (c (πu − u), ξ).

Because our projection is defined by (c (πu− u), ξ) = 0, it follows that

(2.4) |πu− uN |1 � |u− πu|1.

If we now could prove an estimate similar to (2.2) for the error of the L2 projection, we

would obtain an estimate in the balanced norm if also a fitting estimate of ‖u−uN‖0
is available. The standard error estimation in the energy norm yields for the L2 part

‖u− uN‖0 � ε1/4(N−1 lnN +N−2), which is sufficient for our aims. Alternatively,

one can also prove ‖u − uN‖0 � N−2, very easily in 1D, while in 2D one uses the

supercloseness techniques assuming additionally λ0 > 2.5.

If πu has some representation πu =
∑
i

Viϕi, the Vj satisfy the tridiagonal system

(with h̄i := (hi + hi+1)/2)

(2.5)
1

6

hi

h̄i
c̃i−1Vi−1 +

2

3
c̃iVi +

1

6

hi+1

h̄i
c̃i+1Vi+1 =

1

h̄i

∫ xi+1

xi−1

cuϕi.

The coefficient matrixM of this system is strictly diagonal dominant. It follows that

|Vi| � ‖u‖∞, hence we have the stability property

(2.6) ‖πu‖∞ � ‖u‖∞.

As a consequence we obtain

Lemma 1. Assuming the validity of (2.2) and (2.3), the error of the L2 projection

on the Shishkin mesh satisfies

(2.7) ‖u− πu‖∞ � ‖u− uI‖∞, ε1/4|u− πu|1 � N−1(lnN)3/2.

From (2.4), Lemma 1 and the estimates for ‖u− uN‖0 we get

Theorem 1. Assuming (2.2) and (2.3), the error of the Galerkin finite element

method with linear elements on a Shishkin mesh satisfies

(2.8) ‖u− uN‖b � N−1(lnN)3/2 +N−2.

In 2D, the L∞ stability of L2 projection is an interesting topic [1], we used in [12]

a result of Oswald [9] for meshes with a special structure. Inverse inequalities are

used to move from estimates in W 1
∞ to L∞, for details see [12]. Finally, in 2D one

obtains the estimate (2.8) for linear as well as bilinear finite elements.
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3. Systems of reaction-diffusion equations

3.1. The case ε1 = ε2. First let us remark that for systems

−εu′′ +Au = f in Ω = (0, 1),(3.1a)

u(0) = u(1) = 0 on ∂Ω,(3.1b)

so far there exists only a result of Lin and Stynes [6] in a balanced norm. Following

the basic idea from [5], but using C1 elements instead of mixed finite elements, they

introduce the bilinear form

ε(w′, v′) + (Aw, v) + ε3/2(w′′, v′′) + ε1/2((Aw)′, v′)

and analyze the finite element method for quadratic C1 elements. The analysis for

the Galerkin method with C0 elements is open.

Let us consider the case of two equations and let us write the system (2.5) as

M(πu) = g.

Now we also define in the matrix case the generalized vector-valued L2 projection

by

(A(Πu), ξ) = (Au, ξ).

If A is a constant matrix, we get the desired L∞ stability immediately. But if not,

we get for the vector of the values of Πu in the mesh points a linear system, where

the coefficient matrix M̂ has the structure

(3.2) M̂ =

[
A11 A12

A21 A22

]
.

Here every matrix Aij has the structure of M corresponding to (2.5), one has just

to replace c by the components of A, i.e., a11, a12, . . .

The question is: Which assumptions on A guarantee that ‖M̂−1‖∞ is bounded?

Remark that in the case of constant coefficients we have

M̂ =

[
a11M a12M

a21M a22M

]
.

Now M̂ is the product of the matrices

[
M 0

0 M

]
and

[
a11E a12E

a21E a22E

]
.
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Because M is strictly diagonally dominant, we have ‖M̂−1‖∞ 6 C, and the same

properties of A imply ‖M̂−1‖∞ 6 C. We conjecture that perturbation arguments

should yield results in the case of nonconstant coefficients.

3.2. Different small parameters. If the two small parameters are different

there appear new difficulties. Consider the simplest case of two equations with

constant coefficients:

−ε1u
′′
1 + u1 + a12u2 = f1,(3.3a)

−ε2u
′′
2 + a21u1 + a22u2 = f2(3.3b)

and discretize by the Galerkin method on the corresponding Shishkin mesh. We

assume ε1 < ε2.

With some projections û1, û2 into the finite element space we introduce ξ1 =

uN
1 − û1 and ξ2 = uN

2 − û2. Then

ε1|ξ1|
2
1 + ε2|ξ2|

2
1 + ‖ξ‖20 � ε1((û1 − u1)

′, ξ′1) + ε2((û2 − u2)
′, ξ′2)

+ (û1 − u1, ξ1) + a12(û2 − u2, ξ1) + a21(û1 − u1, ξ2) + a22(û2 − u2, ξ2).

First we choose for the projections the L2 projections of u1, u2.

Then the four terms on the second line disappear and we get

|ξ2|1 �
(ε1
ε2

)1/2
|u1 − û1|1 + |u2 − û2|1,

consequently we obtained the desired estimate for ε
1/4
2 |ξ2|1 because ε1 < ε2.

But, unfortunately, this approach does not yield the desired estimate for ε
1/4
1 |ξ1|1.

In the second step we define û1 and û2 by

(3.4) (û1 + a12û2, ξ1) = (u1 + a12u2, ξ1)

and

(3.5) ε2(û
′
2, ξ

′
2) + (a21û1 + a22û2, ξ2) = ε2(u

′
2, ξ

′
2) + (a21u1 + a22u2, ξ2).

Using (3.4), we can eliminate the first component and get with β = a22 − a12a21

(3.6) ε2(û
′
2, ξ

′
2) + β(û2, ξ2) = ε2(u

′
2, ξ

′
2) + β(u2, ξ2).
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This means: û2 is just the Ritz projection of a standard scalar reaction-diffusion

operator, and we have the desired estimate for ε
1/4
2 |u2 − û2|1. From (3.4) we get

(introducing L2 projections)

u1 − û1 = (u1 − πu1) + a12(u2 − πu2) + a12(û2 − u2).

This yields the desired estimate for ε
1/4
1 |u1 − û1|1.

Hence, the following natural question arises:

How that basic idea can be generalized to problems with nonconstant coefficients?
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