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Abstract. In this note we consider band- or tridiagonal-matrices of order k, whose 
elements above, on, and below the diagonal are denoted by bi, ai, c i. In the periodic 
case, i.e. bi+m=b ~ etc., we derive for k = n m  and k ~ n m - - I  formulas for the char- 

m 
acteristic polynomial and the eigenvectors under the assumption that  Ilcib~>O. 

i~ l  
In the latter case it  is shown that  the characteristic polynomial is divisible by the 
m - - l - t h  minor, as was already observed by R6ZSA. We also give estimations for the 
number of real roots and an application to Fibonacci numbers. 

1. Introduction 

Throughout  this note a i, b i and c i for i ----- l ,  2 . . . . .  m are complex numbers with 

b = b l b  2 .., b m, c = c l c  ~ .. .  c m, ~2=bc:df:O. 

The le t ter  B = B  r~ denotes a ma t r ix  of m rows and m + 2  columns, 

C I a I b I 0 0 . . .  0 0 0 0 \ 

l 0  c~ a S b 2 0 . . .  0 0 0 0 ~  

o o o o j  
\o o o o o.. .~,, , ,_~ bo_~ o /  

\ 0  0 0 0 0 . . .  c m a,~ b,~/I 

The square m by  m mat r ix  obtained from B when the first and last columns are 

deleted is called a band  mat r ix  and is denoted by  B'.  The square m - -  t by  m - -  t 
mat r ix  obta ined from B'  when the b o t t o m  row and r ight -hand column are deleted, 

for r e > l ,  is denoted by  B".  

Using a square m by  m zero ma t r ix  0m with B m we can form a mat r ix  B .  = B~' 

of n m  rows and n m +  2 columns, 

/ B m  0,~ 0,~ . . .Ore t 

too ~'o~.. .o~ I 
o: / 

\ O r ,  0,~ Or~ . . .  B'~I 

11" 
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The square m n  by m n  matrix obtained from B .  when the first and last columns 
are deleted is called a periodic band matrix and is denoted by  B: .  If  the bot tom 
row and last column of B~ are deleted the resulting m n - - I  by m n -  t matr ix  is 
also called a periodic band matrix and is denoted b y  B:'. In  justification of this 
terminology it  should be observed tha t  B~ has the same form as B, except that  
m has been replaced b y  m n  and the elements are periodic. That  is, if the elements 
of B~ are denoted by  a~, b i and c i with 1<--i<--mn then 

ai+m=ai, bi+m=bi, Ci+m=C i. 

As far as we know R6zsA and LOVASS-NAGY of Budapest were the first to 
make a systematic s tudy of periodic band matrices with r e > l ,  and in particular 
[2] and [3] contain the complete solution for m =  2. Our interest in the subject 
stems from a lecture which R6ZSA held at the University of Hamburg in the sum- 
mer semester, 1966. This lecture was devoted to the proof of the following theorem, 
which generalizes the result [3] to the case of arbitrary m: 

Theorem A (R6ZSA). Let determinants Din= Din(2 ) be defined by 

a l - - 2  b 1 0 ... 0 0 

C~ a s -  2 b~ . . .  0 0 

D,~(2) = 0 c3 a3 - -1  ... 0 0 , 
. . . • • ° • • • • • * 

0 0 0 . . .c ,~ a , , - - 2  

and let D* (2) denote the determinant obtained/rom D,~ (2) when the/ irs t  row and 
column are removed. Then, i / B ~  is symmetric, the characteristic values o/B'~' are 
the values 2 / o r  which Dry-1 (2)= 0 or /or  which 

-- bmDm-x (2) = 2b 1 b~... b,~ cos k Din(2) ~ * -d ' k = 1 , 2  . . . . .  n - - l .  

Our reasons for writing are threefold. First, our method is wholly elementary, 
while RrZSA used a number of advanced tools from the algebra of matrices and 
determinants. Second, we obtain results for B~ as well as B" ,  while RrzsA was 
able, he said, to get results in the case of arbitrary m for B~ only. Third, we 
t reat  the general case while R6ZSA'S analysis applies only to the symmetric case 

cl=b,~, ca=b1 . . . . .  era=b,,,_,. 

In  particular, we shall find that  RrZSA'S result continues to hold in the asym- 
metric case, if the factor b~ on the left is replaced by  b,,,c x and the factor bib2.. ,  b,~ 
on the right is replaced by  ~. 

2. The Recursive Solution 

Let x' be an m-dimensional column vector with components (xl, x2, . . . ,  x,~) 
and let x be an ( m +  2)-dimensional column vector with components 

(Xo, x~ ..... xm, x,~+~). 

Evidently 2 is a characteristic value for B '  if and only if the system B'  x ' =  2 x' 
has a nontriviai solution x'. Since x I = 0 implies x' = 0 we can suppose that  xx----- t. 
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The system B ' x ' = 2 x '  has an uns~wnmetric structure because two columns 
were deleted in passing from B to B'. But  the system B x = 2 x '  has a very  sym- 
metric s tructure;  it is 

CkXk_x+(ak--2)xk+b~xk+l=O ( k = l ,  2 . . . . .  m). (t) 

If, now, we require Xo----x~+l= 0 the resulting system is identical with B' x '=  2# .  
In  other words 2 is a characteristic value for B' if and only if the system (t) 
has a solution with x0=  xm+i=  0 and x i =  t. Replacing m by  m -  t in this ob- 
servation, we see tha t  2 is a characteristic value for B'" if and only if (t) has a 
solution with x 0-~ x m = 0 and x i = t .  

If  the k-th equation (t) is solved for x~+l and the result is used together with 
x k = x~ we get a recurrence formula, 

x~ t 0 

This is solved by  means of the products 

where the polynomials p~=p~ (2 0, and so on, are defined by  the equation. For  
brevi ty  we denote this product  b y  H (2), t -< k ~  m. Since 

k 

Xk+l  = b ~ b ~ _  1 . . .  b~bl  r~ s~ 

the values of x~ and the desired condition xr~= 0 or x m + l = 0  can be expressed 
with ease. 

We write the characteristic polynomial of B~, or B" as 

2 " " + . . .  or 2 ~ " - ~ + . . .  

so tha t  the leading coefficient is t.  The leading term of p~(A), q~(2), r~ (2) or  
s~(2) is 

--bmcl2 'n-~, bm 2m-i, --C12 m-l, 2 m 

respectively, as is easily proved by  induction. Since the characteristic polynomial 
is wholly determined by  the characteristic roots, we can summarize our analysis 
as follows: 

Remark  1. Let polynomials p~, q~, r~, s k be defined as above. Then the char- 
acteristic polynomial o/ B" or B"  is s~ (2) or bT~lq~(2), respectivdy. The characteristic 
vector/or B' belonging to 2 is 

( si(~) s~(,~) ~,,,_~(~_! ~, 
l ,  b i  ' b i b ,  " ' " '  bi b2 . . . br~-l  ] 

where s, .(2)=O, and that ]or B"  is the same, with m - - i  in place o] m, and with 
qm (2) = 0 instead o/s,~ (2) = 0. 

We define now D~, D* as in Theorem A and analogously D,~_x, D * _ i  with 
Do-----t, D* = 0, D* = t by  convention. Then we obtain easily 
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Remark 2. The [ollowing relations hold [or m >= t : 

r,~ (4) = (--)'~ c I D*  (~) , s,~ ()~) .-= (--)'~ D~ 0.). 

For proof, form B* by  deleting the first row and column of B. Apply Remark 1 
to the corresponding product H *  as well as to H and note that  [ ] *  and H are 
simply related. '~ " ~ 

3. The Roots in the Periodic Case 
We introduce 

A = A (4) = : , -1 / I  (~L). 
m 

Since det / - / (2)=:*L we have det A = t .  The trace of A is 2t, where t= t (~ )  is 

defined by  
2:* t(~) = p ~  (2) + s~ (4). 

We have by  the Cayley-Hamilton theorem 

A S - - 2 t A  +I-----0 I = identity-matrix (2) 

and hence with M, ,=  A" 
M~+I + M~_ I = 2 tM~. (3) 

Setting t - -cos  0, where 0 is a real or complex angle, we see that  the solution 
of the difference equation (3) is given by  

sin n 0 sin ( n -  i) 0 
Mn = M1 - s in0 -  - -  M° sin 0 

(Here and elsewhere, sin k 0/sin 0 is to be replaced by  its limit, k cos k 0/cos 0, 
if sin 0-----0.) I t  follows, in particular, tha t  

sinn0 sin(n--l)  0 
A n = A -sin-0 ......... I sin o (4) 

Upon applying Remark t to Bn instead of B we obtain 

Remark 3. The characteristic roots o[ B '  n are the values ~ /or which simultaneously 

2:*cos0=p,~(~)+s ,n(~)  and s,n(~) sinn0 s i n ( n - l ) 0  
sin 0 = :* sin 0 

The characteristic roots o / B ~  are the values ~ /or which 

k~t 
gm (~) = o o r  Pm (~) + s~ (4) - -  2:* c o s - ~ - - ,  k = I ,  2 . . . . .  n - 1. 

Remark 2 gives a corresponding version of Remark 3 with p,~, q~ and s~ 
replaced by  appropriate subdeterminants of D,~. The part  of Remark 3 pertaining 
to B~ thus gives the generalized version of R6ZSA'S theorem mentioned in the 
introduction. Conversely, our result for B"  n can be deduced from R6ZSA'S by  an 
affine transformation. 
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4. Characteristic Vectors 

To discuss the characteristic vectors x' for B', and x" for B~' it is convenient 
to denote the elements of B~ by  a i, b~ and c i with t<_i<_mn and with the 
periodicity condition. The products j r / = / I  (,~) for i > m  are interpreted ac- 

i i 

cordingly. Any index i > t  can be written i = m i + l  with t--<lNm. Then 

blb2. . .b , :=bJblb~. . .bl  and H : [ / ( / ~ )  i. 

Since ] ~ [ : g A  the formula (4)for  A" gives a similar formula for ( [1 )  i. Upon 
r ~  x f n  ] 

applying Remark I to B~ instead of B we get: 

Remark 4. Let 0 : 0 (~) be deJined by 

2~ cos 0 = p~(~) + s~(~) 

r ~r where ~ is a characteristic value/or Bn or B~, as the case may be. Let the correspond- 
ing characteristic vector be (xi) with t<- - iNmn  or l < _ i < _ m n - - t ,  respectively. 
Then /or  ~ = O, t, 2 . . . .  and t <_ l ~  m we have 

• 1 sin j 0  Oi s in( j - - l )0  
x'ni ~ = Q ~ -  ~inO Xm+z-- sin0 x~ 

where o = Vc-]b. 

The interest of the result is that  it gives x i for all i as soon as ~ and the initial 
values 

X 1,  X 2 ,  . . . ,  X 2 m  

are known. These initial values can be found by the formula of Remark t or by 
recursive solution of (1). Of course the recursive solution gives x i for all i, but  if 
i is large, the formula of Remark 4 is simpler and more accurate. 

5. The Characteristic Polynomial 

The polynomial of degree n defined by  

G ( c o s  0) - sin (.  + 1) 0 
sin 0 (5) 

is called the Chebychev polynomial of the second kind [•]. In terms of U s the 
result (4) reads 

A ~ = A  U._I ( t ) - - IU~_~( t ) .  (6) 

Applying Remark I to B~ and B~, using (6) and the relation 

G ÷ I  (t) + G - l ( t )  = 2 tG( t )  (7) 
we obtain 

Remark 5. Let t = t (,~) be defined by 2 z t  = p, .  (~) + s,, (~). Then the characteristic 
polynomial o/ B'~ is 

~'~ U, (t) --p,~ (~) ~"-~ V~_~ (t) 
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and the characteristic polynomial o! B~ is  

,e-~s,._~ (.~) v,,_~ (t) 

under the convention that s o (2) = t .  

R e m a r k  5 gives identities similar to  those of R e m a r k  2 for  B'. a n d  B~. I n  
par t icular ,  setting $ =  0 we get the  constant  t e rm  of the  characteristic equation,  

( - - ) ' " d e t B ' .  or ( - - ) ' " - X d e t e ~ ' .  

Since the  choice 0 = ~ / 2  in (5) gives U. (0) we are led to the following as a special 
case:  Suppose 

~ ( 0 ) + s ~ ( 0 ) - - - - 0 .  
Then  

( - - ) ~ " d e t B ~ = x  ", --p~(O) n.-1, - - n  ~, Pro(0) n . -1  

according as n ~ 0, t, 2 or  3 rood (4), respectively.  In the  same circumstances the  
respect ive values for det  B': are given b y  

r t ~ n  p t  (--)  d e t B . = 0 .  _sm_l (O ) ~ . - 1  0. s~_l(0 ) n.-1.  

6. Conditions for Real Roots 

In  th is  section we give conditions unde r  which B~ and  B~' have  a t  least m n- 
const  dist inct  real roots as n - ~  c~. I t  is convenient  to assume tha t  x is real a n d  
positive, and  of course, t h a t  a i, b i and c i are real. 

The desired results can  be r ead  off f rom a p lo t  of y = t (2) together  with the  
horizontal  lines 

k ~  
k = 1 , 2  . . . . .  n - - t .  (8) y =COS ~ , 

Such a p l o t  might  have the  appearance  suggested by  the  figure when m----5 a n d  
n = i0. E a c h  intersection point gives a real  root of B'~'. 

/ 
0 ¸ 

- I -  

l 
y 

¥ :  tOO 

Fig. 1 
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To discuss the corresponding graphical interpretat ion for B'n we note tha t  a 
plot of 

u.(t) 
Y =  u._l(t) 

vs. t consists of n continuous curves, in each of which y ranges from --oo to oo. 
The equation U.(t) 

p ~  (2) = n ~r._ 1 (0 

given b y  Remark  5 therefore has at least one real root in each interval on which 
the graph of t(2) joins one line (8) to an adjacent one, and also in each of the 
two unbounded intervals. These portions of the graph are indicated by  the round 
dots in the figure. 

We now introduce the  following definition: 

Definition. A real polynomial P(x) o] degree n is o/Chebychev type i/there are 
n + 1 values x i such that 

x o > x l > x z . . . > x  n and ( - - ) kP (x~ )> l  ( k = 0 , 1  . . . . .  n). 

Evidently,  a Chebychev polynomial  is an extremal polynomial of this class, 
in several senses of the word "extremal". 

By the Lagrange interpolation formula we see tha t  a polynomial is of Cheby- 
chev type  if and  only if it admits  the representation 

P ( x ) = ~ ,  Q(x) ( -pA~ 
~=o x -xk  Q'(x~) 

where 
Q(x)=(X-Xo)(X-Xl)  ... ( x - x , ) ,  A~>=t, 

and x k are as in the definition. If  P(x) admits such a representation then it admits  
one in which the  values x 1, x 2 . . . . .  x , -1  are the roots of P'(x)=O, and in which 
furthermore 

P(Xo) = ( - ) "  P (x . )  = 1. 

The lat ter  representation is unique. Other characterizations can be obtained by  
writing 

P'(x) = (const) (x - -  xa) (x --  x,) ... (x - -  x.-a) 

and integrating to  get P(x). 
The graphical interpretation of the foregoing discussion leads to the following: 

Remark 6. Let ai, b~, c i and ~ = V  ~ be real, with ~ > 0 .  Let a polynomial t(2) 
be defined by 

2~t t (2 )=p~(~)  + s~ (2). 

Then i / t  (~) is a polynomial o/Chebychev type the matrices B'. and B~ have at least 

m n - - 2 m + 2  and m n - - m  

distinct real characteristic values, respectively, But q t (2) is not a polynomial o] 
Chebychev type there is a constant ml < m such that the number o] real characteristic 
roots o/B'n or B;', counting multiplicity, does not exceed m 1 n/or su[[iciently large n. 
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I t  should be observed that  the derivation of Remark 6 not only gives some- 
what more information about the number  of real roots than is there stated, but 
also gives quite detailed information about their location. 

So far we have assumed bc>O. If bc<O Remark 3 shows that  the only real 
roots of B~' are among the roots of qm (/]) or Prn (J,)+ Sm (J') and hence, there are 
at most 2 m -  1 real roots. The corresponding question for B', is left as an open 
problem. 

An evident consequence of Remark 6 is: 

Remark 7. I[ the products cl b,,, c~ bl, c3b2 . . . . .  c,~ b,~-i are all positive, then 
t (~) is a polynomial o[ Chebychev type. 

7. An Application to Number Theory 

The Fibonacci numbers 0, 1, t ,  2, 3, 5 . . . .  are defined by  

/o=O, 1~=1,  1,,+:=/.+1,,_~, n>__l. 

I t  was pointed out by COLLATZ that  Remark 5 gives an extremely simple proof 
of the following well-known theorem: 

Remark 8 (e.g. E4], p. 148). I /k  is divisible by m, then [~ is divisible by/ , , .  

COLLATZ'S proof, presented here by  permission, is as follows. By induction, we 
obtain the well-known formula 

t --1 
1 1" 0 

/ i + l = D i  with D j =  

The assumption that  m divides k gives 

t " *° 

° " - - 1  

0 ' t"  1 

i. 

k - t = ( n - t ) m + m - t  
for an integer n. 

Now, if we regard D~_ 1 as the determinant of a periodic band-matrix with 
period m, Remark 5 with )L = 0 gives 

Dk_ 1 = K~-ls,~_l (0) U,,_, (t) 
where 

K = ( i )  m-1 and 2Kt=p,,(O)+q,~(O). 

I t  is evident that  t is a Gaussian integer (that is, t=o~+fli with a and fl integers) 
and the same is true of U~_l(t). Since Remark 2 gives Sm_x(0)=(--) '~-lDm-1, 
we conclude that  

D k - l =  Dr,-1 " (Gaussian integer). 

The Gaussian integer in the equation is necessarily real, as the D / s  are real, 
and thus, the proof is complete• 
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R e m a r k  8 can be general ized to sequences of the  following types :  

fo=O, /1:], [~+::a /,,+b2/~_1 
respect ively  

/ o : 0 ,  ] 1 = 1 ,  / ~ : : a / ~ - - b 2 / , ~ - i  

with integers a, b. Observe tha t  K "-x U~_ 1 (r/K) is an  integer for r and  K integral .  

W e  get  analogous results  for sequences of polynomials  which are  recurs ively 
defined b y  

p 0 : l ,  p l ( 2 ) = a - - 2 ,  pi+l (2) : (a- -2)p i (2)+bp~_1(2  ) 

for a r b i t r a r y  a, b. Here we have :  I f  ilm, then p , _ l  (2)lPm-~ (2) (e.g. p~ ( 2 ) =  [7, (2)). 
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