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Remarks on Bases in a Fréchet
Function Space
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ABSTRACT. We present an explicit construction of a Schauder basis in the space C(R) N
L(R) for all p, I € p < oo, This basis cannot be unconditional, since we give a proof of the
fact that the Banach spaces C(0,1) or L,(0,1} cannot be embedded in a Fréchet space with an
unconditional basis.

1. INTRODUCTION

The purpose of this paper is to study questions concerning bases in
the Fréchet function space C(R) ~ L(R) of continuous L -integrable
functions from R into K (X =R or C}, 1 < p < eo, In Theorem 3 we show
that C(R) m L,(R) has a Schauder basis for all p, 1 £ p < . This basis
cannot be unconditional, since we prove in theorem 4 that the Banach
spaces C(0,1) or L,(0,1) cannot be embedded in a Fréchet space with an
unconditional basis. This result generalizes the corresponding, well-known
statement for Banach spaces.

* This paper forms a part of the forthcoming licenciate's thesis of the first named author written
at the Department of Mathematics, University of Helsinki.
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The study of these spaces is motivated by the following facts.

1. Taking an intersection is, of course, an elementary and concrete
way to define a space, the elements of which have properties inherited
from both of the original spaces. In general, spaces defined using an
intersection now and then occur in analysis, although their linear
topological structure usually does not play any role (see, e.g. [H],
Theorems 2.2.6, 3.8.2, 7.3.1). Our study of spaces C(R) M L,(R) is meant
as examples (rather than a systematic research) of phenomena occurring
in the structare of these kind of spaces.

2. The space C(R) N L(R) is easily seen to be isomorphic to the
subspace £ of C(R) x L,(R) spanned by elements of the form (f,f). Clearly,
because of its simple and concrete definition, £ is in a sense a natural
subspace of C(R) x L (R). Moreover, C(R) x L,(R) is isomorphic to a
complemented subspace of C(R,L,(0,1)), the space of continuous, L, -
valued functions on R. So, the study of the spaces C(R) m L,(R) is
connected to the study of the above mentioned standard spaces of
analysis.

3. The structure of the spaces C(R) M L,(R) is quite complicated and
thus interesting in itself, see [T] and [BT]. '

We now turn to the notations, definitions and preliminary results used
in this paper. If £ C R”", n > 1, is an open set, we denote by C()NL,(€2),
1 £ p < oo, the Fréchet space of continuous, L -integrable functions from
€2 into [&. The topology of this space is determined by the seminorms

pO=( [y,

ph=suplfix)|, keN (1.1)

x€Q,

where (£2,)%_, is an increasing sequence of compact subsets of Q, whose
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union is . For more details on these spaces we refer to [BT].

A sequence (e,),_; in a Fréchet space E is called a (Schauder) basis,
if every x € E has a unique representation as a convergent series

x=Y_ xe,

n=l

where x, € K. The basis (e,),., is called unconditional, if this series
converges unconditionally. The sequence (e,);,_,  E is a basic sequence,
if it is a basis in its closed linear span. We refer to {J], Chapter 14 for

more details.

We shall need a special example of basis called the Franklin system
()= The elements f,, the Franklin functions, are continuous real valued
functions on the closed interval I:=[0,1]. The Franklin system is obtained
applying the Gram-Schmidt orthogonalization procedure in L,(0,1) to the
Schauder system, which is a basis in C(0,1), see [LT], p. 4, or especially
[KS], VL3 and VI.1. The Franklin system is a basis in C(0,1} and L,(0,1)
for 1 £ p < oo, and it is an orthonormal basis in L,(0,1), see [KS],
Theorems V1.6 and 7. Note that if

2=y 8, o
n=Q

then the coefficients (g,) can be calculated in all of the above mentioned
spaces from

8.~ fgﬂ-

0

We shall need a result of Ciesielski [C], Theorem 1, see also [KS],
Corollary VI.4. Let n € N v (0} and let z, € [0,1] be defined by z, =0,
zy=1,and for n> 1,

z, = (2i - 12" . (1.2)
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where k and i are suchthat k€ {0} UN,ie N, 1<i<2 and n = 2.

Theorem 1. Let the numbers z,, n € N, be as in (1.2). There exist
absolute constants C > Q and d, 0 < d < I such that

If.(0) |<Cn 2d "

for all n € Nand all t € [0,1].

2. EXISTENCE OF BASIS: AN EXPLICIT CONSTRUCTION

In this section we show that C(R) m L,(R) has a Schauder basis for
all p, 1 < p < oo, The strategy of the proof is as follows: we show that the
Franklin system is a basis in the space C, (0,1} m L,(0,1), which is the
space of continuous L -integrable functions on the open interval ]0,1[. It
is then easy to see that this space is isomorphic to C(R) ™ L (R} so that
we get the desired basis.

We define C,(0,1) as the Fréchet space of continuous K-valued
functions on the open interval ]0,1[, endowed with the seminorms

q,((f)=sug{ HEI]A 2.1)
where k € N and
Q, = [1/k,1 - 1/k). (2.2)

The aigebraic definition of C,,(0,1) n L,(0,1), 1 < p < o, was already
mentioned above. The topology of this Fréchet space is determined by the
increasing system of norms

(g, + | l!‘p);::l? (2.3)

where Ilﬂlp = ( lex)|pﬂ)lfp .
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Theorem 2. The Franklin system (f,),, is a Schauder basis in
Cio(0,1) N L,(0,1).

Strictly speaking, the elements of the Franklin system are functions
defined on the closed interval [0,1]. Here we take the restriction of each
£, to JO,1[. This does not cause any confusions.

Proof. Let g € C (0,1} N L,(0,1); it is not a restriction to assume
lgl, = 1. Since (f,), is an L,(0,1)-orthonormal basis in L,(0,1), g has an
L,(0,1)-convergent representation

g=2 g.f, 2.4)
n=0
Recall that the coefficients are uniquely determined by

2= fe‘if _ (2.5)

[i]

So the only thing is to prove that (2.4) converges also in C(0,1).

Let k € Nand € > 0. Our aim is to find n, € N such that

N
q48-Y. 8, f)<e (2.6)
r=0

for all N 2 n,, which proves the theorem. Let the constants &, 0 < d < 1,
and C > 0 be as in Theorem 1.1. There exists an m € N such that the
following conditions are satisfied:

12m > 2k
22 4™ > m
32 C2™ < £ /64

Moreover, since continuous functions form a dense subspace of L, we
can find ¢ € C(0,1) such that
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fx) = g(x)_for xe Q,. 2.7)
and

Ig-gl,<e47'2C"([C+1)1C Y nd "™y, (2.8)

n=1

where C' = max {1, Ifyl, Ifil,}, Up + /g = 1. (We first take a § €
C(0,1) such that ||g-gl, is smaller than, say, haif of the number occurring
on the right hand side of (2.8). Then we take an open interval V, Q,,

V < [0,1], so that
( f lgim)'®
mbﬂ

is small enough. We define §(x) = g(x), if x € Q,,, and () = g(x), if
x ¢ V and extend ¢ continuously as line segments to the components of
W2,,.) Since the Franklin system is a basis also in C(0,1), we can find
a number n, € N such that

q(&-Y & [f)<el2 (2.9)

for all N < n, where g, = ngf

Let the sequence (z,)7_, < [0.1] of dvadic points be as in (1.2). We
divide N into two subsets N, and N,:

ne NNz, e Q 0 {01},
ne Nz e Q u {01} (2.10)
To prove (2.6) using (2.9) we now make some estimates concerning

the numbers g, and §,.

In the following considerations ¢ is defined by 1/p + 1/g = 1. In the
case ¢ = oo integrals must be replaced by suprema in the usual way.



Remarks on Bases in a Fréchet... 89

(a) For n € {0,1} we get (see (2.5) etc.) by the Holder inequality

I
18,-8,11 [(e-8) I<hg 21,171, <C"1g 41, @1
0

where C* = max{ LIl .k, 1, 1.

b) Assume that n € N, \ {0,1]. Since §(x) = g(x) for x € Q,,, (see
(2.7)), we get

|
g, &,1=1 [e-axnl< [ 1g &Il
0 A,

< f |g-21")""( f £, [9)"7. (2.12)
N, ML,

Applying Theorem 1.1 to the latter factor we see that (2.12) is not larger
than

Clg-8,( f lnd™ = odxyt, (2.13)
A,

Since z, € £}, by assumption, we have here | x - z, | > 1/2m for all x €
NQ,,, see (2.2). So, we get the estimate

"

|8,-8,|<Clg-gl \/nd ™. (2.14)

c) Assume that n € N,. We have again by (2.5) and the Hélder
inequality

|8, |<lgl, If. B, (2.15)

Using the normalization figl, = 1, Theorem 1.1 and the choice D<d<] we
get from (2.15)
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1
|gnlsc‘(fln I/2d nlx-z,| Iq)l/qSCn 1[2. (216)
0

On the other hand, if x € £, we get from Theorem 1.1 and 1°

f.(x)|<Cn 2d " H<Cn Vg 2k, 2.17)

since z, ¢ Q, and 0 < d < 1. Combining (2.16) and (2.17) we see that
g, £(x)|SC 2nd "™ (2.18)

holds for n € N, and x € Q,.

Replacing g by £ in the above argument yields also
|&, f,(x)|<2C *nd " (2.19)

for all n € N, and x € £;; note that ||, < 2, because of Jg|, = 1 and
(2.8).

We are now ready to prove (2.6). Let n, be as in (2.9). We have for
N 2 ny, by (2.7), 12, (2.9), (2.18) and (2.19)

N N
7.8y 8,1)=0.¢-Y 8.f)
n=0 n=0

N N
<qe-Y ¢, )Y (g,~8.))
a=0 n=0

Py
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N N
+qk(z gu f;l) +qk(z fén fn)
=0

neNy neMy

N N
<ef2+Y g, -&,lq(f)+3Y). Cnd"™. (2.20)

el neN,

We can further estimate, using (2.11) and (2.14), the fact that g,(f,} <
Cn'? (see Theorem 1.1) and (2.8)

E 2,8, |9,/ )<lg-81,(2C"(C+1) CZZ nd")<efd. (2.21)

n=2

msn,

To estimate the remaining term of (2.20) we remark that the smallest
number in N, is necessarily larger than or equal to m/2. This follows from
(2.10) and the definition of the numbers z,, (1.2). Hence, by 1°, 2° and 3°
above

N
Y Clnd™ <y Chd"™®<C?2) d™ (222

=0 nzmf2 nzmiz

neMy

<C %d ™ (1 -d ™¥<2C d ™Br<e [32.

Combining (2.20), (2.21) and (2.22) we get (2.26).

Let ¢:]0,1] — R be a continuously differentiable homeomorphism
such that @’(x) > O for all x € ]0,1[. It is elementary to see that the linear
operator

df = (9)"foo (2.23)

is an isomorphism from C(R) N L (R) onto C,,(0,1) M L,(0,1). This and
Theorem 2.1 yield.
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Theorem 3. Let (f,),_, be the Franklin system and let the operator
® be as in (2.23). The sequence (§¢'f,)7, is a Schauder basis in C(R) N
L(R) forallp, 1 <p<eo

Remark. It might be possible to prove the existence of basis in C(R)
N L(R) in the context of the general structure theory of Fréchet spaces,
but this would probably lead to a less explicit construction than the one
presented above. Note that in our case it is even possible to describe
analytically the coefficient functionals, by combining (2.5) and (2.23).

3. NONEXISTENCE OF UNCONDITIONAL BASIS

In view of the properties of the space C(J), it is natural to expect that
CR) n L(R) cannot have an unconditional basis. We now turn to the
proof of this fact.

Clearly, C(R) n L,(R) contains for all p, 1 < p < eo, subspaces
isomorphic to C(f). For example, the range of the map f — f from C(J)
into C(R) m L,(R) is such a subspace, if f is defined by extending the
function x — f(x), x € I, x = 0, x ¢ ]-1,2[, linearly to ]-1,0[ and ]1,2[.
The following fact now implies that C(R} n L (R) does not have an
unconditional basis for any 1 < p < eo,

Theorem 4. The Banach space C(I) is not isomorphic to any
subspace of a Fréchet space with an unconditional basis.

Remarks. After the first version of this paper was submitted, we
learned that J.C. Diaz already proved in his unpublished thesis [D] our
Theorem 4. However, since Theorem 4 is so intimately connected with
the properties of the spaces C(£2) M L,(£2), we feel that it is worthwhile
to present the proof in detail.

The proof of Theorem 4 consists of a generalization of the
corresponding statement in Banach spaces (see for example [LT], 1.d.1). .
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Having a look at the proof presented in {LT], 1.d.1 one finds that [K],
Theorem 4.3, should be useful to prove our Theorem. However, the
choice of a suitable basic sequence in the Fréchet space has to be done
so carefully that Kalton’s general result is not quite enough for our
purposes. In any case we shall use his ideas and his perturbation method,
Proposition 4.1 in [K].

We remark that Bellenot constructed examples of Fréchet-Montel
spaces which cannot be embedded in any Fréchet space with an
unconditional basis, see [B1], Theorem 4.1. On the other hand he also
proved in [B2] that any Fréchet-Schwartz space is isomorphic to subspace
of a Fréchet space with an unconditional basis.

Proof. We recall that if (e,),_, is an unconditional basis in a Fréchet
space (E,(p,);.,), where (p,)7., is an increasing system of seminorms
defining to the topology of E, then for all k € N there exists a(k) € N,
ok) 2 k and C, = 1 such that

N M
PY ex,e)SC, p(Y x,e,) (3.1)
n=1

n=1

foral NMe NNM2N, e, =00rt 1, x, e K It is perhaps not so easy
to find condition (3.1) in the standard references exactly in the above
form, but in any case (3.1) is a consequence of the definition of
unconditional basis and [J], Theorem 14.6.1(4): these and the Banach-
Steinhaus theorem show that (T,), . ,, where

D! 1.0.1
n=1

and
Tt:E x"en-az e xe, e=(g),
n=l n=1

is an equicontinuous family of linear maps on E.



94 Pdivi Mattila and Jari Taskinen

Suppose now that there exists a Fréchet space E with a unconditional
basis (e,),., having a subspace F isomorphic to L (/). We denote by
T:L(I) — F the corresponding isomorphism. Let (¢’,),., < £’ be the
sequence of the coefficient functionals of (e,).,. We denote by P,, ne N,
P, € L(E) the projection

Px=y" (e e,
=t

We may assume that the topology of E is determined by an increasing
system of seminorms (p,)%., satisfying

p(Tx)2lx|, for xe L,(I) and p (P x)<p,(x) for neN, xe E. (3.2)

(We replace p, by
x~ysup p (P x),

if necessary.) Let (r,),., < L,(f) be the sequence of Rademacher
functions, r,(f) = sgn (sin{2"nr)). It is known and easy to see that the
following is true:

127, f—> 0 weakly in L,({) as m — oo, for all fe L (I).
22 4f + r, fl, = 1A, in L) as m —> oo, for all f & L,(J).

Multiplication is defined pointwise here. We choose the sequences (x,);_,
c LD, k)., < Nand (m,);., < N inductively as follows. We denote

x=1, my=1 and k;=0. Assume that n € N and that x,, m, and £, are chosen
for ¢ < n such that

12<|x, +..+xl<2
for all ¢+ < n. Since r,, f ~> 0 weakly in L (7} for all fe L), it is clear

that T(r, /) — 0 weakly in E for all . Hence, we can find m, > m,_, such
that x,:=r, (x, + x, + ... + x,,) satisfies
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1/2<Hxl RS !L <2 (3.3

and

k

Y [(TxeMp ()2, (3.4)

=1

We choose &, > k,, such that

p(Y [Tx e ey<2. (3.5
t=k +1
Since |7, (f)| =1 for all m and t € I, we have |xl, = lx, + ... +
X1, so that (3.3) implies
12<x |, <2 (3.6)
for all n.
We define forallne N
k,
z,= Y (Txn,e,’)et, 3.7
=k +1

so that (z,),., is a block basis of (e,),.; and thus a basic sequence in E.
We denote by (w,)7., c E, the sequence of coefficient functionals of
(z,Yno1» Where E, =sp (z, | n € N).

We claim that the following is true:

i} The series X;_, (z, - Tx,) converges absolutely in E.
ii) The seminorm p, satisﬁes_
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Y 2p,(z,-Tx )<1 (3.8)

n=l

and

lw,(x)[<8p, (x) (3.9)

for all n € N and for all x € E,,

To prove 1) let £ € N, We have, by the choice of z, and (3.4) and
(3.5)

> pdz,Tx)
n=1

kn'l
<N p T )+ Y p (Y Tx e te)+Y p (Y Tx e )e)

n<k nzk t=1 nek =k +1

<Y pz,~Tx)+2y 27

n<k nzk

The statement (3.8) follows directly from (3.4) and (3.5):
k_, .
Pz, Tx)<p ) (Txﬂ,e,’)er) Y (Tx",e,’)e:)ST""‘.
=1

1=k +1

Ifx=X°_ 0.z, € E, we have, forall n, | w,(x)| = | &, /|, and on the other
hand, by (3.2), (3.8) and (3.6),
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2p,()2p, (P, x)+p (P, %)
?'pl(Pk.x_Pk__,dx):‘an |P|(Z,,)

227, |p,(Tx,)227 |ar, | v, I, 247 |ox |.

This proves (3.9).

The facts i) and ii) above and the choice of p,, (3.2), imply that
(Tx,),_, is a deformation of (z,),., in the sense of {K], Proposition 4.1
(take p,/8 for p, in [K]). So, (Tx,),., is a basic sequence equivalent to
(z,)>_,, according to the result just cited. Hence, also (x,);_, and (z,),., are
equivalent unconditional basic sequences. By [A], Theorem 3, and (3.1),
there exist indices n,, m and n,, and positive constants M,, M, and C,,
such that for all N > ng,n,

N '
supl}_ & x I, <M sup supp, (3 e,z)

€, =t] n=n, £ =l mSisN n=n,

N
M C, pm(z_lj z,)

M,C,, Py 2)+C, MM, sup |3 x|, . (3.10)
n=1

SN n=n,

Clearly, the first term here is independent of N. But also the second term
has an upper bound independent of N, because of (3.3). On the other
hand, by [W], Remark I1.D.7,
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(Z llx 2 )\?<Dsup |fZ e x|, (3.11)

r =%l =,

for a constant 2 > 0. Now (3.6) shows that this is a contradiction, since
the left hand side of (3.11) does not have an upper bound independent of
N.

So, we have shown that L,(/) is not isomorphic to any subspace of
a Fréchet space with an unconditional basis. This implies our theorem,
since C(J) contains a subspace isomorphic to L,(/).
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