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ABSTRACT. We present an explicit construction of a Schauder basis in the space C(R) n
L~(l) for ah p, 1 =p <co. This basis cannot be unconditionat, since WC give a proof of te
fact that te Banach spaces C(0,1) or L,(O,1) cannotbe embedded lix a Fréchet space with an
unconditionat basis.

1. INTRODUCTION

The purpose of this paper is to study questions concerning bases in
the Fréchet function space 12(R) n L,,(l) of continuous L,,-integrable
funcíions frorn 1 lino K (IX = 1 or<, 1 =p < oc lii Theorern 3 we show
diat 12(R) n L,,(R) has a Sehauder basis for ah p~ 1 =p < oc• Tus basis
cannot be unconditional, since we prove in theorem 4 that ¡be Banach
spaces 12(0,1) or L1(O,I) cannot be embedded in a Fréchet space With an
unconditional basis. ibis result generalizes the corresponding, WeIh-known
statement for Banach spaces.
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‘¡be siud>’ of these spaces is motiVated by the following facts.

1. Taking an intersection 18, of course, an elementary and concrete
way to define a space, the elements of Which have properties inherited
from both of the original spaces. In general, spaces defined using an
intersection new and Ihen occur in analysis, although their linear
topological siructure usually does not play an>’ role (see, e.g. [H],
Theorems 2.2.6, 3.8.2, 7.3.1). Qur study of spaces 12(R) n L,/R) is meant
as examples (rather iban a systematic research) of phenomena occurring
in the Strucíure of these kind of spaces.

2. ‘¡be space 12(R) n LJJR) 15 easily seen to be isomorpbic lo the
subspaceE of 12(R) x L>JR) spanned by elemenís of the form (ffl. Clearí>’,
because of its simple and concrete definition, E is in a sense a natural
subspace of 12(R) x L41). MoreoVer, 12(R) >< L,,(R) is isomorphic to a
complemented subspace of 12(R,L,,(O,1)), the space of continuous, L,,-
valued functions en R. So, the study of the spaces 12(R) n L,,(R) is
connected te the study of the aboye mentioned standard spaces of
analysis.

3. The structure of ihe spaces 12(R) n L,JR) is quite complicated and
thus interesting in itself, see [T] and [BTI.

We neW tum to the notaíions, definitioils and preliminar>’ results used
lil this paper. If Q a R», n> 1 is an open set, we denote by CWI)nL,,(Q),
1 =p < oc, ihe Fréchet space of continuous, L,,-integrable functions from
£~ into ~K.Ihe topology of this space is determined by the seminorrns

Pjh=(JVLP)It
o

pk(hsupLf(X)l, kcN (1.1)xc O

where (~LYht is an increasmg sequence of eompact subsets of Q, whose
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uiliOil is Q. For more details Oil diese spaces we refer to [BT].

A sequence (e,3t< in a Fréchet space E is called a (Sehauder) basis,

if ever>’ x e E has a unique representation as a convergent Sedes
Xe»,

,u’I

where X» e K. ibe basis (e»S< is called unconditional, if this sedes
converges unconditionally. The sequence (e»)1 a E is a basic sequence,
if it is a basis in its closed linear span. We refer to [J], Chapter 14 for
more detajis.

We shall need a special example of basis called the Franldin system
(f,)~. The elementsf», the Franklin functions, are continuous real valued
functions on the closed interval I:=[O, 1]. The Franklin system is obíained
applying the Gram-Schmidt orthogonalization procedure in L2(O,1) to the
Schauder system, which is a basis in 12(0,1), see [LT], p. 4, or especially
[KSjJ, VI.3 and VI.!. The Franklin system is a basis in 12(0,1) and L,,(O,1)
for 1 =p < oc, and it is an orthonormal basis un L2(O,1), see [KS],
Theorems VI.6 and 7. Note that if

~ g»f»,““o

then fue coefficients (g») can be calculated in
spaces from

alí of the aboVe mentioned

g»=fg¡,.
o

We shall need a result of Ciesielski
Corollary VI.4. Let n e N u [01 and leí

= 1, and for ti > 1,

[C], Theorem 1, see also [KS],
z» e [0,1] be defined b>’ z0 = O,

= (2L - (1.2)
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WherekandiareSuchthatke ¡O} uN,ie Ti 1 <i<2Landn=2k+i.

Theorem 1. Ler tite numbers z,,, ti e N, be as Ln (1.2). Títere eXLst
absolure constants 12 > O and d, O <d c 1 such that

[LA?:)¡=Cn¡nd»l>z,I

for al? ti e Natid al? r e [0,1].

2. EXISTENCE OF BASIS: AN EXPLICIT CONSTRUCTION

In tbis section We show dial 12(l) n L,/I) has a Schauder basis for
allp, 1 =p < oo• ‘¡‘he strategy of the proof is as follows: we show thaI the
Franklin system is a basis in the space C~jO,I) n L,,(O,1), which is ihe
space of continuous L,,-integrable functions on the open interval ]O,1[. It
is then easy to see that this space is isonxorphic to 12(R) n L,,(R) so that
We get the desired basis.

We define 121Á0,1) as the Fréchet space of continuous K-Valued
functions on the open interval ]O,1[, endowed with the seminorms

q~(fl=sup{1f(X) II, (2.1)
xe 12,

where k e N and

= [í/k.1 - 11k]. (2.2)

The algebraic definition of Cioc(O,
1) n L,,(O,1), 1 =p < oc, Wa5 already

mentioned aboVe. ibe íopology of this Fréchet space is determined by fue
increasing system of norms

(q,< + II ¡k,,)~
1, (2.3)

where It/li,, = (f’ ftx) ¡~dx)
t>P
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Theorem 2. The Fratiklun system I9~ Lx a Seitauder baxLs ¡ti

Strictly speaking, the elements of the Franklin system are functions
defined on the closed interval [0,1]. Here We take the restriction of eaeh
f» to ]0,1[. ibis does not cause any confusions.

ProíS. Let g E 12<«(O,l) n L/0,lt it is not a restriction tu assurne
= 1. Since (/),% is aix k(O,1)-orthonorrnal basis in L,/O,1), g has an
1 )-conVergent representation

Recail thai the coefficients are uniquely determined by

g»=J’gjjj,. (2.5)
o

So the only thing is tu prove that (2.4) converges also in 12~~~(O,1).

Let k e Ti and E > 0. Our aim is lo frnd ti0 e Ti such that
N

qL(g~ g» f>cE (2.6)
n“O

for ahí N =ti0, which proves fue theorem. Let fue constants d, O < d < 1,
and 12 > O be as in Theorem 1.1. There exists an ni e Ti such that fue
folioWing conditions are satisfied:

ni >2k

30 c2rL < c/64

Moreover, since continuous functions forrn a dense subspace of L,,, ~e
can find g ~ 12(0,1) such fuat



88 ?ñivi Matrila ami Jan Taskitien

g(X)=g(X)forXe Q2», (2.7)

and

IIg—giI,,CE4
t(212 ‘(12+1) -<-12 2Y tid »ru>)-I, (2.8)

n=l

Where 12’ = max fl, ItfoIkq~ lLfíI¡q}, hp + íIq = 1. (We first take a g e
12(0,1) such that ~¿-gIi,, is smaller than, Sa>’, half of the number occurring
on the right hand side of (2.8). Then WC take an open interval ~ C
V c [0,1], 50 that

~1~g¡P)IIP

is anialí eilough. Wc define g(x) = g(x), if .x e (12»,, amI «x> = <~(x), if
x ~ V and extend ~ continuousl>’ as line segments to the components of
V’.Q

2a,.) Since the Franklin system is a basis also in 12(0,1), we can fxnd
a number ti0 e Ti such diat

N

qL(g-Y ~»f)oj2 (2.9)
~i=0

for alt N =ti0 Where ¿» =

Let the sequence (z»)”4 c [0,1] of dyadic points be as in (1.2). We
divide N mio tWo subsets N1 and N2:

it e <=> z» e fI», u {0,1 j,
it e 14, ~ z» ~ (1», u (0,1}. (2.10)

‘¡‘o prove (2.6) using (2.9) we noW make sorne estimates concerning
the numbers g» and g,,:

In the folloWing considerations q is defined by ‘Ip + 1/¿¡ = 1. In ihe
case q = oc integrals must be replaced by suprema in dxc usual way.
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(a) For ti e 0,11 we get (see (2.5) etc.) by the Hólder inequality

ijig-~í. I=IIg~AI~I[4IIq=12’IIg~~4¡I,,,
ti

(2.11)

Where 12’ = max¡ 1~ItfoIkq~ILfíl[qI.

b) Assume thai ti e N1\¡O,lI.Since~(X)=g(X)forXe fI~», (see
(2.7)), we get

g» -A, I = f(R -Alt, 1=
o

•flg ~¡v¡

f [flq)I/q

Afl,

(2.12)

Applying Theorern 1.1 to the Iatter factor we see that (2.12) is not larger
iban

(2.13)
bus,

Since z» e (2», b>’ assumption, we haVe here IX - z» ¡ =1/2ni for alí X e

see (2.2). So, we get fue estimate
(2.14)

c) Assume that ti e ~2• Wc haVe again by (2.5) and the Hólder
ineqLxality

(2.15)

Using the normalization IigII,, = 1, Theorern 1.1 and the choice Ocd<1 we
get from (2.15)



90 ?ñivi Mattila atid Jan Taxkuneti

¡g,j=CQf (2.16)¡ti I/2~¡flIXZI ¡Q)lAKCn 1/2

On ihe other hand, if X C ~k, WC get frorn Theorem 1.1 and jQ

(2.17)

since z,, ~ fIa,and O c d < 1. Cornbining (2.16) and (2.17) we see thai

¡g» f/x) j=12
2nd»nL

holds for ti e Ti
2 and x e (4.

Replacing g b>’ ~ in ihe aboye argurnent yields also

¡A. fft) ¡=212
2tid»aL

for all ti e 1% and X E ~L; note that ~g¡I,,=
(2.8).

We are now ready to prove (2.6). Leí ti
0

N =ti0, 1,>’ (2.7), F, (2.9), (2.18) and (2.19)
N

2, because of ¡PgIk,, = 1 and

be as in (2.9). We haVe for

N

qL(g Y g, .1») qk(g-Y g» f)
n0 n—O

N N

(2.18)

(2.19)

n=iJ n=Ú
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N N

n=O

N N

4j2 +~ ¡ g» -g, ¡ q~(t,) ~ 12 2nd »‘~“. (2.20)
n4=

,.nI

We can further estimate, using (2.11) and (2.14), fue fact diat q~(f») =
12n1’~ (see Theorem 1.1) and (2.8)

N

Y ¡gg¿ ¡q~(f)=Ng-Ñfl,,(2C‘(12+1) +12 2~ tid »~“9=t/4. (2.21)
n=6 n2

‘¡‘o estimate the remaining term of (2.20) we remark that the smallest
number in N

2 is necessarily larger dian or equal to ni/2. ibis follows from
(2.10) and the definition of fue numbers z», (1.2). Hence, by 1~, 2~ and 32
aboye

~ ~ =Y 12
2iid»’~ =12~ Y d~l¿4L (2.22)

n0 n=,n/2 n=ns/2

=122d’u>skI(1 -d’u’8’9=2C2d’u/SLczEI32.

Combining (2.20), (2.21) and (2.22) we get (2.26).

Let q:]O,1 [-41 be a continuously differentiable homeomorphism
such that p’(X) > O for alt X E ]0,l[. It is elementar>’ to see that the linear
operator

.4 (<p’)14’f o 9 (2.23)

is an isomorphism from 12(R) n L,,(R) onto 12~~(0,1) n L,,(O,í). This and
Theorem 2.1 yield.
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Theorem 3. Le: f~)~ be rite Fraitklin xystem atid let tite operator
~ be as Ln (2.23). Tite sequeitce (~1f»)% Ls a Schauder basis in 12(R) n
L,,(R)forallp, 1 =pczoc•

Rernark. It might be possible to prove ihe existence of basis in 12(R)
n L,,(R) in the context of Ihe general síructure theory of Fréchet spaces,
buí Ihis would probabí>’ lead to a less explicit construction than the one
presented aboye. Note thai in our case it is even possible to describe
analytically Ihe coefficient functionals, b>’ combining (2.5) and (2.23).

3. NONEXISTENCE OF UNCONDITIONAL BASIS

In view of the properties of the space 12(1), it is natural lo expecí thai
12(R) n L,,(R) cannol have an unconditional basis. We now íum to the
proof of ibis fact.

Clearí>’, 12(R) n L,,(R) contains for alt p, 1 =p < 00~ subspaces
isomorphic lo 12(1). For example, Ihe range of the map f —4 f from 12(1)
mb 12(R) n L,,(R) is such a subspace, iff is defined by extending Ihe
funclion X —>ftX), x e 1, X —* O, X C ]-l,2[, linearí>’ lo ]-1,O[ and ]l,2[.
‘¡be folloWing fact now implies that 12(R) n L/R) does nol haVe an
unconditional basis for any 1 =p < 00•

Theorem 4. Tite Baitacit space 12(I) Ls tiot LsoniorphLc to aiiy
xubxpace of a Fréchet xpace with an unconditional basis.

Remarks. After Ihe firsí version of ihis paper Was submitied, we
leamed thai J.C. Ofaz already proved in his unpublished ihesis [D] our
Theorem 4. HoWeVer, since Theorem 4 is so intimatel>’ connected With
the properties of ihe spaces 12(fI) n L,,(fI), we feel thaI it is worthwhile
lo presení Ihe proof in detail.

The proof of Theorem 4 consisís of a generalization of the
corresponding siatemení in Banach spaces (see for example [LT], 1.d.1).
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HaVing a look at the proof presented in [LT], 1.d.I one ftnds that [K],
Theorem 4.3, should be useful to prove our Theorem. However, the
choice of a suitable basic sequence in the Fréchet space has to be done
so carefulí>’ that Kalton’s general result is not quite enough for our
purposes. In any case we shall use his ideas and bis perturbation rnethod,
Proposition 4.1 in [K].

We remark that Bellenot constructed examples of Fréchet-Montel
spaces Whiclx cannot be ernbedded in any Fréclxet space With an
unconditional basis, see [BI], Theorem 4.1. Qn the other lxand he also
proved in [B2]that any Fréchet-Schwartz space is isomorphic to subspace
of a Fréchet space With an unconditional basis.

ProíS. We recail that if (e), is an unconditional basis in a Fréchet
space (E,(p~)t1), Where (PDk-I is an increasing sysiem of seminorrns
defining to the iopology of E, then for alí k e N there exists cgk) e N,
a(k) =k and C~ =1 such thai

N M

forallN,Me N,M>N t =Oor±l,X»e K.Itisperhapsnotsoeasy
to find condition (3.1) in the standard references exaeíly in íhe aboVe
form, but in an>’ case (3.1) is a consequence of the definition of
unconditional basis and [J], Theorem 14.6.1(4): these and the Banach-
Steinhaus theorem show that (Tr)rco~ where

D=fl <-1,03>
,rI

and

EXe, E=(e)»~,
‘1=!

is an equicontinuous family of linear rnaps on E.
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Suppose flOW that there exisís a Fréchet space E with a unconditional
basis (e)1 having a subspace E’ isomorphic to L1(I). Wc denote by
T:L<Q) —> E’ tlie coaespondíng isornorphism. Let (e’»)1 c E’ be the
sequence of dic coefficient funcúonals of (e»)1. We denote by ?», iie

e L(E) the projection
n

?X=Y (x,e,’>e,.
f=1

We may assume that the Éopology of E is determined by an increasing

system of seminorms (p,j~1 satisfying

p1(TX)=IIxlI,for XCL,(I) and p<(I’»x)=p1(x)forneN, XCE. (3.2)

(We replace p1 b>’

X—*xup p<(P»x),
JI

if necessary.) Let (r»,)1 a L1(I) be dxc sequenee of Radernacher
functions, r,,/t) = sgn (sin(2”’it:)). It is known and easy to see thai dxe
folloWing is true:

W r,,f—* O Weakl>’ in 4(1) as ni —> ec, for aIIf e L1(I).
2~ ¡fi- r~RL —> IL/iL, in L<(I) as ni —4 00 for allf e L<(1).

Multiplication is defrned pointWise here. Wc choose the sequences (Xj<
a L1(I), (kk)1 a 14 and (~»);, a N inductiVel>’ as follows. We denote
x0=I, pn0=1 and k0=O. Assurnc thai n e 14 and that X,, rn, and k, are chosen
for r < ti such thai

for alt t <ti. Since ra,f—> O Wcakly in L1(1) for allf e 4(1), it is clear
that T(r~f) —*0 weakl>’ in E for aIlf. Hence, we can find m, > ni»~< suclx
that X»:=r,,jX1 + + ... + x»<) satisfies
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and

(3.3)l/24x1 +X2++xIC2

,=1

(3.4)

Wc choose k~ > ¡c~~ such that

(3.5)
t=k +1

Since ¡ rm(t) ¡ = 1 for alt ni and t e 1, we have IIXnIIL ¡1x1
X~4 “LL so that (3.3) implies

1/2.IXIL<2 (3.6)

for alt n.

Wc define for aH n e N

>3 (3.7)

so that (z»)t~ is a block basis of (e~41 and thus a basic sequence in E.
Wc denote by (w~)~1 a E0 the sequence of coeff¡cient functionals of
(z~)1, where E0 = sp (z~ 1 n e N).

Wc claim that the following is true:

1) The sedes E~ (z~ - Tx~) converges absolutely in E.
II) The seminorm p1 satisfies
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>3 2p~(z~-Tx)<I

Iw~(x)j=8p1(x)

for alt a e N and br aH x e E~.

To prove 1) la k e N. Wc have, by the choice of z~ and (3.4) and
(3.5)

>3 Pk(zn~x)
rl

k

=>3pk(zfl—Txfl)+>3 p~(>3 <Tx,, 7>e~)-’->3p~(>3 <Tx~,e,9e,)
n’zk n=L r=1 n=k r=k .1

nck
Pk(Zfl -Tx) ±2>3~

n~k

Ihe statement (3.8) follows directly from (3.4) and (3.5):

t=k +1

Ifx=Z1 cx~z~ cE0, wc have, for alt n, w,,(x) , and on thc other
hand, by (3.2), (3.8) and (3.6),

and

(3.8)

(3.9)
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2g(x)=p,(Pkx)+p, (¡‘k ~
1x)

=pI(Pkx—Pk_÷1x)=Ia~Ip1(z~)

This proves (3.9).

The facts i) and ji) aboye and thc choice of p1, (3.2), imply that
(Tx~)1 is a deformation of (za).., in thc sense of [K], Proposition 4.1
(takc PI!

8 for Po in [K]). So, (Tx~)7,
1 is a basic sequence equivalcnt to

(z~)7,1, according to dic result just cited. Hence, also (x~)~ and (z~)1 are
equivalent unconditional basic sequences. By [A],Theorem 3, and (3.1),
diere cxist indices n0, ni and a,, and positive constants M1, Mm and Cm
such that for ah N> n0,n1

5
sup ¡>3 CXIIL ~¶‘f1~~pSUPP(>3 t0z)

r±l ~~1,=~=Nnn

5

=M,C Ptgm>(>3 z~)
n1

II 1

=M1C >oa<,,,/>3 Zn) +CmMiMm SUP 11>3 XnIIL. (3.10)
11=1 n4=N

n=n

C]eariy, the first term here is independent of N. But also the second tcrm
has an upper bound indcpcndent of N, because of (3.3). Qn thc other
hand, by [W], Remark II.D.7,
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N N

(>3 IIx~III)ín=DsupIi>? SXIIL (3.11)
- -o

for a constant D > O. Now (3.6) shows that this is a contradiction, since
the left hand gide of (3.11) does not have an upper bound independent of
N.

So, we have shown that L1Q) is not isomorphic to any subspace of
a Fréchet space with an unconditional basis. This implies our theorem,
since C(F) contains a subspace isomorphic ir
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