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REMARKS ON CHACON'S BITING LEMMA
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(Communicated by Barbara Lee Keyfitz)

Abstract. Chacon's Biting Lemma states roughly that any bounded sequence

in Z.1 possesses a subsequence converging weakly in L1 outside a decreasing

family Ek of measurable sets with vanishingly small measure. A simple new

proof of this result is presented that makes explicit which sets Ek need to be

removed. The proof extends immediately to the case when the functions take

values in a reflexive Banach space. The limit function is identified via the Young

measure and approximations. The description of concentration provided by the

lemma is discussed via a simple example.

1. Introduction and main result

The purpose of this note is to give an elementary proof of the following result.

Lemma. Let (il,&~,ß) be a finite positive measure space, X a reflexive Banach

space, and let {fU)} be a bounded sequence in L (Q;X), i.e.

sup [ \\fU)\\xdß = C0<c*.
j  Ja

Then there exist a function f g L (£l;X), a subsequence {/*"'} of {f } •

and a nonincreasing sequence of sets Ek g & with \imk^ooß(Ek) = 0, such

that

f{") - /       weakly in Ll(Q\Ek;X)

as v —► oo for every fixed k .

In the above L (Çl; X) denotes the Banach space of (equivalence classes of)

strongly measurable mappings g : Q, —► X with finite norm

llsll, = / UWx^-
Jo.

Since X is reflexive, the dual L](Q;X)* of Ll(Q;X) can be identified with

the space L°°(Çl;X*) of strongly measurable mappings h: Q—> X* suchthat
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656 J. M. BALL AND F. MURAT

WhW^ = esssupQ\\h\\x. < oo (cf. Diestel and Uhl [6, pp. 98, 76], A. and C.

Ionescu Tulcea [10, p. 95]).

For X — R the lemma is stated and proved in Brooks and Chacon [5];

another proof, due to Thomsen and Plachky, appears in Plachky [14, pp. 201-

202], and is reproduced in Balder [2] but, as pointed out by M. Valadier and

E. Balder after the publication of [2], the argument seems to be incomplete.

The extension to the case where X is a (separable) reflexive Banach space has

been independently given by Balder [3]. This extension is not difficult to obtain

and is not the main goal of the present paper.

The result is a useful tool in some variational problems where there is only an

L bound on minimizing sequences. One such use has recently been made by

Lin [11] in a study of the pure traction problem of nonlinear thermoelasticity;

he observed that for X = R the lemma could easily be deduced from a related

lemma of Acerbi and Fusco [1].

Our purpose is providing yet another proof of the lemma here is that our

proof is based on different principles and seems to us simpler and more construc-

tive; in particular it makes rather explicit which sets Ek need to be removed

from Q, to recover the weak L convergence. The only nontrivial result neces-

sary for the proof is the Dunford-Pettis criterion for weak compactness in L .

Provided an appropriate Banach space valued version of this criterion is used,

the proof for the case when A1 is a reflexive Banach space is no harder than

that for X = R.

To illustrate some features of the lemma, consider now the case X = R.

Since H/'"'!!, < C0 it follows that, up to the extraction of a further subse-

quence, f(v) converges weak* to some limit, ß say, in the sense of measures.

In general there is no connection between / and ß , even if ß is an L func-

tion (see Example 2, page 661, which also shows that the sets Ek cannot in

general be chosen to be closed). The difference between / and ß measures the

amount of concentration in the sequence (cf. P.-L. Lions [12, 13]), provided

the f(j) are nonnegative (for general f~j) there is the possibility of cancella-

tion of positive and negative concentrations, so that a suitable measure of the

amount of concentration is obtained by considering \f   | in place of /    ).

2. Proof of the lemma

Let {fU)} satisfy (1) and for / > 0 define

<¡>j(l)= [ \\fU)\\xdß.

Then

(i)   <pj(0) = \\fU)\\l<C0;
(ii)   for each j, <p .(•) is nonincreasing and upper semicontinuous (the up-

per semicontinuity follows, for example, by considering the points x0 where
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||/(7)(x0)||x  >  /  and the points  x,   where   \\f-  (x,)^  < /, and applying

Lebesgue's Dominated Convergence Theorem;

(iii)   <Pj(l) —> 0 as / —► oo, for each fixed j.

By these properties and the Helly Selection Theorem we can extract a subse-

quence, again denoted fU), such that

a(l) dâf lim cp(l)
J—»OO      J

exists for all / > 0. Clearly a(-) is nonincreasing. Let a^ = lim^^ a(l).

Case 1. a^ — 0. In this case the subsequence {/ } is sequentially weakly

relatively compact in Ll(Q;X). In fact given e > 0 we can choose /Q suffi-

ciently large so that q(/0) < e, then j0 sufficiently large so that <pAl0) < £ for

all j > j0 , and then /, > /0 sufficiently large so that ç» ■(/,) < e for all j < j0 .

Thus #>(/,) < e for all j, so that by a Banach space valued version of the

Dunford-Pettis Theorem (A. and C. Ionescu Tulcea [10, p. 117], Diestel & Uhl

[6, pp. 101, 76]; the reader interested only in the case X = R can consult, for

example, Edwards [9, p. 274]) there exists a further subsequence {/ } which

converges weakly in Ll(Q;X) to some / G l'(Q;X), so that the conclusion

of the lemma holds with all the sets Ek empty.

Case 2. a^ > 0. In this case we claim that there exists a subsequence / —► oo

such that  (pXlj) —► a^ .   Indeed, we can define  /   = sup{7 > 0: «.(/) >

a^ — /""}. The supremum is attained because (p (/) —> 0 as /-»oo and tp

is upper semicontinuous. If {/ } contained a bounded subsequence {/„} then

we would have <p.,(l') < a^ - (í)~ for any /' > sup,,/,, ; letting y tend to oo

gives a contradiction since a(-) is nonincreasing. Hence / —> oo . Also, for any

m > 0,

aœ - /     < q>.(/ ) < <p (m)       for j sufficiently large.

Hence a^ < lim,       <p(l)<iim        (p (I ) < a(m), and letting m —> oo gives
CX) j     * OO       J      j J     ► OO       J      J

fjdj)
We next claim that

m sup
' {m<Uuy\\x<lj}

(1) lim supí \\fU)\\Y
"!^°°7>I J{n

To see this, note firstly that

S(m) d^ sup f \\fiJ)\\xdß
;>1 J{m<\\ßJ'\\x<lj}

is nonincreasing, and secondly that

S(m) =     sup    [(Pj(m) - pj(lß].
j> 1 . Ij>m

Given any e > 0 , there exists m{ such that a(m{) < a^ls . Then there exists

j0 such that if j > j0 then  (p (m,) < a(m}) + e and 9»,■(/,-) > ^^ - e , and
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658 J. M. BALL AND F. MURAT

hence

VjimJ-Vjilj) <a(mx) + e-aoo + e< 3e.

Choosing m, such that m, > m, and m, > max.     /   we deduce that
"        l Z 1 I J<Jo   J

S(m2) < 3e,

which proves (1).

Given S > 0, choose a new subsequence, again denoted {/ }, such that

CEj 171)C0 < S . Let E = Uydl/^'lli > /y} • Then since

^{{11/% >/,})'< / \\fU)\\xdß<C0,

we have ß(E) < ô , and

lim sup / \\fU)\\xdß <  lim sup / \\f{l)\\xdß = 0.
m^°° ;>1 </{||./V>||jr>m}\£ m^°° ;>1 J{m<\\ßJ)\\x<lj}

Hence by the Banach space valued Dunford-Pettis Theorem {/ } is sequen-

tially weakly relatively compact in L (Q.\E;X). Repeating this procedure for

ô = k~ , k = 1,2, ... , and taking successive subsequences, we obtain a diag-

onal subsequence {j' }, a nonincreasing sequence Ek of /i-measurable sets

with limk^ooß(Ek) = 0, and a strongly /i-measurable function /: Q —> X,

such that / -» / weakly in L (Ci\Ek;X) for every k. Since each Ek

differs from a set in 9~ by a set of measure zero we can suppose that L^. G &

for each /:. Finally, we have that

/    ll/IU*<!im/    ||/(p,||x^<c0,
JSl\Ek v^oo JQ\Ek

so that letting k -+ oo we deduce that /ei (£l;X). This completes the proof.

Remarks. 1. The use of Helly's Theorem in the proof is not essential; it suffices

to extract a subsequence of the <p   which converges for each positive integer /.

2. The function / is unique in the sense that if there exists a subsequence

{/(l/)} and two families Ek , Ek of measurable sets as in the lemma such that,

for each k, /(l/) - f in Ll(Q\Ek;X) and f(l,) - / in Ll(Q\Êk ;X), then

f = f. This follows since, by a suitable choice of test function, f = f a .e. in

Q \ (Ek U £'Ar) for each k .

3. Identification of / via the Young measure and approximations

In this section we show how the function / in the lemma can be identified

in terms of the Young measure and various approximation procedures such as

truncation. For simplicity we restrict attention to the case X = Rm ,// = «-

dimensional Lebesgue measure, flcR" //-measurable with ß(Cl) < oo.

Since sup(, ||/ ||, < oo there exists a family (ux)xeQ of probability mea-

sures on Rm (the Young measure), depending measurably on x, and a further
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subsequence, again denoted {/'"'}, with the following property (cf. Ball [4]):

if g : Rm —> R is continuous, if A c Q is //-measurable, and if

g(r])- z       weakly in L (A ; R),

depends on g ) and

then g(-) G L (Rm ;u ) for a.e.   x G A  (where the exceptional set possibly

= /   g(X)dvx(X)ä^(ux,g)
Jr™

z(x) =       g(X)dv(X) = (i>„,g)       a.e.xeA.

Applying this with A = Í2 \ Ek and g(X) = Xj, where X - (Xl , ... ,Xm), we

deduce that the / defined in the lemma is given by

f(x) = (ux,X)= [   Xdux(X)
Jw

a.e. xefi.

We now suppose that continuous functions gk: Rm —> R'" , k — 1,2, ... ,

are given satisfying the conditions:

(i) 8k W —* X as k —> oo , for each fixed X G R'" ,

(Ü)  \8kW\ < C, ( 1 + |A|) for all Ä:, all Xe Rm , where C,  is a constant,

(iii) \iml.l^oo\X\-l\gk(X)\ = 0 for each k.

The conditions (i)-(iii) hold in the following important cases:

(a) (truncation at level k )

gk(X) = W(k~{\X\)X,

where
il if 0 < t < 1 ,

¥(t) = \      ,w     If1 if í > 1.

(b) (approximation by l/p -th powers)

where pk■> 1, \imk^oopk = 1.

Then we have the

Proposition. For each fixed k there exists fk G l'(Q;R'") such that as v —> oo

8k(f(P))- fk       weakly in Ll(Q;Rm).

As k —> oo.

fk —► /      strongly in L ' ( Q ; R'" ).

Proof. Fix k . By (iii),

lim [ kfc(/")W)|dr = 0
i^°°J{\fi»'\>i}
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660 J. M. BALL AND F. MURAT

uniformly in v . Thus by the Dunford-Pettis Theorem gk(f   ) is sequentially

weakly relatively compact in L1 (Q ; Rm). Hence by the properties of the Young

measure given above,

8k(f"])- fk       inL,(Q;Rm),

as v —► co , where

(3) fk(x)= f   gk(X)dux(X)       a.e.xGfi.

To prove the L (Q;Rm) convergence of fk  to /, we use the dominated

convergence theorem. We note first that the function F defined by

F(x)= f   \X\dux(X)
Jw

belongs to L (Q ; R) ; this follows by applying the lemma to the sequence {\f |}

and using the properties of the Young measure given above with g(X) = \X\.

From (ii), (3) we deduce that

\fk(x)\ < C,(l +F(x))        for a.e. x G Q.

It thus suffices to show that fk(x) —► f(x) for a.e. x G Ci. But this follows

from (i), (ii), (3) by a preliminary application of the dominated convergence

theorem to the sequence {gk(-)} in L (Rm \ux) for x fixed; indeed the upper

bound C[( 1 + |A|) in (ii) belongs to l'(R'" ;ux) since F(x) is finite for a.e.

x G Q.

Remark 3. It is easily shown that in the cases (a), (b) above the convergence

of 8k(f("]) to fk holds weak* in L°°(Q;Rm) and weakly in LPk(Ci;Rm),

respectively.

4. Examples, and discussion about concentrations

Example 1. The following statement is false: given any bounded sequence {/ }

in L (Q;X) and any ô > 0, there exists a subset E c Q. with ß(E) < ô such

that {fij)} is sequentially weakly relatively compact in L1(Q\£';A'). Consider

the case X = R, Q - (0,1) with Lebesgue measure, and the sequence {/;' },

j, k = 1,2,...,// A:, defined by

f-k(x) = { qkl ^X€(qj-qk,qj+qk),

\ 0 otherwise,

where {q.} is an enumeration of the rationals in (0,co). Note that fa\fJ' \dx

< 2. Let A c (0,1) have positive Lebesgue measure. We show that, for

arbitrary / > 0, there exist an infinite number of pairs of j , k such that

/ \fJ'k\dx>\.
J{\P*\>l}nA
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REMARKS ON CHACON'S BITING LEMMA 661

In fact, let x0 g (0,1 ) be a point of density of A . Then there exists r e (0,1    )

such that meas{(x0 - r, x0 + r) n A} > 2r ■ |. Let q. —► x0 , qk —► r, where

q., qk are rationals and qk < l~  . Then

/ \fJ'k\dx = q~l meas{(fl. - qk,q, + qk)C\A}
J {\P-k\>l)r\A j       k    j       k

r~ meas{(x0 - r,xQ + r)C\A) > -,

as j, k —► oo.

Example 2. We take X — R, Q = (0,1) with Lebesgue measure, and define

for ; = 2, 3, ... ,

fU\x) =

f //2 forx G (k(j+ I)"1 -f3, k(j+ I)"1 +j~3)

k = I,...,;,

0 otherwise.

Then ||/(7)||, = 1 for each j , and it is easily proved that / -^ 1 in the sense

of measures. We now identify the function / and a possible choice of the sets

Ek of the lemma. We take

(4) Ek=\J{fj)¿0},
j>k

corresponding to the choice / = j ¡2 in the proof of the lemma. Then, since

meas{/(/) + 0} = 2f2,

meas Ek < Y, %j~   —► 0       as A: —> oo,
}>k

and if x g Q. \ Ek , fU)(x) = 0 for all j > k (so that in particular fU) —» 0

a.e. in (0,1)). Hence / = 0. In this example we do not need to extract a

subsequence.

Since / is unique (see Remark 2, page 658) and since lim -^^ J[ fU) dx =

meas/ for any open interval / c (0,1), it follows that the sets Ek cannot be

chosen to be closed.

In Example 2, the weak* limit of yJ in the sense of measures (or, more

precisely, the difference 1 - 0 between the weak* limit of f(j) and the / of

the lemma) sees the concentrations of f{1) as being in the limit smeared out

uniformly throughout Q. The same is true of the generalized Young measure

of DiPerna and Majda [7], which in this example is constant in Q. The lemma,

on the other hand, shows that in general the concentration takes place on pro-

gressively smaller and smaller sets. In Example 2 there is even a set of points,

whose complement is of arbitrarily small measure, at which the / are for

large enough j identically zero, and it does not seem satisfactory to describe

these points as being points of concentration.
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662 J. M. BALL AND F. MURAT

An attempt to give a precise meaning to concentration sets, in a context dif-

ferent from but related to ours, has been made by DiPerna and Majda [8] for

the purpose of applications to the Euler equations of fluid mechanics. They con-

sider, for example, the case of a sequence v converging weakly in L (Q;R)

to v , say, where Q c Rm is open, and define the associated 'reduced defect

measure' 8 as the outer measure

ö(ß) = limsup f \vU) -vfdx,
j—i-oo    J B

for any Borel subset B of Q . They then define the 'concentration sets' for 6 as

the Borel sets E for which Q \ E is a countable union of null sets of 6 . Thus

they are interested in detecting on which sets an L weakly convergent sequence

converges strongly, while in this paper our goal has been to isolate the sets where

a bounded sequence in L is not weakly convergent in L . We may nevertheless

try to apply these definitions to Example 2 by setting v(j = (f ) , v = 0.

However, the conclusion is unfortunately that any Borel set E (including the

empty set) is a concentration set. To prove this we set G = <~)k>2Ek , where the

Ek are given by (4). Then G is a Borel set of Lebesgue measure zero, and by

the definition of 6 is hence a null set for 6. Then, since Q\Ek is a null set

for 6 , the equation

il = Gl)\JiCl\Ek)
k>2

shows that the empty set is a concentration set, and it is easily proved that any

Borel set containing a concentration set is itself a concentration set.

These remarks suggest that the tools presently available do not give as com-

plete a description of concentrations as one might desire.

Added in proof. We are grateful to M. Valadier for having pointed out to us

the paper of M. Slaby, Strong convergence of vector-valued pramarts and sub-

pramarts, Probability and Mathematics, 5 (1985) 187-196, who proves a result

essentially equivalent to the Biting lemma by an argument similar to ours. Some

ingredients of the argument also appear in P. L. Lions [12 Lemma 1.1].
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