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Remarks on Classical Unstable Particles 

and the Long-Range Scalar Field 

J. Leite LOPES *l 

Laboratoire de Physique Tluiorique et rlautes Energies, Orsay, Frauce**' 

(Received November 22, 1966) 

A possible description of unstable particles, classically defined as those with a rest-mass 
depending on proper time, is examined. If one assumes the equality between inertial and 
gravitational masses valid for both stable and unstable particles, a universal interaction between 
a zero-mass scalar field and all particles, which would thus have a variable rest-mass, is allowed 
by this equality and has been proposed by Dicke in connection with Mach's principle. 

§ l. Classical equation of an unstable particle 

A typical example of an unstable system described by classical theory is 
the Lorentz model of the hydrogen atom. As this system emits radiation con­
tinuously, its energy decays in time. 

Let us now consider an unstable elementary particle, for instance, a neutron. 
Its decay into a proton with the emission of leptons is usually pictured as a transi­
tion of a nucleon from a neutron to a lower rest-mass proton state. Quantum 
mechanically, as is well known, this transition is a result of the Fermi cou­
pling between the nucleon and lepton fields, which allows the difference in rest­
energy between the neutron and proton to be transformed away as an electron­
antineutrino pair. Classically, this picture may be translated in the statement 
that the nucleon-energy decreases in time and is radiated away. 

One is thus led to examine the classical definition of an unstable particle 
as one, the rest-mass of which, /). 0, is not a constant but depends on the particle's 
proper time s : 

tto = ,tlo (s). 

The equation. of motion of a free stable particle : 

dz{" 
moe- -=0 

ds ' 

(1) 

*l On leave of absence from Faculclaclc Nacional de Filosofia and Centro Brasilciro de Pcsquisas 
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des Sciences.-91 Orsay, ·France. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/37/4/738/1878166 by guest on 21 August 2022



Remarks on Classical Unstable Particles 739 

ua = t.Jza , ds2 = dzcrdza = (dz0) 
2 - (dzk) 2 

ds 
, (2) 

will be replaced, for an unstable free particle, by the phenomenological equation 

(3) 

where Da--the disintegration, mass-change, force---is the four-force that accounts 
for the particle's decay. 

Equation (3) and the normalization 

(4) 

lead to 

(5) 

hence 

· d/lo UaDa = C ---- ------
ds 

(6) 

In the case of the neutron beta-decay, if one were to ascribe this trans­
formation to such a force na, the rate of work of this force would have to be 
equal to a radiated energy of about (c2/r') (mN- mJI) MeV /sec, where mN and JnH 

are the neutron and the hydrogen atom rest-masses and r is the neutron lifetime. 
If the unstable particle is electrically charged its equation of motion will be 

e__ F'a13 _~_ na 
-- UfJ -, ' (7) 

c 

where pa!3 is the electromagnetic field. As a results of the antisymmetry of 
Fa13 , the relation (6) still holds in the case where Da is defined by Eq. (7). 

§ 2. Unstable particle in a gravitational and electromagnetic field 

Let us now consider an unstable particle in a gravitational field. Equation 
(3) ,can be written 

d (/loCUa) ==Dads . 

It IS natural to generalize this equation into the following one : 

LJ (/loCUa) =:Dads , (8) 

where the symbol L1 stands for the operator of covariant or absolute differentia­
tion, and 

ds2 
=--= [/ >..vdx:?c dx/ . 

gA.v (x:) IS the gravitational tensor. Equation (8) reads 
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740 J L. LojNs 

Pocilua +cuai1f1o=Dads. 

As f-lo is a scalar function of s, 11!10 is identical to dp0 • 

takes into account the well-known expression for ilua, 

We thus have, if one 

f dua -! r.x :\ "} a d!lo -Da /laC ld,;- - :\vU u +cu ~d;--- , (9) 

where 

r~v = ~ gaE (~~; + ~~E: _ ~:A:) 
are the Christoffel symbols. 

The equation 

(10) 

which 1s a consequence of the normalization 

leads, when combined with Eq. (9), to the relation (6), where now 

Equation (6) may be replaced into the equation of motion (9) to giVe 

{ dua + r.x A v} - c·~ a a ) D'l f-loC ---- -- :\vU u - u'7 -u u'7 • 
ds 

(9a) 

In the presence of an electromagnetic and a gravitational field, the equation 
of motion of a particle with variable rest-mass is, therefore 

( dua 1 e 
11 oC 1) --- + r.x Zl:\llv l - --- F au"= (o a- uau ) D'1 

tJo :\v J C " '7 '7 ' ds 
(11) 

where 

g, zl D" = c -cltl_o __ 
"'" ds · 

(12) 

According to our assumption, the self-force D"~ characterises classically an un­
stable particle and vanishes for a stable one. 

The equations of the electromagnetic and the tensor gravitational fields are 
known. To have a meaning, Eq. (9) must be supplemented by equations which 
determine the force Da or f-lo as a function of s. 

If this force is assumed to derive from a scalar field ¢ (x) : 

Da= a¢ 
aza ' 

(13) 

Eq. (12) for Da obtains the form 
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d ( 
ds 

!Joe ¢) =0. (14) 

This means that the scalar field ¢, at the particle's world-line, would deter­
mine the mass of the particle. Let m 0 be a constant mass; we have, from (14) 

1 
flo(s)=mo+ ¢(z(s)). 

c 
(15) 

The variable mass of an unstable particle is equi'valent to a jYarticle with a 
constant mass in interaction zvith a scalar field. 

§ 3. Dicke's equation of motion 

It is of interest to consider now the long range scalar field cp whose exis­
tence has been assumed by Dicke1

) in order to overcome, at least in part, the 
absolute space-time character of Einstein's relativistic theory of gravitation. The 
properties of this field are : 

a) the source of the field is a scalar mesure of the mass density of the 
universe, T; a simplified equation satisfied by the field may be of the form 

0 cp= -4nfT, (16) 

where f is a coupling constant; 
b) the scalar field gives rise to an attractive force between all bodies ; 
c) the scalar field coupling is weak, of the order of the gravitational 

coupling; 
d) the interaction of Dicke's field with a particle cannot occur unless the 

mass of the particle is a function of this field. 
Dicke's equation of motion for a particle of rest-mass flo is, in our notation, 

d (JloCUa) - 1 floC ()g_>c!'_ z/u" + C dj1o ()cp_ = 0 
ds 2 ()za dcp ()za · 

This equation IS equivalent to Eq. (9), if one sets 

Da = _ c d/Lo acp 
dcp a.za 

Indeed, we can write (9) in the following form: 

/loc9a'~ du'~ +!loCU,
7 

f!g .. a~u>c+ 1 /Locga>c (()g>c'~ + ()g.>cv- ()g'~".)u?Ju" 
ds ():::;./... 2 az" az'' fYz!.. 

or 
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742 J. L. LojJes 

hence 

-d (/loClt.~) - 1 
floc _ag>cv_ zluv = D'l . 

ds 2 az'1 

The difference between ours and Dicke's. equation lies in the significance 
of the force Da. \Vhereas we tried to introduce such a force to distinguish, in 
the realm of classical physics, an unstable from a stable particle, Dicke introduces 
it as an additional gravitational force, satisfying the item b) above. 

§ 4. The Eotvos experiment and Dicke~s universal interaction 

In Dicke's theory, therefore, Eq. (9) is valid for all particles. The equality 
between the inertial and the gravitational masses, assumed to hold for all par­
ticles, imposes a condition on the variability of the mass flo and on the force 
Da. 

If Eq. (9a) is assumed to be valid for all particles: 

dua + T"' >c v _ 1 (" a a ) D'l -- >cvU U - 0'1 - U U'l , 
ds floc 

(9a) 

the second-hand side of this equation will be independent of the particle if we 
postulate, as already pointed out by Dicke, that: 

A) the variable mass flo be equal to a constant },0-presumably characteristic 

of the particle--multiplied by a universal function of s, the same for all par­
ticles, V (s) : 

flo (s) = l,o V (s) ; (17) 

B) the scalar field ¢, as defined by equation (13), be equal to the same 
constant llo, which depends on the particle, multiplied by a universal function 
cp: 

¢ (x) = llo({) (x). (18) 

If one identifies the constant llo with the constant mass m 0 g1ven in (15), 
one sees that the universal function V (s) is given in terms of cp by 

V = 1 + _({) , lo = mo . 
c 

(19) 

The relations (13), (15), (17) and (18) transform this equation into 

__ dua+T~vu"'z/= 1 { 0\7 -ua dV ~. 
ds V OZa ds J 

(20) 

The equality between the inertial and the gravitational masses requires, 
therefore, that the scalar field generates a universal interaction among all particles. 
\Ve emphasize that, Dicke's field being produced, by hypothesis, by the matter 
in universe, it is supposed to act on all particles, inc]w1il1g the stable ones like 
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Remarl:s on Classical Unstable Particle.'; 743 

the electron---the scalar field would be essentially a part of the gravitational field, 
the other part being the tensor field. This is best seen when one examines the 
problem of a particle moving in a weak, static gravitational field. 

We can write Eq. (20) in another form, of the geodesic type, if we trans­
form the metric by means of the relation 

- vz g fhV = gpv' 

and define the new variables : 

Equation (20) goes over into the following one: 

d-a 
u - + T'.x zi>"u" = o . ds .~v 

In the limit of a weak, static gravitational field, one writes 

g -gCO) L ""r pv - t<V -~ C pv , 

where s IS a small parameter and g~0] is the Lorentz metric tensor: 

1 · gCO) = 0 /1 ± V 
' ' j.tl) ' - -;- ~ 

g '"" becomes, according to (21) and (19), 

if the function (;/ IS also treated as a small perturbation : 

qJ<~J-'. 

(21) 

(22) 

(23) 

In the first approximation in s,. cp and the particle's velocity, one therefore obtains 
for Eq. (23) 

where, 1n this approximation, 

- 1 ( 0'l7,0 Tto~ g<O)aA. 2 ''"' 
2 Ozo 

O!Joo) 
::::1 A. • 
u.z 

The consistency condition T'go = 0 requires that sroo + 2cp /c be time-independent. 
If this dependence also holds for the other components of IJa/3, one obtains 
Newton's equation of motion for a particle moving in a static potential U = 

(c2/2) CJ'oo + ccp. 
The scalar field cp is thus seen to be amalgamated with the zero-zero compo­

nent of r '"" to give the observable potential [J -in fact, according to the defini­
tion (21), the scalar field V hides itseLf in the new metric tensor g '"" . 
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744 J. L. LojJes 

§ 5. Speciific decay interactions 

We may, still, wish to distinguish, in the realm of classical physics, unstable 
particles like neutrons, from stable ones, like electrons. If one maintains the 
definition of an unstable particle as one with a decreasing restmass, we may be 
led to distinguish two components in the force Da which occurs on the righthand 
side of Eq. (11) : 

Doa is the force derived from Dicke's uiversal scalar field, acting on all par­
ticles; D 1a is the decay force, acting on unstable particles but vanishing for 
stable particles. Equation (9) now is 

/LoC{-cJz!:_+T~vU>cUv~ + ZlaC_cJ,p9 __ =Doa+D1a 
ds J ds 

(24) 

and the relation (6) has the form 

(25) 

We see, however, that the occurence of the force D 1a seems artificial. For 
in the same way that charged particles have a universal interaction with the 
electromagnetic field, one would prefer to state that the mass variation of all 
particles would result from a universal interaction with the scalar field such as 
defined in the preceding paragraph. But this interaction, if it exists, does not cor­
respond to any instability of particles--since it occurs for all of them-but rather 
to a scalar gravitational interaction, in addition to the tensor field interaction; 
and the mass variation would perhaps correspond to a cosmological variation 
of the gravitational constant. In fact, one has 

(26) 

where f.lp is the proton mass. If /'-p is given by Eq. (17) where l- 0 is the proton 
rest-mass tnP one obtains 

c', 2 /h- ~ 10-40 ~J. nz P c=~- , (26a) 

where Q' = QV2 (s) vanes with time. 
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